

Abstract—This paper presents a Field Programmable Gate

Array (FPGA) based implementation of Acceleration Velocity

Obstacle based Collision Avoidance for an omni-directional

robot with acceleration constraint. Specifically a parallel

architecture for collision avoidance is proposed that portrays

the advantages of FPGA implementation over the sequential

implementation for same processor or clock speed. FPGA

based robotics is seen to gain popularity due to low cost,

portability, seamless interface to hardware and most

importantly due to inherent parallelism enshrined in various

robotic algorithms. FPGA realization of the algorithm in a

simulation test bed vindicates its efficacy and comparison with

sequential implementation is also highlighted. The paper

proposes three different architectures for the implementation

of the proposed algorithm viz. sequential architecture; a

resource constrained pipelined architecture and a hybrid

pipeline parallel architecture. The performances of those three

architectures have been evaluated.

I. INTRODUCTION

Obstacle avoidance is one of the most basic problems in

mobile robotics. In those systems where there are no other

moving objects other than the robot itself static obstacle

avoidance is sufficient. There are numerous algorithms for

static obstacle avoidance [1][11][12]. But there are

environments where there are moving objects as well as

other robots in the vicinity of the robot under consideration.

In those cases static obstacle avoidance is of not much avail.

In most of the multi-robot and real world problems we need

to deal with dynamic objects. An algorithm is needed which

takes the dynamic nature of objects and other robots under

consideration. Such an algorithm is termed as Dynamic

Obstacle Avoidance algorithm [10]. There are again

numerous approaches for Dynamic Obstacle Avoidance.

Velocity Obstacle (VO) approach is one of the common

approaches used for collision avoidance in dynamic

environment [2]. When the acceleration constraints are

considered in the VO it is called Acceleration Velocity

Obstacle (AVO) [3]. When robots share the responsibility of

Avoidance among themselves equally then it is termed as

Reciprocal Collision Avoidance (RCA) [4].

Field Programmable Gate Array (FPGA) is gaining

popularity in robotics recently and it can be seen through

FPGA implementations of image processing descriptors

[5][6]. The credit for this popularity goes to the unique

combination of qualities like small size, ability to

reconfigure both offline and online, low power dissipation,

low cost and high speed. Small sized robots with constrained

 *Equal Contribution

resources are the need of the day and hence algorithms are

needed which can run on systems with lesser memory and

size footprint. A base station PC has advantages of accuracy

and speed but is limited by the wireless range to the robot

and hence restricts its operating area. A laptop cannot be

mounted on very small robots and can be expensive too. A

cell phone processor which can do such amount of

processing is expensive and increases the cost of robot also a

full-fledged operating system is to be installed to control it

which in turn increases memory requirement. A micro-

controller does not provide for accuracy and speed, whereas

in principle an FPGA has advantages of all. Moreover all

these processing units have Complex Instruction Set

Computing (CISC) or Reduced Instruction Set Computing

(RISC) architecture and there is an extensive instruction set.

The operations are based on Fetch-Decode-Execute cycle

and hence largely sequential in nature while on FPGA fully

parallel architectures can be designed and executed. All the

processing units mentioned above follow Arithmetic Logic

Unit (ALU) based architecture for arithmetic and logical

operations which involve a lot of instructions and hence

clock cycles [7]. FPGA offers to develop gate level

implementations of arithmetic circuits and hence a

significant improvement in operating speed is inevitable. We

show that with FPGA as the processing unit, the execution

time of the algorithm, the size and cost of the robot can be

reduced.

FPGA is largely used for application specific design.

FPGA contains an array of Configurable Logic Blocks

(CLBs), Look-up Tables (LUTs) and programmable

interconnects between them. By programming these inter-

connects, same CLBs can be used for several different

functions. Power dissipation is reduced because out of all

available paths the shortest path is chosen for the

implementation.

The paper focuses on the novel hardware implementation

of the well known Reciprocal Collision Avoidance with

Acceleration Velocity Obstacles.This hardware

implementation reduces the power dissipation and cost of

implementation of the robot. Parallelism has been

incorporated into the system model by making multiple

copies of same elementary level modules and using them in

parallel.

We also show the comparison of sequential and pipelined

design of same algorithm with the hybrid design in terms of

clock cycles required to bring out vividly the advantages of

FPGA over other processing devices which generally

follows sequential approach while processing.

