
  

 

Abstract—This paper presents a Field Programmable Gate 

Array (FPGA) based implementation of Acceleration Velocity 

Obstacle based Collision Avoidance for an omni-directional 

robot with acceleration constraint. Specifically a parallel 

architecture for collision avoidance is proposed that portrays 

the advantages of FPGA implementation over the sequential 

implementation for same processor or clock speed. FPGA 

based robotics is seen to gain popularity due to low cost, 

portability, seamless interface to hardware and most 

importantly due to inherent parallelism enshrined in various 

robotic algorithms. FPGA realization of the algorithm in a 

simulation test bed vindicates its efficacy and comparison with 

sequential implementation is also highlighted. The paper 

proposes three different architectures for the implementation 

of the proposed algorithm viz. sequential architecture; a 

resource constrained pipelined architecture and a hybrid 

pipeline parallel architecture. The performances of those three 

architectures have been evaluated. 

 

I. INTRODUCTION 

Obstacle avoidance is one of the most basic problems in 

mobile robotics. In those systems where there are no other 

moving objects other than the robot itself static obstacle 

avoidance is sufficient. There are numerous algorithms for 

static obstacle avoidance [1][11][12]. But there are 

environments where there are moving objects as well as 

other robots in the vicinity of the robot under consideration. 

In those cases static obstacle avoidance is of not much avail. 

In most of the multi-robot and real world problems we need 

to deal with dynamic objects. An algorithm is needed which 

takes the dynamic nature of objects and other robots under 

consideration. Such an algorithm is termed as Dynamic 

Obstacle Avoidance algorithm [10]. There are again 

numerous approaches for Dynamic Obstacle Avoidance. 

Velocity Obstacle (VO) approach is one of the common 

approaches used for collision avoidance in dynamic 

environment [2]. When the acceleration constraints are 

considered in the VO it is called Acceleration Velocity 

Obstacle (AVO) [3]. When robots share the responsibility of 

Avoidance among themselves equally then it is termed as 

Reciprocal Collision Avoidance (RCA) [4]. 

Field Programmable Gate Array (FPGA) is gaining 

popularity in robotics recently and it can be seen through 

FPGA implementations of image processing descriptors 

[5][6]. The credit for this popularity goes to the unique 

combination of qualities like small size, ability to 

reconfigure both offline and online, low power dissipation, 

low cost and high speed. Small sized robots with constrained 
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resources are the need of the day and hence algorithms are 

needed which can run on systems with lesser memory and 

size footprint. A base station PC has advantages of accuracy 

and speed but is limited by the wireless range to the robot 

and hence restricts its operating area. A laptop cannot be 

mounted on very small robots and can be expensive too. A 

cell phone processor which can do such amount of 

processing is expensive and increases the cost of robot also a 

full-fledged operating system is to be installed to control it 

which in turn increases memory requirement.  A micro- 

controller does not provide for accuracy and speed, whereas 

in principle an FPGA has advantages of all. Moreover all 

these processing units have Complex Instruction Set 

Computing (CISC) or Reduced Instruction Set Computing 

(RISC) architecture and there is an extensive instruction set. 

The operations are based on Fetch-Decode-Execute cycle 

and hence largely sequential in nature while on FPGA fully 

parallel architectures can be designed and executed. All the 

processing units mentioned above follow Arithmetic Logic 

Unit (ALU) based architecture for arithmetic and logical 

operations which involve a lot of instructions and hence 

clock cycles [7]. FPGA offers to develop gate level 

implementations of arithmetic circuits and hence a 

significant improvement in operating speed is inevitable. We 

show that with FPGA as the processing unit, the execution 

time of the algorithm, the size and cost of the robot can be 

reduced. 

FPGA is largely used for application specific design. 

FPGA contains an array of Configurable Logic Blocks 

(CLBs), Look-up Tables (LUTs) and programmable 

interconnects between them. By programming these inter-

connects, same CLBs can be used for several different 

functions. Power dissipation is reduced because out of all 

available paths the shortest path is chosen for the 

implementation.  

The paper focuses on the novel hardware implementation 

of the well known Reciprocal Collision Avoidance with 

Acceleration Velocity Obstacles.This hardware 

implementation reduces the power dissipation and cost of 

implementation of the robot. Parallelism has been 

incorporated into the system model by making multiple 

copies of same elementary level modules and using them in 

parallel.  

