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Abstract It is a well known result in the vision litera-
ture that the motion of independently moving objects
viewed by an affine camera lie on affine subspaces of
dimension four or less. As a result a large number of
the recently proposed motion segmentation algorithms
model the problem as one of clustering the trajectory
data to its corresponding affine subspace. While these
algorithms are elegant in formulation and achieve
near perfect results on benchmark datasets, they fail
to address certain very key real-world challenges,
including perspective effects and motion degenera-
cies. Within a robotics and autonomous vehicle set-
ting, the relative configuration of the robot and mov-
ing object will frequently be degenerate leading to
a failure of subspace clustering algorithms. On the
other hand, while gestalt-inspired motion similarity
algorithms have been used for motion segmenta-
tion, in the moving camera case, they tend to over-
segment or under-segment the scene based on their
parameter values. In this paper we present a prin-
cipled approach that incorporates the strengths of
both approaches into a cohesive motion segmentation
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algorithm capable of dealing with the degenerate
cases, where camera motion follows that of the mov-
ing object. We first generate a set of prospective
motion models for the various moving and station-
ary objects in the video sequence by a RANSAC-like
procedure. Then, we incorporate affine and long-term
gestalt-inspired motion similarity constraints, into a
multi-label Markov Random Field (MRF). Its infer-
ence leads to an over-segmentation, where each label
belongs to a particular moving object or the back-
ground. This is followed by a model selection step
where we merge clusters based on a novel motion
coherence constraint, we call in-frame shear, that
tracks the in-frame change in orientation and distance
between the clusters, leading to the final segmentation.
This oversegmentation is deliberate and necessary,
allowing us to assess the relative motion between
the motion models which we believe to be essen-
tial in dealing with degenerate motion scenarios.We
present results on the Hopkins-155 benchmark motion
segmentation dataset (Tron and Vidal 2007), as well
as several on-road scenes where camera and object
motion are near identical. We show that our algorithm
is competitive with the state-of-the-art algorithms on
Tron and Vidal (2007) and exceeds them substantially
on the more realistic on-road sequences.

Keywords Motion segmentation - Robot vision -
Subspace clustering
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1 Introduction

With the imminence of mobile robots interacting with
dynamic human environments, motion segmentation
becomes a necessary function that robots should per-
form. For outdoor vehicles and robotic aids, it seems
unavoidable that the camera mounted on the robot be
mobile. Thus, there is a need for algorithms that are
capable of handling situations where both the robot-
mounted camera and object of interest are in motion.
While there is already a vast amount of literature on
motion segmentation, there are comparatively fewer
algorithms that explicitly take into account the camera
motion.

In video taken from a stationary camera, motion
segmentation is straight forward. A background model
can be learnt, and used to do a foreground-background
segmentation leading to the moving foreground to be
segmented out.

In the case of a moving camera, seperating sta-
tionary objects from non-stationary ones, is rather
challenging, as the camera motion causes most of the
pixels to move. The apparent motion of points, is a
combined effect of camera motion, object depth and
perspective effects and noise.

Optical flow vectors for nearby stationary objects
may have a larger magnitude, than those for far-away
objects that are in motion, thus one cannot exclusively
use optical flow as the basis for a motion segmentation
algorithm.

Likewise, the geometric constraints imposed by
epipolar geometry [15], do not hold for certain rel-
ative motion configurations between the camera and
the moving object, as shown below. The fundamen-
tal matrix relates two objects in a rigid scene, by the
equation,

XTFx=0 (D

x and x’ are 2D image co-ordinates of a 3D point
viewed from two views. Geometrically Fx represents
the epipolar line in ’ in the primed co-ordinate system.
If the 3D point P corresponding to x and x’ are sta-
tionary, then in the case of zero-noise |/’x’| = 0 holds.
This constraint, known as the epipolar constraint, can
be used to distinguish between moving and station-
ary points, in most cases. Fig. 1a shows a typical case
where the point P has moved to P’ its projection in
the second image x’ lies above the line I'.
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(a) Point Off Epipolar Plane

p

(b) Point On Epipolar Plane

Fig. 1 f the epipolar constraint functions and fails. In (a) the
3D point P on moving to P’ off the epipolar plane is projected
into the primed camera frame C’ above the epipolar line I’. In
(b) P’ still lies on the epipolar plane and is projected right onto
the I’. In (b) the epipolar constraint cannot be used to detect P’
as moving

However, if P were moving in on the epipolar plane
itself, as in Fig. 1b such that it’s image lies on the
epipolar line, yielding a zero value for epipolar con-
straint. Such a configuration is called a degenerate
configuration. These degenerate configurations arise
when the camera and object motion are either paral-
lel or anti-parallel. The epipolar constraint fails for
these degenerate scenarios. In the case of autonomous
vehicles, one can argue that these situations, are more
common than the non-degenerate case, which will
occur mostly at road intersections.

In the design of a motion segmentation algorithm
that works in degenerate scenarios, we have to incor-
porate other relative motion cues, that can capture the
difference in motion between multiple objects. We use
notions of motion similarity based on gestalt theory,
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temporal consistency and local spatial coherence, to
design our motion segmentation algorithm.

— Gestalt Theory: Points tracked on an object
should move similarly.

— Temporal Consistency: The above similarity
should hold over time as well.

— Local Spatial Coherence: Points sampled from a
small region should have similar motion.

The above principles are quite general, and do not
make any strong assumptions about either the scene,
camera model or motion between objects.

Our algorithm fits the template of multi-structure
model fitting algorithms, such as those of [11, 12].
These algorithms have three steps. The first, is a
model sampling step. In it sampling is used to gen-
erate a pre-define number of models. The second,
is an energy minimization step, in which smooth-
ness constraints are imposed on the sample points
to get a spatially coherent labelling of the data. The
third step, is a model reduction step that reduces the
number of labels on the basis of some label cost crite-
rion like Bayesian Information Criterion or Minimum
Description Length.