Field Programmable Gate Array (FPGA) Based Collision Avoidance

Using Acceleration Velocity Obstacles

Roopak Dubey*, Neeraj Pradhan*, K. Madhava Krishna and Shubhajit Roy Chowdhury

(1)

(2a)

(2b)

(2c)

(2d)

(2e)

II. VELOCITY OBSTACLE BASED COLLISION AVOIDANCE

Collision avoidance is one of the fundamental problems

inmobile robotics. Numerous algorithms exist which avoid

collision in various types of environment. Velocity Obstacle

approach is one of the algorithms which is very efficient in

the dynamic environments with multiple robots and moving

objects [2]. In this algorithm the current velocities and

position of various objects in the space is used along with

constraints of the robot to find the set of velocities which can

avoid the obstacles as well as satisfy the constraints [2][3].

The set of velocities other than the aforementioned velocities

is known as the Velocity Obstacle [2]. This set of velocities

forms a collision cone [2] [3] [4]. Figure 1 shows a collision

cone (C1/2) when there is one robot and one dynamic

obstacle. Any velocity outside this cone is the velocity

which robot can take to avoid obstacles successfully [2] [3]

[4].

Figure 1: Collision Cone

 Equation (1) [8] is the governing equation of the collision

cone. The current work aims to find the velocities which

satisfy these equations. In these equations, robots other than

one which is controlled are considered as passive. All the

velocities satisfying this equation are the avoidance

velocities. Finally the velocities and position of the robot

using the velocities from the set is updated.

𝑑2 = 𝑟 2 −
 𝑟 .𝑉

2

 𝑉
2 ≥ 𝑅2

Here,𝑟 is the relative position and 𝑉 is the relative

velocity of the robot 1 w.r.t robot 2 respectively.

𝑣 𝑛+1 = 𝑣 𝑛 + 𝑎 𝑡

𝑟 𝑛+1 = 𝑟 𝑛 + 𝑣 𝑛𝑡 +
1

2
𝑎 𝑛𝑡2

Where,

𝑟 = 𝑥𝑖 + 𝑦𝑗

𝑣 = 𝑣𝑥 𝑖 + 𝑣𝑦 𝑗

𝑎 = 𝑎𝑥 𝑖 + 𝑎𝑦 𝑗

All velocities of the set are not achievable by robot due to

acceleration constraints. So there is a need to take care of

these constraints too. A velocity is chosen which is

achievable by robot. So this reduces the set to a smaller set

[2]. Equations at (2a) and (2b) are the update equations. An

implementation of this algorithm has been developed on

FPGA.

III. FPGA ARCHITECTURES FOR COLLISION AVOIDANCE

The problem of collision avoidance using Velocity

Obstacle involves finding solution for equation (1). Let there

be n robots which are similar with similar constraints on the

map viz. Robot_1, Robot_2… Robot_n. Let Robot_1 be the

robot for which collision avoidance is to be done. Then for

each robot from Robot_2 to Robot_n an inequality like one

shown in equation (1) can be obtained. So in total there are

n-1 inequalities which need to be solved.

There are two approaches to solve this problem. In

one,linear programming can be used to solve the system of

n-1inequalities with acceleration constraints and find the

velocity of Robot_1 which falls out of collision cone. In the

other, a velocity is sampled which is achievable under the

acceleration constraints and verify whether it satisfies all n-1

inequalities and the velocity which satisfies all is the chosen

one.

The latter method has been used in this paper. This is

because solving inequalities is more expensive in terms of

resource and clock utilization when done on FPGA than the

exhaustive method [9].

In this architecture a velocity is sampled out of achievable

velocities. Robot_1 has access to the velocities and positions

of other n-1robots. Using this data it is verified whether

these velocities and positions satisfy the aforementioned n-1

inequalities or not.

The algorithm consists of two main parts. In first part of

algorithm, whether the robot reached the target or not, is

checked. This is implemented by measuring the Euclidean

distance between robot center and the target. In the second

part a velocity is selected which satisfies system of

inequalities under acceleration constraints.

In the second part, where inequalities are to be satisfied,

first the positions are updated for a small time period using

the velocities and then inequalities are verified at the

updated position. If any one of the inequalities fails then

another achievable velocity is sampled and tested.

