
Trajectory Planning for Monocular SLAM based
Exploration System

Sarthak Upadhyay
Robotics Research Center

IIIT Hyderabad, India

Ayush Dewan
Robotics Research Center

IIIT Hyderabad, India

Arun Kumar Singh
Robotics Research Center

IIIT Hyderabad, India

Madhava Krishna
Robotics Research Center

IIIT Hyderabad, India

ABSTRACT
In this paper, we propose a novel planning technique for
monocular camera based Simultaneous Localization and Map-
ping(VSLAM). In VSLAM, the objective is to estimate the
trajectory of camera and simultaneously identify 3D feature
points and build a map, using camera as a depth sensor. Un-
like a laser range finder based SLAM, VSLAM is known to be
erroneous when camera motion includes an in-place rotation
or feature displacement is large for successive frames. We
propose a motion planning framework which combines mo-
tion primitives based planning and trajectory optimization
approach to generate trajectories which exactly connects an
initial and final state and also ensures that the change in
camera’s field of view between subsequent instances is less
than some specified threshold. As a consequence of this mo-
tion planning framework we are able to automate SLAM
and generate automated monocular SLAM maps of an in-
door lab area. We also show when the robot follows the path
of a generic planner, PTAM trajectory breaks more often
than when it executes the path computed by the proposed
planner. This performance improvement is further utilised
to develop an autonomous vision based exploration system.

1. INTRODUCTION
In recent years, research on monocular camera based robotic

system have spurred up, specially in area of aerial robotics
[3], [15]. Since, very few Micro Aerial Vehicles(MAV) re-
search platforms support heavy sensors like Laser Range
Finder(LRF), camera remains a feasible and an inexpensive
alternative. Mostly, camera has been primarily used as a
sensor for body-velocity detection and as a sensor for state
estimation. The latter technique generally uses map infor-
mation for estimating pose of camera and is more relevant,
considering the context of this paper.
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Figure 1: Steps involved in the proposed exploration
system

In this paper, we primarily concentrate on using cam-
era as a sensor for Simultaneous Localization and Map-
ping(SLAM). Monocular SLAM unlike range based mapping
system is known to be less tractable, both in terms of ac-
curacy of reconstruction and scale of map obtained. The
main reasons include, (i) highly non-linear nature of projec-
tion operation,(ii), the entailment of good initial guess for
effective convergence of non-linear optimization(Bundle Ad-
justment),(iii) presence of degenerate cases, such as highly
planar scenes and in-place rotations, (iv) ambiguities in scale
and in the decomposition of Essential Matrix to obtain cam-
era pose estimation, (v) sparse nature of reconstruction.

Due to above reasons most monocular SLAM systems tend
to show results over smaller scales[1],[14]. The best results
for monocular SLAM have been obtained with hand held
camera, where camera motion is unconstrained and repeated
scanning of same area is feasible [7]. However, such motion
is difficult to port onto non-holonomic systems like differ-
ential drive/ Ackerman steer robot. It is in this context,
this paper describe a trajectory planning framework for au-
tomating monocular SLAM for such robots.

In this paper we propose a novel motion planning frame-
work which connects exactly the initial and final state of
the robot and ensures that change in camera’s field of view
(FOV) between subsequent instances is less than a specified
threshold. We propose a hierarchical optimization frame-
work which breaks a difficult non-linear optimization into a
sequence of convex programmes with linear constraints and
quadratic objective function. To ensure that the resulting
trajectory lies within the known part of the map, we de-
velop heuristics about the states which can be connected
easily through the optimization and results in trajectories
of shorter lengths. We use motion primitives based plan-



ning to guide the robot from the current state to a general
vicinity of favourable states. We then used the trajectory
optimization approach to make the final connection between
the states. Although motion primitives based RRT [11] are
themselves capable of producing trajectories satisfying dif-
ferential constraints (like FOV constraints), their inability
to converge exactly to the goal state is the main motivation
behind using a mixture of motion primitives based planning
and trajectory optimization techniques.
The main contribution of this paper is that, it is one of the