In the first step of our algorithm, a fixed number
of affine motion models are generated from randomly
drawn, spatially-local subsets of the tracked points.
We use a RANSAC-like procedure to estimate the
motion models of the sampled points. As a result of
this, some of the trajectory points are classified as
model inliers. The remaining, unclassified, points are
labelled on the basis of a trade-off between spatial
proximity to a particular cluster (where the inliers of
the model occur in the image) and model fit resid-
ual. Following this, an MRF energy minimization is
carried out over the tracked points, incorporating the
model-residuals as data terms. The smoothness terms
penalize relative change in flow and motion, causing
the resulting motion models to respect moving object
boundaries. To obtain the final segmentation, we have
a model selection step, that reduces the number of
motion models to the number of moving objects in the
scene, on the basis of a novel inter-model motion con-
sistency constraint. This constraint captures the notion
of in-frame shear between the models over-time as
shown in Fig. 2. Figure 2a and b show the initial
and final frames of the sequence. One can see that
the motion model on the car (in red), can be thought
of as shearing away from the one on the ground (in

B, %’
IR

(a) Initial Frame (b) Final Frame

Fig. 2 Illustration of In-Frame Shear. In Fig. (a), the blue lines
between the red and green clusters are close together. By frame
(b), they have changed orientation by nearly 90 degrees, and are
considerably stretched

green). As this is plainly apparent from the sequence
of images and does not take into account any extrane-
ous 3D information, we prefix the phrase “in-frame”
to shear.

Using these principles and constraints we propose
an algorithm that out-performs state-of-the art algo-
rithms on sequences taken from publicly available
datasets [17] and [21]. An additional advantage of our
algorithm is it does not require the number of mov-
ing objects in the scene nor the dimensions of the
subspaces in which they lie to be manually given, as
is the case of most of the other algorithms we have
compared the performance with like [3, 33, 43].

To sum up, in this paper, we propose a new rigid-
body motion segmentation algorithm that

e Has no prior requirement of the number of
motions in the scene

e No requirement of the dimensionality of the
motion subspaces

e Works on commonly encountered outdoor scenes,
which are degenerate and outperforms all other
known methods

e  Works on sequences that have significant camera
motion

e Bypasses any need for camera-motion estimation
using shear constraints

2 Related Works

Motion Segmentation is a well-studied problem with
algorithms inspired from various sources like, matrix
factorization [4, 23, 40], tensor decomposition [3, 26,
43], statistical model estimation [7, 35, 39] and per-
ception [29, 34, 38]. The problem has been analyzed
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for affine [3, 5, 6, 23], perspective [36, 40, 41] and
even catadioptric camera models [42]. We however
found that, while these approaches do tend to do well
on benchmark datasets, they are not robust enough
to handle real on-road scenarios. Instead the systems
that give reasonable real-world performance [1, 32],
tend to rely more heavily on optical flow differenc-
ing, and multi-view geometric constraints, as they
are computationally-inexpensive. However, flow dif-
ferencing will only work when there is a reasonable
difference between the movement of the camera and
that of the moving object. Likewise, the epipolar con-
straint, tends to fail in the degenerate cases where the
camera is following the object. We present a survey of
what we consider to be the three main approaches to
motion segmentation. The approaches are summarized
in Table 1.

2.1 Algorithms based on Perspective Geometric
Constraints (Epipolar Geometry and Planar-Parallax
Decomposition)

In [41], Vidal et. al studied the case of detecting
multiple motion, between two perspective views, by
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extending the epipolar constraint and its correspond-
ing fundamental matrix to the multi-body setting [40].
The method simultaneously recovers multiple fun-
damental matrices by polynomial factorization. As
mentioned before, these algorithms based on epipolar
geometry are unable to handle the case of degenerate
motion.

In the robotics context, [1, 20, 24], are all able to
handle degenerate scenarios, using the Flow-Vector
Bound constraint which is able to model degener-
acy with precision. However, in all of these cases,
an accurate estimate of the camera translation in the
world frame, as well as depth in the local frame.
As, [20] is a stereo based algorithm, the estimate
of the camera translation can be obtained accurately,
however, depth is still an issue beyond distances
of a few metres. In the monocular case, obtain-
ing an accurate estimate of either depth or transla-
tion is much harder. In [1], the camera translation
is found through a computationally intensive, unsta-
ble V-SLAM system running as a back-end to the
motion detection. In [24], translation is found out
through an odometry sensor. In comparison, our paper
bypasses the need for any robust pose estimation

Table 1 Summary of the recent motion segmentation algorithms (along with their attributes) relevant to our algorithm

Method type Algorithm Handles degeneracy Prior
Y/N knowledge
Epipolar Geometry Kundu et al. [24] Y EM
Vidal et al. [41] N -
Epipolar Geometry + Optical Flow Namdev et al.[1] Y EM
Romero-Cano et al. [20] Y EM
Optical Flow Brox et al. (2010) [22]] N NM
Ochs et al. (HOSC) [49] N -
Lezama et al. [2] N NM
Affine Subspace Clustering Elhamifar et al. (SSC) [3]] N NM+DS
Chen et al. (SCC) [43] Y DS+NM
Zografos et al. (LCV) [33] N NM
Jain et al. (SGC) [26] N NM
Zapella et al. (ASA) [46] Y NM
Zapella et al. (ELSA) [48] N -
Chin et el. (ORK) [44] N -
RANSAC [27] N DS
OF+Subspace Clustering + Shear Ours Y -

Legend: EM: Ego-Motion, NM: Number of Motions, DS: Dimensions of Subspaces,OF: Optical flow
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of the camera by making use of in-frame gestalt
cues.

To overcome the limitation of the epipolar con-
straint, vision researchers explored enforcing multi-
view constraint. The most prominent of this being
the trifocal tensor [15]. Generally it was observed
that for small-camera motions, such as those arising
from footage taken from a video camera, the trilin-
ear constraint [15] was ill-conditioned and extremely
sensitive to noise.

An alternate line of research explored enforcing
multi-view rigidity constraints using the so-called
“planar-parallax” decomposition. A scene is modelled
as points belonging to a 3D planar surface in the
scene (constituting the planar part) and the plane out-
liers(constituting the parallax). This decomposition
allowed for the introduction of new multi-view con-
straints like the structural-consitency constraint [50],
the parallax flow field [52] and the homography ten-
sor [53]. While the “structural consistency” constraint
is able to handle degenerate motions atleast theo-
retically, it remains untested in uncontrolled outdoor
settings.