Here the sampling of velocity is done using ―to-goal‖

strategy [2]. In this strategy we always start looking first at

the velocity for which velocity vector points towards the

target. If that velocity is inside collision cone then we rotate

our velocity vector by small values towards both clockwise

and anti-clockwise.

In any CISC or RISC based processor all the operations

are sequential and hence this verifying process takes the

robots one by one and their positions are first updated using

the update equations in (2a) and (2b). The Robot_1, the one

for which the algorithm is implemented, gets its velocity

verified in all n-1 inequalities one by one.

V

Figure 2: Sequential architecture forthe algorithm

Three architectural design styles have been proposed for

the implementation of the algorithm and the performances of

these architectures have also been compared. Figure 2 shows

the architecture for the sequential implementation of the

algorithm.

In sequential architecture update of Robot_1 is done first.

Then in next stage update of Robot_2 is done and data from

these two updates are checked for collision using the

inequality at (1) and this process is repeated for all the

robots. So clock cycles are added up for each block.

Pos_vel_update module takes 7 clock cycles to provide the

output and coll_detect module takes 10 cycles to provide the

output. Total clock cycles required for sequential operation

is 7n + 10(n-1) = 17n -10, where n is number of robots. This

implementation is used when resources are really meager

and it is difficult to design even two components on same

chip. Data_1, Data_2 etc. denotes the current position and

velocity of Robot_1, Robot_2 and so on. Data_1_new,

Data_2_new etc. are the updated position and velocity of the

robots if we assume sampled velocity is chosen.

Or_gate_array will give the output as ‗1‘ if any of the

inequality fails.Trial is the signal which is asserted when

robots are on collision course.

Figure 3 shows a resource constrained pipelined

architecture for the implementation of algorithm. In this

architecture the update of next robot could be performed

while the inequality for previous robot is being verified. In

this implementation, for n-robot problem,the clock cycles

which are added are the only clock cycles which are required

for coll_detect module to provide output. The cycles for the

initial two updates are also added. The resource utilization is

more than sequential implementation as two components

that can work in parallel are to be implemented. Total clock

cycles required is 10(n-1) + 14= 10n + 4. This number is

much smaller when compared with sequential architecture,

when number of robots increase.

Figure 3: Resource constrained pipelined architecture for the
algorithm(inputs outputs and intermediate values are same as in figure 2)

When there is no limit on number of resources to be used

hybrid architecture as shown in Figure 4 can be designed. In

this architectureupdate for all the robots is made parallelly in

one stage and in next stage the inequalities are verified for

all parallelly. This is the fastest of all the implementations

and takes only 7 + 10 = 17 clock cycles irrespective of

number of robots. This is the unique advantage which is

offered by FPGA. It is possible on FPGA to design parallel

architectures at certain stages. Advantage of partial and full

re-configurability is offered by FPGA and using this ability

parallel architecture for large number of robots can be

implemented.

In the presented work a hybrid design is used which saves

a large number of clock cycles as number of robots

increases. The exact numbers are shown in section VI:

Results and Discussions.

If the FPGA has less number of resources, pipelined

architecture is needed which is always better than the

conventional sequential implementation in processors.

The comparative study of resource utilization and power

dissipation in all these three implementations has been done

on the basis of synthesis report. We show one such result for

two robots in Table I. A more detailed comparison is

tabulated in section VI.

Table I
Comparative study of resource utilization of 2-robot problem

Architecture CLBs LUTs
Power Dissipation

(mW)

Sequential 52% 32% 96

RC Pipelined 63% 41% 104

Hybrid 79% 70% 128

pos_vel_update

pos_vel_update

Pos_vel_update

coll_detect

coll_detect

pos_vel_update coll_detect

Or

gate

Array

pos_vel_update

S1

S2

OR

gate

Arra

y

pos_vel_update

coll_detect

pos_vel_update

coll_detect

pos_vel_update

coll_detect

Data_1

Data_2

Data_3

Data_n

Data_2_new

Data_3_new

Data_n_new

Trial_1_2

Trial_1_3

Trial_1_n

Trial_final

Data_1_new

(4)

Figure 4: Hybrid architecture for the algorithm

IV. DETAILED ARCHITECTURAL DESCRIPTION

To ensure the parallelization of the operations, we used a

hierarchical model for implementing the algorithm. The

equations (1), (2a) and (2b) are vector equations. While

implementation on FPGA all these equations are resolved in

x and y components. The computations for magnitude and

direction are done separately and then results are used. The

following sub-sections provide a brief description of the

modules. Architectural details are illustrated only for the key

modules viz. pos_vel_update and coll_detect due to brevity

of space.