We also show the comparison of sequential and pipelined 

design of same algorithm with the hybrid design in terms of 

clock cycles required to bring out vividly the advantages of 

FPGA over other processing devices which generally 

follows sequential approach while processing. 
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II. VELOCITY OBSTACLE BASED COLLISION AVOIDANCE 

Collision avoidance is one of the fundamental problems 

inmobile robotics. Numerous algorithms exist which avoid 

collision in various types of environment. Velocity Obstacle 

approach is one of the algorithms which is very efficient in 

the dynamic environments with multiple robots and moving 

objects [2]. In this algorithm the current velocities and 

position of various objects in the space is used along with 

constraints of the robot to find the set of velocities which can 

avoid the obstacles as well as satisfy the constraints [2][3]. 

The set of velocities other than the aforementioned velocities 

is known as the Velocity Obstacle [2]. This set of velocities 

forms a collision cone [2] [3] [4]. Figure 1 shows a collision 

cone (C1/2) when there is one robot and one dynamic 

obstacle. Any velocity outside this cone is the velocity 

which robot can take to avoid obstacles successfully [2] [3] 

[4]. 

 
Figure 1: Collision Cone 

 

 Equation (1) [8] is the governing equation of the collision 

cone. The current work aims to find the velocities which 

satisfy these equations. In these equations, robots other than 

one which is controlled are considered as passive. All the 

velocities satisfying this equation are the avoidance 

velocities. Finally the velocities and position of the robot 

using the velocities from the set is updated. 

 

𝑑2 =  𝑟  2 −  
 𝑟 .𝑉    

2

 𝑉    
2 ≥ 𝑅2 

Here,𝑟  is the relative position and  𝑉   is the relative 

velocity of the robot 1 w.r.t robot 2 respectively. 

 

𝑣 𝑛+1 =  𝑣 𝑛 +  𝑎 𝑡 

 

𝑟 𝑛+1 = 𝑟 𝑛 +  𝑣 𝑛𝑡 +  
1

2
𝑎 𝑛𝑡2 

Where, 

𝑟 =  𝑥𝑖  +  𝑦𝑗  
 

𝑣 =  𝑣𝑥 𝑖  +  𝑣𝑦 𝑗  

 

𝑎 =  𝑎𝑥 𝑖  +  𝑎𝑦 𝑗  

 

All velocities of the set are not achievable by robot due to 

acceleration constraints. So there is a need to take care of 

these constraints too. A velocity is chosen which is 

achievable by robot. So this reduces the set to a smaller set 

[2]. Equations at (2a) and (2b) are the update equations. An 

implementation of this algorithm has been developed on 

FPGA.  

III. FPGA ARCHITECTURES FOR COLLISION AVOIDANCE 

The problem of collision avoidance using Velocity 

Obstacle involves finding solution for equation (1). Let there 

be n robots which are similar with similar constraints on the 

map viz. Robot_1, Robot_2… Robot_n. Let Robot_1 be the 

robot for which collision avoidance is to be done. Then for 

each robot from Robot_2 to Robot_n an inequality like one 

shown in equation (1) can be obtained. So in total there are 

n-1 inequalities which need to be solved. 

There are two approaches to solve this problem. In 

one,linear programming can be used to solve the system of 

n-1inequalities with acceleration constraints and find the 

velocity of Robot_1 which falls out of collision cone. In the 

other, a velocity is sampled which is achievable under the 

acceleration constraints and verify whether it satisfies all n-1 

inequalities and the velocity which satisfies all is the chosen 

one. 

The latter method has been used in this paper. This is 

because solving inequalities is more expensive in terms of 

resource and clock utilization when done on FPGA than the 

exhaustive method [9]. 

In this architecture a velocity is sampled out of achievable 

velocities. Robot_1 has access to the velocities and positions 

of other n-1robots. Using this data it is verified whether 

these velocities and positions satisfy the aforementioned n-1 

inequalities or not.  

The algorithm consists of two main parts. In first part of 

algorithm, whether the robot reached the target or not, is 

checked. This is implemented by measuring the Euclidean 

distance between robot center and the target. In the second 

part a velocity is selected which satisfies system of 

inequalities under acceleration constraints. 

In the second part, where inequalities are to be satisfied, 

first the positions are updated for a small time period using 

the velocities and then inequalities are verified at the 

updated position. If any one of the inequalities fails then 

another achievable velocity is sampled and tested. 

Here the sampling of velocity is done using ―to-goal‖ 

strategy [2]. In this strategy we always start looking first at 

the velocity for which velocity vector points towards the 

target. If that velocity is inside collision cone then we rotate 

our velocity vector by small values towards both clockwise 

and anti-clockwise. 