2.2 Algorithms based on Affine Camera Models
(Subspace Clustering)

Under the affine projection model, point trajectories
associated with each moving object across multiple
frames lie on affine subspaces of dimension of 4 or
less. Therefore, motion segmentation, can be achieved
by clustering point trajectories into different motion
subspaces. This has led to several affine subspace
clustering algorithms being developed [3, 26, 43, 44]
which achieve near perfect results on the Hopkins-
155 dataset [27]. However, when we ran, these algo-
rithms on our datasets we frequently found that the
moving objects were clustered with the background.
The reason for this inconsistency are two-fold. Firstly,
the clips in the Hopkins- 155 dataset have very little
perspective effects and thus the affine camera model
assumption is reasonable. Secondly, in the degener-
ate case, both the camera and the moving object(s)
will belong to the same subspace, leading to subspace
clustering algorithms labeling the background and the
object as the same. Another major drawback of the
subspace clustering, is that most of them need to be
given the affine dimensions of the subspaces on which
the points are supposed to lie. Even the ones that are

able to do so are not robust, as will be shown in the
results section.

2.3 Clustering Based on Trajectory Similarity
(Optical Flow)

In [14, 22, 29], impressive results were shown by
grouping point trajectories, that were analyzed for
motion differences between pairs of trajectories. Sim-
ilar techniques were used by [2] with additional con-
straints for occlusion modeling. These algorithms are
based on gestalt [18] theory and while not relying on
geometry, still achieve state-of-the-art results on sev-
eral challenging datasets. This indicates that motion
similarity is quite a powerful constraint for motion
segmentation.

Each of these approaches has it’s strengths and lim-
itations as mentioned above. Our algorithm can be
thought of as a cohesive and judicious combination of
the above approaches, yielding a motion segmentation
algorithm that gives state-of-the-art accuracy on both
the benchmark and exceeds in real-world scenarios. In
addition, in Section 4 we introduce a motion coher-
ence constraint on the basis of which we can reason
about motion models calculated from the scene.

3 Proposed Approach

Our proposed motion segmentation algorithm has
three stages. First, we do a coarse foreground-
background segmentation, based only on the epipo-
lar constraint. Based, on this segmentation, we gen-
erate a pool of M affine motion models, M =
{My, ..., My}, by a RANSAC [30] procedure over
the entire sequence of frames instead of just between
two frames, allowing for a motion model hypothesis
that is representative of the sample points over the
entire sequence. The goal of this step is to generate
one motion model for each of the N-independently
moving objects in the scene. However as we have no
prior knowledge as to the location of the models in the
sequence, M > N motion models are instantiated in
an attempt to increase the likelihood of capturing the
correct N-motion models.

The foreground-background segmentation allows
for adequate sampling of both foreground and back-
ground regions by building affine models from points
belonging primarily to either the foreground or the
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background. As generally a large portion of the
tracked points belong to the static background, our
sampling strategy makes it more likely that the mov-
ing objects which in most cases will belong to the
foreground are also sampled.

The unsampled points, which thus far remain
unclassified, are then clustered with one of the instan-
tiated M motion models, based on a trade off-between,
motion model prediction accuracy and spatial proxim-
ity to the cluster center.

In the second step, to refine the segmentation we
perform a multi-label MRF minimization, incorpo-
rating the motion model likelihood in the data term
along with pairwise motion similarity and attribute
constraints (whether the model belongs to the back-
ground or foreground), for a motion-coherent over-
segmentation of the trajectory data. As the sampling
was done at random on the image in the previ-
ous step, the motion models generated do not obey
object boundary constraints. So, incorporating these
long-term motion-similarity constraints gives an over-
segmentation of the scene that respects the boundaries
of the moving object. Usually, as a result of the
energy minimization, some of the tracked points are
reallocated to different motion models resulting in a
reduction of the number of models required to explain
the trajectories. We call this reduced model set M,..4.

The over-segmentation in the previous step is desir-
able and even-necessary to give a final segmentation
without having prior knowledge of the number of
moving objects in the scene. In the final stage model
selection phase, the motion models from M4 are

LONG-TERM TRAJECTORY INTERACTIONS

Wi i ATTRIBUTE CONSTRAINTS ‘
. v 3 ) ‘x [
I 3
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merged to complete the segmentation of the scene
into individual moving parts. To decide whether two
models should be merged or not, we introduce a
novel motion consistency predicate, we termed in-
frame shear, that should be satisfied between the two
models in order for model merging to take place. The
end result is the desired segmentation into scene and
individual moving objects. We call the final model
set M*.

Figure 3 shows an overview of the proposed
algorithm.

We introduce here the trajectory matrix, which we
use subsequently. W € R*F*? is the trajectory matrix
which contains the x and y image coordinates of the
P feature points tracked through F frames. The algo-
rithm terminates when, the trajectories from W, are
split amongst M* = {M7, ..., M\TM*\} models.

X1,1---X1,P
Yi,1---Y1,P
W= 2)
XF1..-XF,P
YF1---YF,P

For tracking we use the KLT-Tracking algorithm
[45].

3.1 Initial Foreground-Background Segmentation
It has been shown in [25], [13] that an ini-

tial foreground-background (fg-bg) segmentation
improves the accuracy of motion segmentation

*
Optimal Model Set ~ NA

Trajectory Matrix

Step1

Fig. 3 An overview of the proposed approach
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algorithms. In both, [10] and [13], image saliency is
used to perform the initial segmentation. We instead
rely on the epipolar constraint [15], to provide us with
a conservative background estimate.

Between a base frame (in our case always the first
frame), and all other frames we find the inliers. Only
those inliers which belong to atleast 50 % of the
frame pairs, are classified as background. The remain-
der are classified as foreground. The outputs of this
stage are the foreground and background index Iy,
and I,. The RANSAC threshold value t, is deliber-
ately set very low to have a conservative estimate of
the background. The fg-bg segmentation also aids in
the biased fg-bg sampling as mentioned earlier. We
use the least medians distance, for our epipolar con-
straint. Figure 4a shows the result of an initial fg-bg
segmentation. Figure 4b shows the degenerate case
where the object and camera move in parallel. In this
case the epipolar constraint ends up failing.