first such efforts to automate a monocular SLAM framework
for a non holonomic robot. Secondly it proposes a novel tra-
jectory planning framework that provides for stable VSLAM
estimates without breaks. For instance it increases reversals
to keep features in view and avoid large rotational displace-
ments thereby arresting possibilities of break down of PTAM
trajectories. For once the trajectory breaks it is indeed dif-
ficult to stitch together disjoin trajectories and the map as
they are typically at different scales. Using the method pro-
posed in [4], sparse pointcloud from PTAM is densified and
the dense information is used for standard frontier based
exploration. Results of a stable exploration in large indoor
lab(12m× 8m) has been shown, without any breaks in tra-
jectory estimate. We also show when PTAM is automated
with a generic planner trajectory breaks more often resulting
in loss of both map and trajectory information. To the best
of our knowledge, there have not been any such reporting of
autonomous exploration for monocular SLAM.

2. SYSTEM OVERVIEW
This section briefly describes the different modules in-

volved in the autonomous exploration system. PTAM acts
like the backbone of the whole approach and supports differ-
ent modules. Details regarding working of PTAM, and the
relevant modifications made by us are presented in section
3.1. The sparse map created by PTAM acts as an input for
dense reconstruction module, details of which are mentioned
in section 5.1. Using the dense information a 2D ground map
is made. This map is used for estimating frontier positions,
and using the exploration strategy described in section 5.2
an appropriate frontier is determined. Using the proposed
planning algorithm (section 4), a motion plan is generated to
move the robot towards the frontier and both, camera pose
and map are constantly updated as the robot moves along
the trajectory. Flowchart in Figure 1 explains the above
mentioned approach.

3. VSLAM FRAMEWORK
A SLAM system aims at building a coherent map of the

environment around the robot. Map is defined in a global
coordinate frame, and to observe the features of the envi-
ronment, it is necessary to know the position of the robot
in the same global frame, in other words, robot needs to be
localized. In a monocular camera based SLAM, estimation
of camera pose is typically in 6DOF, at a scale governed
by the assigned distance to the initial two camera frames.
Since motion of camera between capturing of those two im-
ages may be unknown, the map is built on an arbitrary scale.

3.1 PTAM
PTAM has turned out to be the most popular choice of

open-source implementation of monocular SLAM. The cur-

rent work can be seen as that which enables automating
a PTAM based mapping for lab scale environment, from a
traditional desktop setting.

Novelty of PTAM lies in the decision to run Tracking and
Mapping operations on parallel threads. For tracking, an
initial pose of camera is estimated using a simple motion
model. The 3D map points are then projected back to the
current camera frame and re-projected map points are com-
pared with the features detected in the current frame and
accordingly current pose is updated.

For refining map points and camera pose, Mapper thread
uses Batch Optimization technique called Bundle Adjust-
ment(BA). Bundle adjustment runs on subset of frames called
Keyframes, rather than every single image. Even though
BA is computationally expensive, threading of tracking and
mapping operations, makes it feasible. Complete details re-
garding motion model, Tracking, Mapping and other impor-
tant modules can be seen in [2].

In our experiments, we automatically initialize PTAM.
Robot is moved along a straight line for small distance, and
using experimental heuristics, two frames for stereo initial-
ization are selected. Using the odometry sensor reading,
movement of camera is estimated between two Keyframes
and the map is initialized on metric scale. As mentioned in
[2], complexity of BA is O(N + M)3, where N is number
of KeyFrames and M is number of points, and with sparse
implementation(used in PTAM), complexity drops down to
O(N3). The change in complexity with sparse implementa-
tion is commendable, but still, computation becomes expen-
sive with increase in number of Keyframes.

Since the planning algorithm proposed by us, forbids any
sharp change in field view of camera, the displacement of
map points is gradual and smooth. This allows us to adopt
a more conservative heuristic for adding Keyframe. If the
robot is visiting an already explored area then, the frequency
of adding Keyframe is reduced. Secondly, to manage the
complexity for BA, we follow a approach similar to [3] and
limit the number of Keyframes, to be considered for BA. We
only choose n Keyframes near the current camera pose. As
mentioned in [5], the effect of distant map points is negligible
on optimization(BA), this modification does not impact the
performance of PTAM.