In any CISC or RISC based processor all the operations 

are sequential and hence this verifying process takes the 

robots one by one and their positions are first updated using 

the update equations in (2a) and (2b). The Robot_1, the one 

for which the algorithm is implemented, gets its velocity 

verified in all n-1 inequalities one by one.  
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Figure 2: Sequential architecture forthe algorithm 

 

Three architectural design styles have been proposed for 

the implementation of the algorithm and the performances of 

these architectures have also been compared. Figure 2 shows 

the architecture for the sequential implementation of the 

algorithm. 

In sequential architecture update of Robot_1 is done first. 

Then in next stage update of Robot_2 is done and data from 

these two updates are checked for collision using the 

inequality at (1) and this process is repeated for all the 

robots. So clock cycles are added up for each block. 

Pos_vel_update module takes 7 clock cycles to provide the 

output and coll_detect module takes 10 cycles to provide the 

output. Total clock cycles required for sequential operation 

is 7n + 10(n-1) = 17n -10, where n is number of robots. This 

implementation is used when resources are really meager 

and it is difficult to design even two components on same 

chip. Data_1, Data_2 etc. denotes the current position and 

velocity of Robot_1, Robot_2 and so on. Data_1_new, 

Data_2_new etc. are the updated position and velocity of the 

robots if we assume sampled velocity is chosen. 

Or_gate_array will give the output as ‗1‘ if any of the 

inequality fails.Trial is the signal which is asserted when 

robots are on collision course. 

Figure 3 shows a resource constrained pipelined 

architecture for the implementation of algorithm. In this 

architecture the update of next robot could be performed 

while the inequality for previous robot is being verified. In 

this implementation, for n-robot problem,the clock cycles 

which are added are the only clock cycles which are required 

for coll_detect module to provide output. The cycles for the 

initial two updates are also added. The resource utilization is 

more than sequential implementation as two components 

that can work in parallel are to be implemented. Total clock 

cycles required is 10(n-1) + 14= 10n + 4. This number is 

much smaller when compared with sequential architecture, 

when number of robots increase. 

 
 

Figure 3: Resource constrained pipelined architecture for the 
algorithm(inputs outputs and intermediate values are same as in figure 2) 

 

When there is no limit on number of resources to be used 

hybrid architecture as shown in Figure 4 can be designed. In 

this architectureupdate for all the robots is made parallelly in 

one stage and in next stage the inequalities are verified for 

all parallelly. This is the fastest of all the implementations 

and takes only 7 + 10 = 17 clock cycles irrespective of 

number of robots. This is the unique advantage which is 

offered by FPGA. It is possible on FPGA to design parallel 

architectures at certain stages.  Advantage of partial and full 

re-configurability is offered by FPGA and using this ability 

parallel architecture for large number of robots can be 

implemented. 

In the presented work a hybrid design is used which saves 

a large number of clock cycles as number of robots 

increases. The exact numbers are shown in section VI: 

Results and Discussions. 

If the FPGA has less number of resources, pipelined 

architecture is needed which is always better than the 

conventional sequential implementation in processors. 

 

The comparative study of resource utilization and power 

dissipation in all these three implementations has been done 

on the basis of synthesis report. We show one such result for 

two robots in Table I. A more detailed comparison is 

tabulated in section VI. 

 

 
 

 

 

 

Table I 
Comparative study of resource utilization of 2-robot problem 

 

Architecture CLBs LUTs 
Power Dissipation 

(mW) 

Sequential 52% 32% 96 

RC Pipelined 63% 41% 104 

Hybrid 79% 70% 128 

pos_vel_update 

pos_vel_update 

Pos_vel_update 

coll_detect 

coll_detect 

pos_vel_update coll_detect 

Or 

gate 

Array 

pos_vel_update 

S1 

S2 

OR 

gate  

Arra

y 

pos_vel_update 

coll_detect 

pos_vel_update 

coll_detect 

pos_vel_update 

coll_detect 

Data_1 

Data_2 

Data_3 

Data_n 

Data_2_new 

Data_3_new 

Data_n_new 

Trial_1_2 

Trial_1_3 

Trial_1_n 

Trial_final 

Data_1_new 



  

(4) 

 

 
Figure 4: Hybrid architecture for the algorithm 

IV. DETAILED ARCHITECTURAL DESCRIPTION 

To ensure the parallelization of the operations, we used a 

hierarchical model for implementing the algorithm. The 

equations (1), (2a) and (2b) are vector equations. While 

implementation on FPGA all these equations are resolved in 

x and y components. The computations for magnitude and 

direction are done separately and then results are used. The 

following sub-sections provide a brief description of the 

modules. Architectural details are illustrated only for the key 

modules viz. pos_vel_update and coll_detect due to brevity 

of space.  