3.2 Biased Affine Motion Model Sampling

From the fg-bg segmentation, we can partition the
trajectory matrix into Wy, and Wy, , where Wy, con-
tains only the foreground points and Wp, contains
only the background points. Sampling separately from
the foreground and background makes it more likely
that the samples extracted from the trajectory data,
will accurately represent the N-independently mov-
ing objects in the scene. This covers the case, where
only few points are tracked on a foreground object, as
frequently happens on non-textured surfaces. It is intu-
itively obvious that, most of the points sampled from

(a) Non-Degenerate (b) Degenerate
Fig. 4 Figure shows a result of the initial foreground-
background segmentation. The foreground (epipolar outliers)
are shown in blue, and background (epipolar inliers) are shown
in red. a In the non-degenerate case most, of the points on the
moving vehicle have been categorized as not belonging to the
background. b In the degenerate case, most of the points on the
vehicle belong to the background

a small region, will belong to the same object. Keep-
ing this idea of local coherence, in mind, we randomly
sample disk-shaped regions, of a fixed small radius, as
the scale of the object in question is a-priori unknown.
This region serves as the support set for our affine
model and is defined by

W= {wilei—e0? + O —e)? <2} O

Here, w; is the i column of the trajectory matrix,
x1,; and y;; are the x and y - image coordinates of
the ith trajectory in the first frame. (cx, cy) are the co-
ordinates of the center of the disk, and r its radius. To
promote a more comprehensive coverage of the scene,
the number of times (cx, cy) is sampled from the tra-
jectories of Wy, to the number of times from Wi, is
governed by a parameter #g;,p . The details are shown
in Algorithm 1.

To compute our affine model A, we need three tra-
jectories Cprs = [y, €2, €3] extracted from W. The
affine motion model between frame 1 and f can then
be computed by,

. f 1,1 171
A= — C{ Cg Cg € 6 G 4)
1 1 1 111

Here, cif = [xfiyysil , are the x and y co-ordinates of
the " control trajectory at frame f. The inverse of the
right hand side matrix exists, except in the case where
the 3 points are collinear.

Like in Section 3.1, this affine model is com-
puted between the first and subsequent frames, and the
inliers for each affine model are computed based on
a threshold #;; . Only those points which are inliers
for atleast 50 % of the frames are considered model
inliers.

The output of the affine sampling algorithm is the
motion model tuple M = {Iin, Cpys, S}. Iin contains
the indices of the model inliers. C,; are the image
co-ordinates of the 3 control points in the first frame.
S gives the attribute of the model, i.e., whether it is a
foreground or background model. It should be noted
that we do not make any use of the affine models
computed in the algorithm subsequently, instead, we
use a more robust model-fitting measure described in
the subsequent sub-section. We found that keeping the
number of RANSAC iterations as low as 10 had no
overall reduction in accuracy of our algorithm, while
speeding it up somewhat.
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Algorithm 1 Biased FG-BG Affine Model Sam-
pling
Data: W, Iy, Iy, tsamp
Result: Motion Model M
/* Extract disk centre for the affine model */
if rand(0,1) < tsqmp then
ci < rand(1,1sg) /* Control Pt from fg */
S={fg}
else
‘ ci < rand(1, Ig)
S={bg}
end

/* Control Pt from bg */

WQFX 1 < sampleTrajectoriesFromDisk(W,r, ¢;)
Wi =W(1:2,:) /* 1t frame pts */
X < homogenize(W;)
Cbest = (0
Ibest = 0
for i:1to 10 do
¢ <+ rand(3,1)
Cpts = Wl(:, C)
for f:2 — F do
Wi =W(2f-1:2f,:)
Y < homogenize(Wy)
A—YX!
R+ AX-Y
I; < computeInliers(R,t;y)
end
I={I,...,.Ir}
I;, <+ points from I with more than 50 % inliers
// 1f current model has more inliers, update
if ‘Iinl > ‘Ibest‘ then

/* fth frame pts */

Ibcst = Iin
Chest = Cpts
end
M = {Ipest, Cpest, S} // Output motion model

end

3.3 Initial Assignment of the Unsampled Points

To deal with points that remain unsampled after the
motion model generation, it would make sense to clas-
sify the point as belonging to the affine model that
explains it the best, i.e, the one with which the trajec-
tory has minimum residual. This is the most common
strategy and is useful in situations where the models
are distinctive, and has been used in [5] and [11] suc-
cessfully. However, in the case, where the models are
not distinctive and explain similar motions, this may
lead to a spatially incoherent labeling. This is because,
the residual value would be low and very similar for
more than one models. So in addition to a low model
residual we also impose a spatial constraint on our
assignment.

For each unsampled trajectory w; , we compute
its residual set r; = {ri, o r}VI} from the M affine
motion model hypothesis. We sort the elements in 7;
to obtain the sorted residual set 7;. For the models that
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yielded the top k-elements r of this set, we calculate
Euclidean distance from the image co-ordinates of w;
to the control points of the model to the in the first
frame. The trajectory point is alloted to the model with
minimum distance.

The model residual is the orthogonal distance to the
hypothesis subspace, given by,

ri = |UUTw-w| (5)

U is the first two left-singular vectors of matrix
W, which contains the inlier trajectories of the m’ h
motion model. We use the orthogonal distance as error
metric, instead of making direct use the calculated
affine motion model matrices (A matrices) because it
is more robust to noise. However, it is still sensitive to
outliers.

Figure 5 shows the contrast between a minimum
residual approach versus top-k minimum residuals
approach. As can be seen clearly, spatial coherence is
much better in the latter approach. The top-k residual
idea was first introduced in [19].

3.4 Segmentation Refinement
by Energy-Minimization

As mentioned earlier, and shown in Fig. 5a, the sam-
pling from the previous step, is done on the image
space and does not take into account, any motion
information. Thus, the generated models do not obey

(b) Top-k Residual

Fig. 5 Difference between minimum residual and Top-k resid-
ual sampling
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the boundaries of moving objects. So, in order to
obtain a segmentation that respects boundaries of
moving objects we incorporate long-range motion
similarity constraints, as well as fg-bg attribute con-
straints to get a more refined segmentation, that obeys
object boundaries. At the same time gets rid of some
redundancy in the motion models sampled. To per-
form the refinement, we frame this trajectory-level
motion segmentation as an MRF energy-minimization
over the M-motion model label space. Each node
in the graph represents one of the P tracked points.
The edges in the graph are obtained by performing a
Delaunay Triangulation (DT) over the tracked points
in the first frame of the sequence. The energy we
minimize is,

E(W, M) =71 Y Dagr(lp)
peG

~|—)\22 Z VinotionUp, 1g)

P€G qeN(p)

A3 Y D Vaurlp, ly) (6)

P€G qeN(p)

where, {I,} € {1,...,M}. The D,(.) terms are
the unary potentials representing the data terms, and
the V4 (., .) are the pairwise potentials, representing
smoothness constraints. G represents the set of tracked
points in the sequence, N (p) the spatial neighborhood
of the point of the node p as defined by the Delau-
nay Triangulation (DT) of G. The A’s are trade-off

(b) Cars-3

parameters between the various terms. We now define
in detail each of the terms in (6).