3.2 Failure Case
As mentioned in our previous work [6], quality of map is

highly dependent on performance of Tracker. The camera
pose, estimated using motion model is updated by Tracker
and the subsequent triangulation of 3D map points depends
on pose of the camera. Hence, if quality of tracking drops,
the error in camera pose estimation increases, which in turn
causes erroneous triangulation of map points. Most of the
trackers that work online, define a fix radius for searching
image features. Thus, any sharp motion, like in-place rota-
tion, could cause large displacement of features between con-
secutive frames and thereby hindering the quality of track-
ing. Similarly, fast movement of camera also has a negative
impact on tracking. This movement causes blurring in im-
ages and due to the blur, signature of feature points are lost,
which in turn makes them untrackable.

To attend to, the aforementioned failure cases and to gen-
erate a trajectory for camera, which improves the perfor-
mance of PTAM, we propose our novel optimization formu-
lation in next section.
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Figure 2: Figure shows snapshots of path plots((a)-(d)) map for unconstrained((a)&(c)) and
constrained((b)&(d)) cases. Green, red and blue markers shows the initial, final and intermediate state.
Green semi circles represent the already seen area, blue semi circle represent new points added to map dur-
ing the motion and red semi circle represent the new points added at final state. Purple semi circle represent
the point where trajectory breaks for unconstrained motion. Due to breaking, new points are not added to
map for unconstrained motion.

4. MOTION PLANNING FOR IMPROVED
VSLAM

In this section, we first describe the trajectory optimiza-
tion framework which is the primary component of the pro-
posed motion planning framework and then how it is com-
bined with motion primitives based planning.

4.1 Trajectory Optimization
We start with the following unicycle model of the robot

ẋ = v cos θ
ẏ = v sin θ

u1 = v̇

u2 = θ̈

(1)

where v =
√

ẋ2 + ẏ2 represents the linear velocity of the
robot from the robot’s local reference frame aligned with
the longitudinal axis. θ is the heading of the robot. u1 and
u2 are the control inputs. We will refer the triplet (x, y, θ)
as states. System represented by (1) is differentially flat [12]
which means that a subset of the states can be chosen as
flat outputs and all other states and control variable can be
expressed as an algebraic function of the flat outputs. We
choose here x and θ as flat outputs and parametrize them
as the following polynomial functions.

x(ai, t) =

12∑
i=1

ait
i
, tan θ = ζ(bi, t) =

5∑
i=1

bit
i

(2)

By (1) we have

ẏ(t) = ẋζ ⇒ y(t) =

12∑
i=1

fi(bi, t)ai (3)

fi are functions of only parameters bi and t. In the above
definition t ∈ [to, tf ] is an arbitrary time interval. The objec-
tive is to compute such ai and bi which satisfies the following
set of constraints

C =


x(to) = x0, x(tf ) = xf , ẋ(to) = 0, ẋ(tf ) = 0

ζ(to) = ζ0, ζ(tf ) = ζf , ζ̇(to) = 0, ζ̇(tf ) = 0
y(to) = y0, y(tf ) = yf

(4)

−ϕ ≤
dθ

ds
≤ ϕ ⇒ −ϕ ≤

dθ
dt
ds
dt

≤ ϕ (5)

Equalities presented in (4) arises out of boundary constraints
and ensures that the initial and final states are exactly con-
nected. Inequality (5) restricts the heading change of the
robot along the trajectory arc length and is equivalent to
putting constraints on the field of view. This equivalence
arises out of the fact that for a non-holonomic robot with
camera fixed to the robot’s base, changes in field of view

Figure 3: Heuristics for favourable states.

between subsequent frames has a one to one correspondence
with changes in the robot’s heading along the trajectory arc
length. It should be noted that although (5) mathemati-
cally resembles a typical curvature constraint on the robot’s
path, the numerical value of ϕ is quite different from mini-
mum curvature value that the robot can follow.

Using (3) constraint (5) can be further simplified in the
following manner.