A. Update Module (pos_vel_update)

The update module has been used for all types of position

and velocity updates. It is used to find the point where robot

will reach and what will be the velocity of robot at that

point. The outputs of this module will go to collision detect

module. The equations involved in implementation of this

module are the resolved form of those given in equations

(2a) and (2b) above. We calculated the new position and

velocities in horizontal and vertical components separately.

The hardware implementation is shown in Figure 5.

B. Collision Detection Module (coll_detect)

This module evaluates the condition given in equation-(1)

using the resolved x and y components and determines

whether robot is on collision course or not. Its output is a

signal which tells the velocity update block to stop if

condition is satisfied. The velocity for which condition is

satisfied will be given to the Proportional Integro-Derivative

(PID) control module to control the robot accordingly. The

architecture is shown in Figure 6.

Equation-(1) is slightly altered for proper implementation

on the hardware. The altered equation is given below.

 𝑟 2 𝑉
2

− 𝑟 . 𝑉
2

≥ 𝑅2 𝑉
2

The output trial = ‗1‘ denotes there is a collision and trial

= ‗0‘ denotes that path is safe.

In Figure 6, r_sq denotes |𝑟 |2; vab_sq stands for 𝑉
2
 and

dotp_sq stands for 𝑟 . 𝑉
2
. (X1, Y1) and (X2, Y2) are

positions of Robot-1 and Robot-2 respectively. (VX1, VY1)

and (VX2, VY2) are components of velocities of Robot 1 and

Robot 2. R is combined radius of robots. R = R1 + R2 where

R1 and R2 are radii of the robots.

Figure 5: Update Module architecture

Figure 6: Collision Detection Module

y2 x2 y1 x1

Input Registers

vx2 vy2

In_rdy

(register enable)

vy1 vx1

Sub

Sub

Sub

Sub

Add

Mult1 Mult0

Mult1 Mult0

Mult1 Mult0 Add

Add

Mult1 Mult0

Mult0 Sub (Mult1-Mult0)

Comparator

Output

FlipFlop

Out_rdy

Out_en (register enable)

trial

trial

R2

vab_sq r_sq

dotp_sq

Clock

Out_en (register enable)

y_new
x_new

vx_new

vy_new

ay ax

vy

vx

In_rdy

(register enable)

y

vy vx y

x

x

Time

Clock

Add0 Add1

Mult1 Mult0

Add0 Add1 Shifter (0.5*k) Shifter (0.5*k)

Mult0 Mult1 Add0 Add1

Mult1 Mult0

Input Registers

Output Registers

ax ay

Out_rdy

x_new
vx_new

y_new
vy_new

Pos_vel_update_1 pos_vel_update_n

Coll_detect (1,n)

pos_vel_update_2

Coll_detect (1,2)

Or gate array

Data_1 Data_2 Data_n

Data_1_new Data_2_new Data_n_new

Trial_1_2
Trial_1_n

Trial_final

C. Other Modules

Besides update module and collision detection module

there are two more modules viz. Velocity Selector Module

and Acceleration Check Module.

Velocity selector module selects one velocity out of an

array of velocities using the ―to goal‖ strategy mentioned

earlier. The required direction is determined using target

location and present location of robot. Components of

velocities are selected to get the resultant in that direction.

Once the components of velocity is obtained acceleration

check module checks whether the selected velocity is

achievable within acceleration constraints or not? If not, then

velocity selector module is signaled to select some other

velocity: if yes, then the selected velocity is sent to update

module.

V. FPGA IMPLEMENTATION

Each of the three implementations viz. sequential,

resource constrained pipelined and hybrid in section III can

be implemented on FPGA. If FPGA has fewer resources,

then pipelined architecture should be used instead of parallel

architecture. If a high-end FPGA with large number of

resources is used or partial reconfiguration can be used then

a wholly parallel design is possible which uses a small

number of clock cycles for the algorithm which is 17 in this

case.

Each Robot has a FPGA mounted on it and same design is

implemented on each FPGA. So all robots work at the same

time and hence share the responsibility of avoiding collision.