Data Term: The first term in (6) takes into account
the attribute of the graph node. It is given by

The data term indicates how well a particular point
fits a particular model. It is given by,

rP i Attr(l,) = Attr(p)
Dagr = { Gout i At1r(l) # Attr(p) @)
r! is given by (5).

Smoothness Terms: The first smoothness term
captures motion coherence. To assign similar tracks to
the same clusters, we use the contrast-sensitive Potts
model given below,

0 ifl,=1
Vmution(lpv lq) = { r 7 (3

apg ifl, #1,

The ap , measures the similarity between the two
tracks. o 4 is computed using the distance between
the spatial co-ordinates of track points, w, and w, for
each of the frames, as well as the difference between
the time corresponding velocities v, and v, as below,

(1 + l1xp — x4112)%1lvp — vgll3
AUpg = exp (— P 202 P2 (9)

Such motion potentials have been shown to be
effective in ensuring motion coherence between tracks
in [2, 29].

(k) Truck-1

Fig. 6 Results from the Hopkins-155 dataset.The various stages of our proposed approach are shown. For the truck 1 case, only the

first two steps suffice in obtaining the motion segmentation
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The second smoothness term in (6) captures
attribute coherence,

0 if Artr(ly) = Attr(ly)

Vattr(lps lq) = .
E, if Attr(l,y) # Attr(ly)

Similar attribute terms were shown to be effect in
object tracking in [25]. Figure 6 show the results of
the various stages of the thus far pipeline. As can be
seen, we get an over-segmentation of M,,s models.
For inference, we use the Tree Re-weighted Sequential
Belief Propagation Algorithm [16].

4 Model Selection

The model-selection step is a model-merging algo-
rithm that takes as input the set of models M,.4 and
outputs the reduced set M™* . For a particular pair
of neighboring models, we merge if for the model
points, the model-merging predicate, Algorithm [2], is
satisfied.

Initially Algorithm [3] starts of with, |M,..q]| dis-
tinct models. This is represented by the | M;qq4| X
| Meq| model-relationship matrix B, which will con-
tain either, -1, O or 1 as entries. This matrix encodes
whether or not two-clusters should be merged, as
follows

e if B; j = 0, relation between i and j still unknown.
e if B; ; = —1,iandj belong to separate objects.
e if B; ; =1,iandj belong to same object.

The algorithm begins with B having 1 along the
diagonals and 0 everywhere else, indicating that each
cluster is compatible with itself, and the other relations
are unknown. The algorithm terminates when all the
relations are known, i.e., B has no elements as 0. For
each iteration, the closest pair of clusters whose rela-
tionship is unknown are chosen, a greedy minimum
distance-based assignment is done on a certain pre-
fixed number of points between both models and given
to [2], which gives a decision as to whether or not to
merge the pair. We also make use of transitivity in our
algorithm. If a relationship holds between clusters a
and b and not between a and c then the relationship
does hold between a and c. This in addition to enforc-
ing consistency, also speeds up the algorithm. The
distance between two clusters is taken as the distance
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between the centroids of their image co-ordinates in
the first frame.

Algorithm 2 shearCheck
Data: Ml, ]\42
Result: Boolean {0 or 1}
DT, 4+ getDelaunayTriangulation(Mi(1 : 2,
DT, < getDelaunayTriangulation(Mz(1 : 2
// Get shear measure within models
shear);, =0
stretch,;, =0
foreach edge e in DTy, do
Ashear = Z?:z abs(changeInSlope(es_1,€e5))

)
)

)

Astreteh = E?:z abS(ChangeInLength(efflv ef))
shear);, = shearn;, + Aspear
stretchys, = stretchys, + Asireten

end
score s, =shear)s, +stretch,,
scoreps, = seoren /((F—1)xnunEdges(DTyy,))

Likewise from DT s, we get scorejs,

// Get shear between models

E v, < greedyAssignment (M, Ms)

shearM, — M, = 0

stl‘etch]wl_uvj2 =0

foreach edge e in En, s, do
Ashear = Zf:;, abs(changeInSlope(es_1,€e5))
Agtreteh = Z?:z abs(changeInLength(es_1,¢e5))
shear s, v, = sheary, v, + Ashear
stretchas, — n, = stretchas, s, + Astreten

end

scoreys, v, = shearys, s, + stretchyy, .y,

. score ), score ).
if SCoTens, — M, > )\M then

‘ 1 // Models are seperate
else
‘ 0 // Models to be merged
end

Algorithm 3 The Model Merging Algorithm

Data: My, € {1,...,|Mycql} // Reduced Model-set
Result: M* = {M7,...,M}} // Merged Models

s {1, 1=

-1 ifi#j
while 3B; ; = —1 do
L (¢,j) — nearestPairOfUnassignedNeighbors (B)

// Model-Relationship Matrix

B;,; — shearCheck(M;, M)
Assign consistent relations between i and j
Merge consistent indices based on B

4.1 Model Merging Predicate

In the case of a moving camera, motion segmenta-
tion is like separating out two convolved signals from
each other, which is an innately hard problem. So, in
an attempt to bypass the complication induced by a
moving camera, we look at relative geometric relation-
ships in-frame that change over-time to detect motion.
For example, in Fig. 7a the cluster in green is initially
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_— iL = l‘
(a) (b) (c)

Fig. 7 Illustration of how shear and stretch work. In (a) and
(b) the initial and final frames are shown along with two motion
models, belonging to seperate objects. The blue lines between
the two clusters change in orientation and length from frame (a)
to frame (b). In (c¢) and (d), the two motion models belong to
the same object. As can been seen, there is not much change in

close to the vehicle in the world (cluster in red). The
lines between the two initially have a predominantly
downward orientation. By the last frame, the predom-
inant orientation has changed by around 90 degrees,
as shown in Fig. 7b For such cases, where the two
clusters do not belong to the same moving object,
the change in orientation (shear) and the change in
length (stretch) is far more pronounced. In the case
where the models belong to the same object the effect
of shear and stretch are far less distinctive as can be
seen in Fig. 7c and d. Quantitatively the difference
between the two cases can be seen in (e) and (f),
which plot cumulative shear and stretch as a function
of frame Index, “Don’t Merge” representing the case
where the motion models belong to different objects,
and merge representing the case, where they belong to
the same object. Algorithm 2 is designed around this
observation.