−ϕ ≤
ζ̇

(1 + ζ2)
3
2 ẋ

≤ ϕ (6)

The coefficients ai and bi defining the trajectory can be
obtained by using (4) and (6) as constraints in a typical
parameter optimization setting. However, the last equality
in (4) is quadratic in terms of ai and bi while (6) is highly
non-linear which makes the parameter optimization difficult
to solve. But it can be noted that if bi are fixed (which in

turn fixes ζ, ζ̇), the constraints (4) and (6) become linear.
Hence we next propose a two level optimization structure
where at the first level we obtain the parameters bi and then
they are used at the second level of optimization to solve (4)
and (6).

4.2 Obtaining Parameters bi

We start with generating n+2 grid points (to, t1, t2....tn, tf )
in the time interval [to, tf ]. The parametric functions ζ is
then symbolically evaluated at these grid points and the re-
sulting expressions are used in the following optimization
problem

min J =

n∑
i=0

(ζ(ti+1) − ζ(ti))
2

(7)

subject to

Cζ =
{

ζ(to) = ζ0, ζ(tf ) = ζf , ζ̇(to) = 0, ζ̇(tf ) = 0 (8)

The intuition behind objective function (7) is to minimize
the heading change of the robot between consecutive grid
points. But to create a convex quadratic objective function,
we use (2) and instead minimize the tangent of the heading



change between consecutive grid points. The equality con-
straints (8) are linear in terms of parameters bi and hence
the optimization problem is a simple quadratic programming
problem which can be solved efficiently. The parameters bi
thus obtained are used in the second level of optimization
which is described next.

4.3 Obtaining Parameters ai

To obtain parameters ai, we frame the following optimiza-
tion problem

min J =

n∑
i=0

(y(ti+1) − y(ti))
2
+ (x(ti+1) − x(ti))

2
(9)

subject to

Cxy =

{
x(to) = x0, x(tf ) = xf , ẋ(to) = 0, ẋ(tf ) = 0

y(to) = y0, y(tf ) = yf
(10)

Cin =

{
ζ̇(ti) − (1 + ζ2(ti))

3
2 ẋ(ti)ϕ ≤ 0

−ζ̇(ti) − (1 + ζ2(ti))
3
2 ẋ(ti)ϕ ≤ 0, ∀i = 1, 2, 3..n

(11)

The objective function (9) is convex quadratic and seeks
to minimize the arc length of the trajectory. The equality
constraints (10) and the inequality constraints (11) are linear
in terms of parameters ai. Hence the optimization again is
a simple quadratic programming problem. A careful review
of the trajectory optimization would reveal that it does not
include any linear and angular velocity or acceleration bound
constraints. This is consciously done since these constraints
are highly non-linear and non-convex. These constraints are
enforced on the resulting trajectory through the concept of
time scaling [13].

4.4 Integrating Trajectory Optimization with
Motion Primitives

In cases when some potions of the trajectory resulting
from the optimization above falls outside the map, we re-
sort to motion primitives based RRT [11] to guide the robot
from the current state to the vicinity of favourable states.
Favourable states refer to those which can be easily con-
nected through the trajectory optimization and results in
trajectories of shorter lengths. To understand the heuris-
tics behind characterizing favourable states, consider figure
3 which shows an initial state A and multiple final states
B, C and D. The final states have the same position and
differ only in their orientation. A circle of radius R is drawn
such that the state A is tangential to the circle. Similarly
circle of same radius is drawn with states B, C and D as
tangents. Intersection of these circles are shown in the fig-
ure as AB, AC and AD respectively. The approximate arc
length distance of the point of intersection from state A can
be seen to be in order AB > AC > AD. Since constraint (6)
can be seen as a constraint on arc curvature, we characterize
favourable state as one which has a larger heading difference
with the final state.
Since, in place rotation is not permissible, it is not possible

to change the heading of initial state, while maintaining the
position. Hence we sample a new state (x, y, θ) and use
motion primitives based planning to guide the robot from
the current state to the newly sampled state. It is enough
that the robot is guided to the vicinity of the sampled state.
The trajectory optimization is then used to make the final
connection to the goal state. The sampled intermediate state
serves two purpose. First it increases the heading difference

with the final state. Moreover, it is further inside the map
thereby resulting in a trajectory which lies within the map.