A. Update Module (pos_vel_update) 

The update module has been used for all types of position 

and velocity updates. It is used to find the point where robot 

will reach and what will be the velocity of robot at that 

point. The outputs of this module will go to collision detect 

module.  The equations involved in implementation of this 

module are the resolved form of those given in equations 

(2a) and (2b) above. We calculated the new position and 

velocities in horizontal and vertical components separately. 

The hardware implementation is shown in Figure 5. 

B. Collision Detection Module (coll_detect) 

This module evaluates the condition given in equation-(1) 

using the resolved x and y components and determines 

whether robot is on collision course or not. Its output is a 

signal which tells the velocity update block to stop if 

condition is satisfied. The velocity for which condition is 

satisfied will be given to the Proportional Integro-Derivative 

(PID) control module to control the robot accordingly. The 

architecture is shown in Figure 6. 

Equation-(1) is slightly altered for proper implementation 

on the hardware. The altered equation is given below. 

 𝑟  2 𝑉   
2

−   𝑟 . 𝑉   
2

≥ 𝑅2 𝑉   
2
 

 

The output trial = ‗1‘ denotes there is a collision and trial 

= ‗0‘ denotes that path is safe. 

In Figure 6, r_sq denotes |𝑟 |2; vab_sq stands for  𝑉   
2
 and 

dotp_sq stands for 𝑟 . 𝑉   
2
. (X1, Y1) and (X2, Y2) are 

positions of Robot-1 and Robot-2 respectively. (VX1, VY1) 

and (VX2, VY2) are components of velocities of Robot 1 and 

Robot 2. R is combined radius of robots. R = R1 + R2 where 

R1 and R2 are radii of the robots.  

 

 
 

Figure 5: Update Module architecture 

 

 
Figure 6: Collision Detection Module 
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C. Other Modules 

Besides update module and collision detection module 

there are two more modules viz. Velocity Selector Module 

and Acceleration Check Module. 

Velocity selector module selects one velocity out of an 

array of velocities using the ―to goal‖ strategy mentioned 

earlier. The required direction is determined using target 

location and present location of robot. Components of 

velocities are selected to get the resultant in that direction. 

Once the components of velocity is obtained acceleration 

check module checks whether the selected velocity is 

achievable within acceleration constraints or not? If not, then 

velocity selector module is signaled to select some other 

velocity: if yes, then the selected velocity is sent to update 

module. 

V. FPGA IMPLEMENTATION 

Each of the three implementations viz. sequential, 

resource constrained pipelined and hybrid in section III can 

be implemented on FPGA. If FPGA has fewer resources, 

then pipelined architecture should be used instead of parallel 

architecture. If a high-end FPGA with large number of 

resources is used or partial reconfiguration can be used then 

a wholly parallel design is possible which uses a small 

number of clock cycles for the algorithm which is 17 in this 

case. 

Each Robot has a FPGA mounted on it and same design is 

implemented on each FPGA. So all robots work at the same 

time and hence share the responsibility of avoiding collision. 

All other parts of the overall design require same number of 

clock cycles and same amount of resources irrespective of 

number of robots. The exact values are given in result 

section. 

 The Nexys 2 board which is used to implement the design 

is shown in Figure 7. The actual robot is shown in Figure 8. 

The actual robot has 3 levels. First level is for wheels, 

second level is FPGA and third level is the interfacing 

circuit which provides interface of FPGA to the motors. The 

unique arrangement of wheels facilitates the omni-drive 

motion of the robot. 

 To reduce number of resources, serial operation is used at 

certain places. The design of system comprises both serial 

and parallel operations to maintain an optimum level in 

utilization of resources as well as clock cycles required. The 

exact values involved are presented in results section. 

 This hardware architecture is easily scalable to more 

number of robots and dimensions. As a very low end FPGA 

is used for experiment the results are obtained up to 8 robots 

in two dimensional maps.  

VI. RESULTS AND DISCUSSIONS 

The algorithm is implemented using Xilinx Spartan 3E-

500 FG320 FPGA using the Nexys-2 board that has over 

10476 logic cells, 20 dedicated multipliers, 20 blocks of 

BRAM and 50 MHz clock speed.  The test is run on various 

sources and target scenarios with 2, 4 and 8 robots. For the 

8-robot problem, resource constrained pipelined architecture 

is used to obtain the results since hybrid design is not 

realizable on the aforementioned device. For more robots we 

need an FPGA with more resources on it.  