Given points from two clusters M and M», we cal-
culate the internal shear and stretch for each of the
models by calculating the average change in orien-
tation and length, over the sequences of frames and
edges of the Delaunay Triangulation of the points in
the first frame. To calculate the inter-model shear,
we first do a greedy minimum distance-based assign-
ment, to assign a one-to-one mapping between points
from M; to M,. Similar to the internal shear case,
the change in orientation of line-segments and length
defined by the mapping are used to calculate the inter-
model shear and stretch respectively. In order for the
models to remain seperate, the inter-model shear must
be atleast a factor of A greater than the average intra-
model shear. For all of our experiments, we set this
parameter to 3. One might ask whether both shearing
and stretching are required, or can we just use one and

]
g

—Don'tMerge —Donemerge

g B

Cumulative Shear
Cumulative Stretch
5 B

o 8

0 5 10 15 20 o 5 0 15 20 2
Frame Index Frame Index
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orientation and length, between the two clusters. In (e) and
(f) the cumulative shear and stretch are plotted for both cases,
where the models are merged and marked as seperate.As can be
clearlly seen, the “Don’t Merge” case dominates in both situa-
tions, showing that shear is a reliable criterion on the basis of
which motion segmentation can be performed.

reduce computation. Generally we found that, either
the shearing or the stretching dominated and not often
both simultaneously. For example, Fig. 7c and d in
the initialy frames the change in angle changes dras-
tically, while length does so much more slowly. By
the end of the sequence, the change in angle had stag-
nated, whereas the change in length was pronounced.
A possible future direction of research is doing higher
level traffic reasoning on the basis of shear and stretch.
For example, in (h) one could use the information
that the length between the models is increasing to
infer that the object is approaching the camera. As
can be seen by comparing (c) and (g), as well as (d)
and (h), that, in the case where the models are seper-
ate the changes in angle and length are much more
pronounced.

5 Results

In this section we compare the accuracy and other rel-
evant performance parameters of our proposed algo-
rithms against other publicly available state-of-the-
art algorithms. We do so on two datasets, the first
being the Hopkins-155 dataset. As our algorithm was
designed keeping in mind motion degeneracies that
arise during typical on-road scenarios, we compiled a
dataset comprised of on-road vehicles in degenerate
motion. The important thing to note in them is they
are taken from a camera mounted on the car designed
for driverless vehicle research, and are real-sequences
taken from a fast-moving vehicle, unlike the Hopkins-
155 dataset. Also, unlike the Hopkins-155 dataset,
the On-Road dataset has pre-dominantly degenerate
motion, as evidenced by the failure of the epipolar
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constraint. That degenerate motions occur rarely in the
Hopkins-155 dataset was mentioned in [44]. A conse-
quence of this can also be seen in the high-accuracy
of motion-segmentation algorithms not designed to
handle degenerate motions like the kind proposed in
[44].

5.1 Hopkins-155 Results

The Hopkins 155 [27] Dataset has been the benchmark
for motion segmentation algorithms since first intro-
duced in 2007. It consists of 155 sequences: 120 and
35, for the two and three rigid motions, respectively.
Each sequence comes with a set of tracked points,
and their ground-truth labels. To be noted is that the
Hopkins-155 dataset, does trajectory level labelling.
That is, even if an object is moving in the last few
frames only, the trajectory points corresponding to
the object throughout the sequence are labelled as
moving.

We compare the error rate of our algorithm with
those of state-of-the-art methods for the noise-less
scenario, as well as for increasing levels of Gaussian
noise. In addition we compare other relevant factors
like, computation time, error distribution and accuracy
in estimating the number of motions correctly.

The algorithms compared against cover the two
most successful approaches to the motion segmen-
tation problem, namely the subspace clustering and
trajectory similarity (gestalt) based algorithms. The
most basic of the subspace clustering algorithms is
RANSAC [27], which samples trajectories and uses
their principal components as basis vectors for the cor-
responding subspace. Generalized Principal Compo-
nent Analysis (GPCA), introduced in [47], fits a poly-
omial to the subspace and then classifies it. The order
of the polynomial indicates the subspace dimension.
Spectral Curvature Clustering (SCC) [43] and Sparse
Grassmanian Clustering (SGC) [26] use a higher
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order motion model compiled in a tensor, which is
then unfolded into a matrix, followed by a cluster-
ing algorithm. Linear Combination of Views (LCV)
[33] samples a set of nearby points and for them syn-
thesizes a trajectory using the first and last frames
of the sequence. Clustering is done on the basis of
how well the actual trajectory corresponds to the syn-
thesized one. Sparse Subspace Clustering (SSC) [3]
models the trajectory points as a sparse combination of
sampled trajectories. Adaptive Subspace Affinity [46]
and MSL[7] are subspace fitting algorithms capable of
handling degenerate sequences. Higher Order Spectral
Clustering introduced in [49], uses a combination of a
motion model as well as a trajectory similarity metric
similar to (9) to cluster the various trajectories in the
scene.
Accuracy for this dataset is given by,

A N # of points classified correctly
ccuracy % =
Y Total # of points

an

One drawback of most of the above algorithms like
SCC, SGC, SSC, RANSAC etc. is that they need to
be given the dimensions of the subspaces to be esti-
mated or the number of motions in the scene, which is
not generally known beforehand. In comparison, there
are far fewer algorithms that do motion segmentation,
without any information on the number of motions
observed in the scene.