5. VISION BASED EXPLORATION
As an application to the proposed planning algorithm,

we present an autonomous vision based exploration tech-
nique. The objective of an exploration mission is to explore
an unknown area and gather maximum information about
the environment. One of the most commonly used strategy
for exploration is known as the “Next Best View” approach.
Using the current environment information(a map), a set
of plausible goal positions, known as frontiers, are identi-
fied. These frontiers are quantified using a cost function
and among them a suitable frontier is chosen according to
an objective function.

Most of the existing exploration algorithms have primar-
ily employed depth sensors like laser or more recently Kinect
for interacting with surrounding environment. Output from
both of these sensors can be used for making a dense and
information rich map of the environment. The challenge
arises in case of a monocular camera, where the map infor-
mation remains sparse and determining a frontier position
from such sparse map becomes non-trivial.

To densify the sparse pointcloud, and make it legible for
exploration we use algorithm proposed in [4].

5.1 Dense Reconstruction
Dense reconstruction using a monocular camera has been

an active research problem for quite a few years. Davison
et al proposed Dense Tracking and Mapping Algorithm in
[7]. Building over a sparse pointcloud information, using
optical flow they were able to achieve remarkable results in
real time. More recently, a Signed Distance Function based
function 3D dense reconstruction algorithm was proposed in
[8]. Even though, both these methods present commendable
results, they heavily rely on GPUs for processing. Therefore,
using them for system which relies on on-board processing
is currently not feasible.

In this paper we follow the reconstruction algorithm, pro-
posed by Argiles etal in [4]. Using the algorithm mentioned,
we detect and reconstruct dominating planes from sparse
PTAM map. For detecting planes in the scene we use Jlink-
age. Jlinkage uses random sampling for estimating multiple
plane hypothesis and then clusters the hypothesis and ex-
tracts planes from it. The plane detected using Jlinkage is
divided into smaller grids, and each grid is checked for photo-
consistency. Initially grids, with 3D map points are chosen
for checking photo-consistency and then the same check is
done for there neighbours. This way of searching allows to
retrieve texture less plane surface.

Figure 4 shows reconstruction of planes for scene in Figure
4(a). Figure 4(b) shows the dominating plane estimated by
Jlinkage using PTAM pointcloud. Using photo-consistency
matching, the gap between two planes is detected. Com-
plete details regarding photo-consistency matching and the
complete implementation can be seen in [4].

5.2 Exploration
The dense pointcloud is sampled at a particular height and

is used as a virtual laser scan for creating ground maps. The
resultant map can be seen in Figure 5.2. After building the
ground map, we continue with frontier based exploration.



Figure 4: Various steps involved in reconstruction of the scene in (a). Using Jlinkage dominated planes are
estimated(c), for sparse pointcloud of the scene, shown in (b). Photoconsistency matching helps in detecting
gap between Box1 and Table1 and the final 3D reconstruction is shown in (d).

Figure 5: Ground Map created (a) using sparse
PTAM pointcloud. (b) After dense reconstruction

Dataset U1 U2

Constrained Unconstrained Constrained Unconstrained
Dataset 1 0.9053 0.210 242.994 68.34
Dataset 2 0.7053 0.3713 116.0683 41.1478

Table 1: Comparison between Constrained and Un-
constrained Trajectories

Each frontier is quantified with following cost function:

Ui =
vi
di

(12)

Here, vi is the approximated gain of information for fron-
tier i and di is the distance robot has to travel to reach the
frontier. The objective is to choose a frontier with maximum
utility Ui. As shown in our previous work [10], this choice
of cost function provides superior results in comparisons to
other proposed methods. After choosing a frontier of max-
imum utility, using the proposed planning technique, robot
moves to the goal and continues the exploration.