Experimental Setup: - The design is dumped on the FPGA 

board using Digilent Adept Programmer interface and 

executed. The co-ordinates of all the robots are being 

transmitted through an on-board serial port and getrendered 

through a standard graphic package. The entire algorithm 

runs on FPGA, while the processor is used only for 

rendering. 

Figure-9, 10shows the collision avoidance in 4-robot and 

8-robot case respectively. A 2-dimensional map of size 300 

x 300, without any static object is shown in figures. Four 

snapshots of the path followed by robots from source to 

destination are presented in figures of all the aforementioned 

three scenarios. 

 

A lot of clock cycles can be saved when we go for hybrid 

design rather than sequential or pipelined design. Table II 

shows the number of clock cycles required to complete the 

crucial part of collision detection in all three types of 

implementation. The values shown in the table IIare the 

number of clock cycles required per update of position and 

velocity. 

It can be clearly seen from the table II that a significant 

amount of speed up is obtained when we go for hybrid 

architecture. A full run of algorithm requires nearly 500 of 

such updates and hence there is a large gain in terms of 

speed of execution of algorithm when hybrid architecture is 

used. Hybrid architecture has high resource utilization but 

 

TABLE II 
COMPARISON OF CLOCK CYCLES REQUIRED (f = 50MHz) 

 

 2-robots (n=2) 4-robots (n=4) 8-robots (n=8) 

Sequential (17n – 10) 24 58 126 

RC Pipelined (10n + 4) 24 44 84 

Hybrid 17 17 17  

 

TABLE III 

Power Dissipation (in mW) in various scenarios 

 

Architecture 2 robots 4 robots 8 robots 

Sequential 96 112 136 

RC pipelined 104 127 153 

Hybrid 128 161 - 

 

Note: As mentioned earlier, the hybrid architecture for 8-robot problem is 

not feasible on the FPGA being used. Power Dissipation information is 

unknown for the same. 

  
Figure 7: Xilinx Nexys 2 

Development Board with Spartan 
3E FPGA 

Figure 8: The robot with FPGA at 

second level 



  

this issue can be addressed by the ability of FPGA to 

dynamically reconfigure. At a particular instance we can 

have only those resources which are required for processing 

and FPGA can be reconfigured before the next step. In this 

way highly parallel architectures can be designed for FPGA. 

Simulation of power dissipation has also been done using 

XPower Analyzer tool of Xilinx ISE 13.4. The results are 

compiled in table III. As evident from the table III, 

sequential implementation has lowest power dissipation and 

hybrid implementation has highest. This is because in hybrid 

architecture, more cells and interconnects are active at any 

instance of time In RC pipelined architecture the number of 

active interconnects are more than that in sequential 

architecture and hence power dissipation is more. 

The power dissipation in FPGA is in the order of milli-

watt which is nominal when compared to power dissipation 

in a typical CISC or RISC processor for which power 

dissipation is in the order of Watt [13].  

A significant reduction in power dissipation can be 

obtained when a scenario with large number of robots is 

implemented on FPGA. 

 

 

VII. CONCLUSION AND FUTURE SCOPE 

This paper presented two new architectures implemented 

on Spartan-3, Nexys-2 FPGA platform for multi robot 

collision avoidance. The architectures are particularly 

helpful when the number of robots in an environment 

increases and sequential implementation of avoidance 

routines tend to become unwieldy. The RC-pipelined 

architecture exploits the pipeline implementation feasible on 

an FPGA, shows tangible reduction in computation time 

without extensive consumption of resources. On the other 

hand the hybrid architecture provides for a full fledged 

parallel constant time implementation even as the number of 

robots increases. The hybrid architecture is the most sought 

after when the FPGA resources are not constrained. FPGA 

implementations on a Nexys-2, Spartan-3 platform confirm 

the efficacy of the proposed architectures. Comparative 

tabulations between sequential, pipelined and hybrid 

architectures vividly portray the benefits of a FPGA 

implementation. The efforts are on to develop such FPGA 

implementations of robotic algorithms invoking the specific 

advantages provided by FPGA platforms is a way forward 

towards low cost FPGA based robotic systems. 
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Figure 9: Obstacle avoidance in 4-robot problem 
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Figure 10: Obstacle avoidance in 8-robot problem 

 