Accuracy With Noise Free Data Table 2 lists average
error-rates according for the sequnces containing two
motions, three-motions and both. Values for the other
algorithms were taken from their respective papers.
Due to the randomization in our algorithm, we con-
duct the run for our algorithms 100 times and found
the average error rate to be 1.78 %, and its standard
deviation to be 0.31 %. We achieved average errors
of 1.27 % and 3.41 % for the two and three motions

Table 2 Total Error Rates in Noise-Free Case The first row represents error rates for all (155 seqeunces). The second and third rows
are two and three motions, respectively. The values of the algorithms were taken from their corresponding papers

RANSAC GPCA MSL SSC Nee
Total 9.48 10.02 4.46 2.70
Two motions 5.56 4.59 2.23 1.77
Three motions 22.94 28.66 4.14 5.89
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SGC ASA ORK LCV Ours

4.10 2.05 1.24 8.91 1.86 222
2.89 1.03 0.96 7.83 1.25 1.27
8.25 5.53 2.22 12.62 3.97 4.41
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Fig. 8 Error distribution
histogram for the
Hopkins-155 dataset
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case respectively. Our algorithm does so, without any
manual user input as to the number of motions and
the dimensions of their subspaces. It has the fourth
best, overall performance, amongst the evaluated algo-
rithms. Amongst the algorithms that can estimate the
number of motions automatically (ORK and MSL) it
has by far the highest performance.

Figure 8 shows the error distribution on the
Hopkins-155 dataset. Our algorithm is comparable to
the state-of-the-art with error exceeding 20 % only for
16 of the 155 sequences.

Fig. 9 Percentage accuracy
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Test of Robustness For this test, we added artificial
spherical-Gaussian noise (zero-mean) to the raw fea-
ture points of the trajectory matrix. Figure 9 show,
the accuracy of our algorithm suffers more from the
noise when compared to SSC and ASA, but outper-
forms LCV. We use the following covariance matrices,
p = onzl, on = {0.01,0.25,0.5, 1, 2, 4} in our test.

Computation Time In Table 4, we show the aver-
age computation time for the entire dataset. For all
the algorithms except ASA and SSC, we run the

with Gaussian noise added
to the trajectory data
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computation time is averaged over 100 runs. For, SSC
we did 10 runs, and ASA just one due to it’s high
running time. The tests were conducted on an Intel
Core 17-2600K 3.40 GHz x 8 core processor with 16
GB RAM. Our algorithm is implemented as unopti-
mized matlab code, except for the energy minimiza-
tion which is written in C. Table 4 shows our algorithm
is slower than RANSAC, SCC and LCV but, faster
than SSC and ASA by a noticeable amount. The
relative slowness of the algorithm can be attributed
to the lack of a model-selection step in the other
algorithms, as they recieve as input the number of
motions, drastically saving in computation time.

Accuracy in estimating number of motions Within a
robotics context, it is unrealistic to assume that the
number of moving objects in the scene will be known

RANSAC HOSC LCV

HCU_1_Car

HCU_2 Car [
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beforehand. Candidate objects likely to move like peo-
ple and vehicles may also be stationary, so using only
semantic information to detect motion might lead to
a wrong estimate. Estimating the number of moving
objects in the scene, is thus a vital function a motion
segmentation algorithm should be able to perform
(Fig. 10).

To assess how good our algorithm is at estimat-
ing the number of motions present in the scene, we
compare it to the recently proposed Enhanced Local
Subspace Affinity (ELSA) [48] algorithm. ELSA
performs motion segmentation by applying a spec-
tral clustering algorithm, to its computed affinity
matrix. It estimates the number of motions by ana-
lyzing the eigenvalues of the Symmetric Normal-
ized Laplacian matrix. It proposes three approaches
to carry out the analysis. They are Otsu’s Method,

SCC SsC Ours

L“; V i
S 4 ’
% -
IIIT 1 Car L L3 i
e -

IIIT 3 Car S#="

Fig. 10 Comparison of various state-of-the-art motion segmentation algorithms for the On-Road dataset
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Fig. 11 Box-plot assessing the performancce of various algo-
rithms at estimating the number of motions

Fuzzy C-Means(FCM) and Linear Discriminant
Analysis (LDA). We compare our algorithm to all
three approaches. The results for the three approaches
are taken directly from the paper. Figure 11 shows
the box-plot comparison, as can be seen, our algo-
rithm outperforms the other three approaches by a
significant margin, having both the largest number
of datum between the two-quartile as well as least
spread.This indicates that shear is a useful cue in
estimating the number of motions.

5.2 On-Road Dataset

This dataset is a compilation of various scenes of
vehicles moving on the road. In them the camera is
following the moving vehicle, fequently making the
object motion degenerate with respect to the camera.
We use clips from the KITTI Dataset [21], Versailles-
Rond [17], as well as ones taken around the IIIT-H
campus. We choose these datasets specifically because
we have found them to be challenging to segment
giving only optical-flow information to our previous
method [1] which incorporates the epipolar constraint,
in a Bayes-filter framework. The flow magnitude of
the moving object in them is close to that of the
stationary world, as observed by the moving camera.

A performance evaluation is done on this dataset
specifically to evaluate it’s performance on degenerate
motions.

For ground-truth in these datasets, we define a
mask around the vehicles and take the points within
to belong to their corresponding cluster. The remain-
der of the points, we take as background. The

additional moving objects in the scene (like pedestri-
ans or vehicles), are not detected as moving by all of
the algorithms including ours, so are marked as sta-
tionary. They are either too far back in the background
to have sufficient motion parallax or have insufficient
points on them to be detected as seperate moving
objects.

For accuracy we use (11). In our analysis, we com-
pare our algorithms with those state-of-the-art algo-
rithms for which either the source code or binaries are
available. For HOSC [49], only binaries are provided,
so no parameter tuning is possible. For the remainder
of the algorithms, we give results in Table 3 with best
found parameter settings.

However, for all algorithms that need as input the
number of motions, we give the same input for each
sequence, irrespective of accuracy. For example, in
Fig. 10, for the HCU 2 Car dataset, there are four
moving objects in the scene (a moped, two cars and
the background), as that is the desired output in a
motion segmentation task. This reduces the accuracy
of the subspace clustering algorithms, as the two cars
in the background have similar motion and belong to
the same subspace, which the algorithms recognize as
such.

Accuracy is averaged over 50 trials, for all algo-
rithms except for SSC, HOSC. For SSC and HOSC
we take 1 trial, as the algorithm is completely
deterministic. We do not compare with ASA, due to
it’s lengthy computation time, making it completely
unsuitable for near real-time robotic applications.