All other parts of the overall design require same number of

clock cycles and same amount of resources irrespective of

number of robots. The exact values are given in result

section.

 The Nexys 2 board which is used to implement the design

is shown in Figure 7. The actual robot is shown in Figure 8.

The actual robot has 3 levels. First level is for wheels,

second level is FPGA and third level is the interfacing

circuit which provides interface of FPGA to the motors. The

unique arrangement of wheels facilitates the omni-drive

motion of the robot.

 To reduce number of resources, serial operation is used at

certain places. The design of system comprises both serial

and parallel operations to maintain an optimum level in

utilization of resources as well as clock cycles required. The

exact values involved are presented in results section.

 This hardware architecture is easily scalable to more

number of robots and dimensions. As a very low end FPGA

is used for experiment the results are obtained up to 8 robots

in two dimensional maps.

VI. RESULTS AND DISCUSSIONS

The algorithm is implemented using Xilinx Spartan 3E-

500 FG320 FPGA using the Nexys-2 board that has over

10476 logic cells, 20 dedicated multipliers, 20 blocks of

BRAM and 50 MHz clock speed. The test is run on various

sources and target scenarios with 2, 4 and 8 robots. For the

8-robot problem, resource constrained pipelined architecture

is used to obtain the results since hybrid design is not

realizable on the aforementioned device. For more robots we

need an FPGA with more resources on it.

Experimental Setup: - The design is dumped on the FPGA

board using Digilent Adept Programmer interface and

executed. The co-ordinates of all the robots are being

transmitted through an on-board serial port and getrendered

through a standard graphic package. The entire algorithm

runs on FPGA, while the processor is used only for

rendering.

Figure-9, 10shows the collision avoidance in 4-robot and

8-robot case respectively. A 2-dimensional map of size 300

x 300, without any static object is shown in figures. Four

snapshots of the path followed by robots from source to

destination are presented in figures of all the aforementioned

three scenarios.

A lot of clock cycles can be saved when we go for hybrid

design rather than sequential or pipelined design. Table II

shows the number of clock cycles required to complete the

crucial part of collision detection in all three types of

implementation. The values shown in the table IIare the

number of clock cycles required per update of position and

velocity.

It can be clearly seen from the table II that a significant

amount of speed up is obtained when we go for hybrid

architecture. A full run of algorithm requires nearly 500 of

such updates and hence there is a large gain in terms of

speed of execution of algorithm when hybrid architecture is

used. Hybrid architecture has high resource utilization but

TABLE II
COMPARISON OF CLOCK CYCLES REQUIRED (f = 50MHz)

 2-robots (n=2) 4-robots (n=4) 8-robots (n=8)

Sequential (17n – 10) 24 58 126

RC Pipelined (10n + 4) 24 44 84

Hybrid 17 17 17

TABLE III

Power Dissipation (in mW) in various scenarios

Architecture 2 robots 4 robots 8 robots

Sequential 96 112 136

RC pipelined 104 127 153

Hybrid 128 161 -

Note: As mentioned earlier, the hybrid architecture for 8-robot problem is

not feasible on the FPGA being used. Power Dissipation information is

unknown for the same.

Figure 7: Xilinx Nexys 2

Development Board with Spartan
3E FPGA

Figure 8: The robot with FPGA at

second level

this issue can be addressed by the ability of FPGA to

dynamically reconfigure. At a particular instance we can

have only those resources which are required for processing

and FPGA can be reconfigured before the next step. In this

way highly parallel architectures can be designed for FPGA.

Simulation of power dissipation has also been done using

XPower Analyzer tool of Xilinx ISE 13.4. The results are

compiled in table III. As evident from the table III,

sequential implementation has lowest power dissipation and

hybrid implementation has highest. This is because in hybrid

architecture, more cells and interconnects are active at any

instance of time In RC pipelined architecture the number of

active interconnects are more than that in sequential

architecture and hence power dissipation is more.

The power dissipation in FPGA is in the order of milli-

watt which is nominal when compared to power dissipation

in a typical CISC or RISC processor for which power

dissipation is in the order of Watt [13].

A significant reduction in power dissipation can be

obtained when a scenario with large number of robots is

implemented on FPGA.