6. HARDWARE IMPLEMENTATION AND
RESULTS

For our experiments, we use Kinect mounted on a iCreate
TurtleBot. Kinect is used only as a monocular camera and
not as depth sensor. The whole algorithm is processed on
a laptop connected to robot. Laptop runs on a 2.3 GHz
Quadcore i7 processor. The complete exploration system
was implemented using ROS(Robotics Operating System).
As shown in the Figure 1, the first step of the exploration

is PTAM. We initialize the PTAM using the technique men-
tioned in section 3.1. In the next step, dominant planes are
estimated from initial pointcloud and using the procedure
mentioned in section 5.1 a ground map is built(Figure 5.b).
For reconstruction we added another thread to the exist-

ing PTAM framework. The motivation for dense reconstruc-
tion is to improve the map for aiding accurate navigation of
robot. Figure 5 shows the comparison between the ground
map created using sparse pointcloud and the map created
after dense reconstruction. In sparse map, due to sparse
cloud information, obstacle boundaries have gaps, whereas

obstacle boundaries are coherently mapped after densifying
the sparse information. Secondly, the error in map due to
PTAM map points belonging to floor is also removed. This
improvement in map verifies our motivation to use dense
reconstruction for navigation.

Table 1 shows comparisons between unconstrained and
constrained trajectories for cases shown in Figure 2. Com-
parisons are done on two metrics, (i)average number fea-
tures tracked in every frame (U1) and (ii) average number
of frames in which every point is tracked (U2). For every
frame, PTAM estimates total number of map points to be
searched in current frame. U1 is ratio of points tracked to
the total points to be searched, averaged over total number
of frames. U2 is the average number of frames in which ev-
ery point is tracked. In both cases, a high value will point
towards efficient tracking. In both cases our proposed ap-
proached outperformed the unconstrained method by large
margin. In Table 1, Dataset 1 refers to cases in Figure 3.2
and 3.2, and dataset 2 refers to cases in Figure 3.2 and 3.2.

Figure 6 shows comparisons between planner trajectory
(blue) and PTAM trajectory(green) for both Dataset 1 and
2. In case of constrained trajectory, PTAM trajectory closely
follows the planner trajectory, whereas in case of uncon-
strained, planner trajectory is closely followed until PTAM
trajectory breaks(purple marker) after which both trajec-
tory and map information is lost vindicating our current
formulation. This results vindicates the success of our for-
mulation.

Figure 7 shows the explored area at different time frames.
Blue points belongs to the patches or grid which satisfied
the photo-consistency matching (discussed in Section 5.1)
and the trajectory of robot is shown in green color for both
cases. We would like to emphasize, that these maps are built
using a monocular camera and we do not expect our results
to be on the same level as the maps built using generic depth
sensors. Exploration was done for an indoor lab area of
dimension 12m×8m. The exploration shown was completely
autonomous and no human intervention was required at any
step. As per our knowledge, results of this extent, for a
monocular camera based exploration system has not been
shown before.

In this paper we shown results to verify the superior per-
formance of our planning technique, in comparison to an
existing framework(Figure 2,6 & Table 1). We have also pre-
sented a fully autonomous frontier based exploration system
which verifies the importance of such a planning framework
in VSLAM and shows how PTAM can be utilized for map-
ping larger environments.

7. CONCLUSION
In this paper we proposed a novel trajectory planning
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Figure 6: Comparison between planner trajectory(blue) and PTAM trajectory(green). In case of con-
strained trajectories((b)&(d)) PTAM trajectory follows planner trajectory closely. In case of unconstrained
motion((a)&(c)) PTAM trajectory is close to planner trajectory, until it breaks(Purple marker)

.

Figure 7: Figure (a)-(c) and (d)-(f), show PTAM map and ground map at different stages of exploration of
scene in (g).(h) Complete ground map,(i) complete PTAM map.

framework for automating Monocular SLAM. Monocular SLAM
systems have typically known to work when a small area is
repetitively scanned with a freely moving camera, which are
difficult to port onto non holonomic robots. Through an apt
combination of motion primitives and constrained trajectory
optimization techniques we show stable reconstruction of in-
door lab scale environments. We show through the proposed
framework feature tracks are obtained for longer sequences
as well as more features are seen in every image when com-
pared with a generic planner. This directly contributes to
stable trajectories when compared with a generic planner
where trajectory and maps are lost more frequently. In fu-
ture we would like to show exploration for a larger area.
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