Table 3 shows, the subspace clustering methods
fair relatively poorly for the On-Road datasets. LCV
which forms trajectories from linear combinations of
feature points that belong to the same object fairs a lot
better. Like our proposed algorithm, it sythesizes tra-
jectories by randomly selecting a point, and then using
the point and it’s neighbors to do so, allowing for spa-
tial coherence in their motion models (trajectories).
It however ends up fairing poorly on the KITTI and
ORR 1 Car sequences, both of which have vehicles
moving slower than the cameras, as shown in Fig. 10.
In comparison, our algorithm is able to successfully
segment out the moving vehicle in both the scenes.
This is due to shear exhisting between the vehicles
and the background. In the Versailles sequence, both
SSC and SCC classify the two cars together, due to
their similarity in heading, even though they are far
apart.
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Table 3 Error Rates on the On-Road Dataset For the various sequences Error Rates for the various algorithms under consideration

Method RANSAC LCV
KITTI 30.71 41.22
IIIT 3 Car 29.66 10.21
HCU 1 Car 8.79 2.16
HCU 2 Car 15.92 35.68
IIIT 1 Car 5.87 0.75
ORR 1 Car 35.85 21.34
Versailles 20.22 1.44

The trajectory similarity based algorithm, Higher
Order Spectral Clustering (HOSC) [49] over-segments
all the dataset sequences. the pattern of the over-
segmentation is similar over all the sequences as
shown in Fig. 10. The portion of the background, far
away from the camera having low motion parallax
is correctly clustered together. However, the portion
of the background close to the camera (high motion
parallax) is clustered seperately. The algorithm uses
only a trajectory similarity metric similar to (9) to
cluster the trajectories, resulting in the observed over-
segmentation. The HOSC binaries output only the
images shown in Fig. 10 and not the classification
labels of the points, making it impossible to compare
with the ground truth. We therefore can not show the
classification error in Table 3, however, as is appar-
ent from Fig. 10 it is outperformed by all of the other
algorithms under consideration.

A lack of relative motion between moving objects
will cause shear to fail. For example, in the IIIT 3 Car
sequence, a lack of relative motion between the
3 vehicles causes all three vehiclesto be classified
together. This foreseeable consequence arising from
the nature of relative motion constraints probably indi-
cates that using only motion cues, leaves the motion
segmentation problem ill-posed. If in addition, an
object detector, were used, to recognize all possi-
ble moving objects like pedestrians and vehicles, and
shear constraints were checked between them and the
background (area not containing potentially moving
objects), the algorithm would perform more opti-
mally. We hypothesize that the stationary vehicles
and pedestrains, detected by an object detector, in the
scene would be merged with the background and the
moving objects would belong to their own seperate
clusters irrespective of the relative motion between the
objects.
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SSC SCC Ours
35.45 32.33 2.41
39.11 48.49 37.53
43.21 40.32 3.56
56.11 45.99 12.45
0.75 9.67 0.75
37.05 28.93 5.11
37.44 5.50 2.78

Table 3 and Fig. 10 shows that incorporating only
trajectory similarity cues is insufficient for motion
segmentation in the case of a moving camera, as
shown in the HOSC case. Likewise, using only sub-
space information frequently results in an erroneous
estimation of the moving objects, due to their sim-
ilarity in motion with the background. The superior
performance of both LCV and our algorithm, can be
attributed to a similar initial step. In both cases, motion
models are calculated from nearby points, incorporat-
ing spatial coherence into the algorithms. Thus spatial
coherence is a valuable attribute a motion segmenta-
tion algorithm should possess.

5.3 Discussion

In general we found that, for sequences with a rea-
sonable amount of motion, our algorithm was able to
accurately detect the number of motions. On the Hop-
kins dataset, the sequences the algorithm has prob-
lems with, were some of the checkerboard sequences,
where, the moving object has no motion until at the
very end of the sequence, and then it moves slightly.
As our algorithm assigns labels based on the shear
developed over the entire sequence of frames. Hence,
if at the end of the considered number of frames the
shear is pronounced enough to be labeled as mov-
ing the object is considered moving for the complete
sequence. To provide a classification that responds
to situations on a per frame basis is difficult and at
times unwarranted as it results in frequent swapping of
labels that can be construed as unstable. For the traffic
sequences of the Hopkins dataset, it was able to detect
motion correctly for all sequences.

Overall, we have tried to show through this section
on results and discussions that our algorithm outper-
forms SSC, LCV, ASA etc. for typical on road robotic
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Table 4 Total Computation Time on the Hopkins-155 Dataset in seconds

Method LCV ASA

Total 105.428 106882.7586

settings. It comes out to be the best amongst algo-
rithms not knowing initial motions. It also generalizes
to situations where the video is taken by a handheld
camera, as is the case in the Hopkins dataset (Table 4).

6 Conclusions

In this paper we presented a motion segmentation
algorithm, for trajectory data, capable of handling
both degenerate and non-degenerate motions. It takes
images in batch, and on the basis of judicious use
of geometric and gestalt motion cues, performs the
segmentation.

Initially we generate a large number of affine
motion models using random sampling. We incorpo-
rate the information from these motion models along
with long-term motion cues into an MRF-energy func-
tion. The number of motion models we end up getting
after energy minimization, typically is larger than the
number of moving objects in the scene. This over-
segmentation, is crucial and we believe necessary
in dealing with degenerate cases, where camera and
object motion are nearly the same. The third, and final
step involves merging the models from the reduced
motion model set of the previous step based on a novel
motion similarity constraint, explained in Section 4.1.
The similarity constraint, we termed in-frame shear,
measures the relative change in geometry between
two motion models as observable from a monocular
sequence of images.

Through experiments, we showed that our algo-
rithm was competitive with the state-of-the-art algo-
rithms in terms of accuracy. It was faster than all of
the other algorithms with comparable accuracy except
LCV. One big advantage the algorithm has over other
methods is it, does so without knowing the number
of motions beforehand. For the real-world datasets we
tested it on, it outperformed the other algorithms by a
substantial margin including LCV.

In future works, we intend to explore how incor-
porating object detection algorithms, like [9], into
the above framework will speed up the algorithm,

SCC RANSAC Ours

18552.4 143.95 43.44 1232.7

by restricting the sampling to regions of interest in
the image. Using this speed up, in addition to the
shear cues we elucidated in this paper, one should
be able to come up with a faster more-robust algo-
rithm, from which the intermediate results can be used
in additional higher-level reasoning tasks, like scene
understanding.
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