VII. CONCLUSION AND FUTURE SCOPE

This paper presented two new architectures implemented

on Spartan-3, Nexys-2 FPGA platform for multi robot

collision avoidance. The architectures are particularly

helpful when the number of robots in an environment

increases and sequential implementation of avoidance

routines tend to become unwieldy. The RC-pipelined

architecture exploits the pipeline implementation feasible on

an FPGA, shows tangible reduction in computation time

without extensive consumption of resources. On the other

hand the hybrid architecture provides for a full fledged

parallel constant time implementation even as the number of

robots increases. The hybrid architecture is the most sought

after when the FPGA resources are not constrained. FPGA

implementations on a Nexys-2, Spartan-3 platform confirm

the efficacy of the proposed architectures. Comparative

tabulations between sequential, pipelined and hybrid

architectures vividly portray the benefits of a FPGA

implementation. The efforts are on to develop such FPGA

implementations of robotic algorithms invoking the specific

advantages provided by FPGA platforms is a way forward

towards low cost FPGA based robotic systems.

REFERENCES

[1] Lozano-Perez, T.; , "Spatial Planning: A Configuration Space
Approach," Computers, IEEE Transactions on , vol.C-32, no.2,

pp.108-120, Feb. 1983

[2] P. Fiorini and Z. Shiller,‖Motion planning in dynamic environments
using velocity obstacles", Int. J. Robot. Res., vol. 17, no. 7, pp.760 -

772 1998

[3] J. van den Berg, J. Snape, S. Guy, D. Manocha. Reciprocal collision
avoidance with acceleration-velocity obstacles. IEEE Int. Conf. On

Robotics and Automation, 2011.

[4] van den Berg, J., Guy, S. J., Lin, M. C., Manocha, D.: Reciprocal n-
body Collision Avoidance.In: Proc. Int. Symp. Robot. Res., (2009)

[5] J. Fischer, A. Ruppel, F. Weisshardt, and A. Verl, ―A rotation

invariant feature descriptor o-daisy and its fpga implementation,‖ in
Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International

Conference on. IEEE, 2011, pp. 2365–2370.

[6] J. Svab, T. Krajnik, J. Faigl, and L. Preucil, ―Fpga based speeded up
robust features,‖ in Technologies for Practical Robot Applications,

2009. TePRA 2009.

[7] Maya B. Gokhale and Paul S. Graham,―Reconfigurable Computing,
Accelerating Computation with Field Programmable Gate Arrays‖, 1st

Ed. pp. 1-10, ISBN: 978-0387261058, Netherlands, Springer

Publications 2005.
[8] C. Carbone, U. Ciniglio, F. Corraro and S. Luongo ―A Novel 3D

Geometric Algorithm for Aircraft Autonomous Collision Avoidance‖
In Proceedings of the 45th IEEE Conference on Decision and Control,

USA, 2006

[9] Youshen Xia; Jun Wang; Hung, D.L.; , "Recurrent neural networks for

solving linear inequalities and equations," Circuits and Systems I:

Fundamental Theory and Applications, IEEE Transactions on ,

vol.46, no.4, pp.452-462, Apr 1999
[10] C. R. Karr, M. A. Craft, and J. E. Cisneros, ―Dynamic obstacle

avoidance‖, in Proc. Conf. Distrib. Interact. Simul. Syst. Simul. Train.

Aerosp. Envir., Int. Soc. Opt. Eng., Orlando, USA, 1995,pp. 195–219.
[11] Khatib, O.;, "Real-time obstacle avoidance for manipulators and

mobile robots," Robotics and Automation. Proceedings. 1985 IEEE

International Conference on , vol.2, no., pp. 500- 505, Mar 1985
[12] Bruce, J.; Veloso, M.; "Real-time randomized path planning for robot

navigation," Intelligent Robots and Systems, 2002. IEEE/ RS

International Conference on , vol.3, no., pp. 2383- 2388 vol.3, 2002
[13] Gonzalez, R.; Horowitz, M.; "Energy dissipation in general purpose

microprocessors," Solid-State Circuits, IEEE Journal of , vol.31, no.9,

pp.1277-1284, Sep 1996.

(a)

(b)

(c)

(d)

Figure 9: Obstacle avoidance in 4-robot problem

(a)

(b)

(c)

(d)

Figure 10: Obstacle avoidance in 8-robot problem

