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Abstract— A solution to the relative scale problem where
reconstructed moving objects and the stationary world are
represented in a unified common scale has proven equivalent to
a conjecture. Motion reconstruction from a moving monocular
camera is considered ill posed due to known problems of
observability. We show for the first time several significant
motion reconstruction of outdoor vehicles moving along non-
holonomic curves and straight lines. The reconstructed motion
is represented in the unified frame which also depicts the
estimated camera trajectory and the reconstructed stationary
world. This is possible due to our Multibody VSLAM frame-
work with a novel solution for relative scale proposed in the
current paper. Two solutions that compute the relative scale
are proposed. The solutions provide for a unified representation
within four views of reconstruction of the moving object and
are thus immediate. In one, the solution for the scale is that
which satisfies the planarity constraint of the object motion.
The assumption of planar object motion while being generic
enough is subject to stringent degenerate situations that are
more widespread. To circumvent such degeneracies we assume
that the object motion to be locally circular or linear and
find the relative scale solution for such object motions. Precise
reconstruction is achieved in synthetic data. The fidelity of
reconstruction is further vindicated with reconstructions of
moving cars and vehicles in uncontrolled outdoor scenes.

I. INTRODUCTION

With the advent of outdoor robotics [1] in a prominent way
the need for solutions that are able to provide for a geometric
understanding of the scene in terms of three dimensional
reconstructions of the stationary world and moving objects
cannot be overemphasized. The multibody Structure from
Motion (SFM) framework where both stationary world and
moving objects are reconstructed comes across as an ap-
propriate framework for providing such an understanding.
However one of the pertinent problems in multibody SFM
is the problem of relative scale while representing both the
moving object and the stationary world in an unified frame of
reference. The problem of relative scale is difficult to solve
because of the lack of correspondences between the moving
object and the stationary world. In other words there is no
easy way to associate a point on the reconstructed moving
object with a point in the stationary world. The need for an
accurate relative scale estimate is indeed critical. A unified
representation of the stationary and dynamic objects at wrong
relative scales results in meaningless portrayals such as a
vehicle sinking beneath the ground plane or floating in space.
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The previous prime solution to the relative scale problem
[2] is non-incremental and uses many camera views thereby
not applicable in a robotic setting. It imposes a planarity con-
straint to solve relative scale problem while assuming a non-
accidentalness criteria. The non-accidental criteria minimally
involves a search through various scales. The verification
of such a criteria could be quite involved and is affected
by degeneracies. [2] also proposes a solution by assuming
independence between camera and object motion, but as
mentioned by the authors themselves, this independence
criteria does not hold in typical outdoor road scenarios.

In this paper we present two approaches that determines
the relative scale within four views of reconstruction of the
moving object. Called the four view solution this provides
for immediate availability of the unified representation for
further robot action such as collision avoidance. The first
method assumes planar object motion, henceforth called as
planar method. It does not approximate continuous curvature
trajectories as circles or straight lines during reconstruction.
However, the degeneracies that arise by assuming planar
motion are stringent. Degenerate situations are those for
which the solution becomes independent of scale or infinite
values of scale satisfy the planar trajectory assumption. In
other words degeneracy arises if for every possible scale the
reconstructed trajectory is planar. In this case it becomes
impossible to find a unique scale solution that satisfies
the planarity assumption. Degeneracy occurs in the planar
method if the object and camera motion are coplanar or if
object and camera moves in parallel planes. These situations
typically arise both outdoors and indoors such as when the
camera and object move parallel to the floor or the road.
However in the presence of an active camera that can be
controlled not to move in a plane parallel to the object
degeneracies can be avoided. One common example is a
hand held camera that is controlled by the human to prevent
a degenerate situation. Unlike [2] the proposed solution is
incremental and involves only four camera views.

Typically, most of the outdoor non-holonomic trajectories
can be modelled through a combination of circular arcs and
straight line segments [3]. If we solve relative scale problem
for such a combination of locally circular arcs or locally
linear segments, the aforementioned difficulties and degen-
eracies of planar case can be surmounted. In this regard,
we employ a four view solution for circular case and a three
view solution for linear case. We term this four view method
which provide solution of relative scale problem for circular
case as circular method of relative scale estimation. The three
view solution which assumes a linear motion is similar to
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[4]. As shown in several synthetic and outdoor experiments
reliable and accurate reconstruction is achieved on various
object trajectories with this assumption of modelling non-
holonomic curves as a combination of circular arcs and
straight lines. For locally circular motion the only degenerate
situation as discerned by us, is when the object and camera
move in parallel concentric arcs. Such situations are a lot
more rare than the degenerate situations for planar motion.
By exploiting specific properties of circular trajectories, the
broad spectrum of planar degeneracies is averted. In this case
we make use of the fact that the perpendicular bisectors of
the chords of the circle meet at the center as the unique
feature that is used to solve for the scale.

Our solution also provides for a seamless model switching
based on scale drift values. Object motion consists of straight
lines and arcs. The relative scale computation should be able
to switch between linear and circular models of computing
scale accordingly. The entailment of a model switch is
detected through disproportionately high drift in scale values.
We show results in synthetic and real world scenes where
trajectories consisting of both linear and curve segments get
robustly reconstructed.

The main contribution of the current work include the
following.

First, we present a novel four view solution of relative
scale problem for locally circular object motion. This circular
four view solution is assisted by three view solution of [4]
for handling most of the outdoor anholonomic trajectories.
The scale solution makes use of the Multibody VSLAM
framework introduced in [5].

Second, we present a new four view solution of relative
scale for planar object motion. Unlike [2] this solution is
incremental. This solution is specifically applicable when
object and camera do not move in parallel planes.

Third, conditions of degeneracy for a linear case are
derived. These degeneracies are different from degenerate
conditions that arise when the object is constrained to a
plane, wherein degeneracy occurs if either the camera moves
in the same plane as the object or the object and camera mo-
tions are planar but in different parallel planes as reported in
[2]. Planar degeneracy thus becomes a common phenomena
in many outdoor and indoor robotic settings where camera
and object motions are either coplanar or are in parallel
planes. These conditions are the subject of discussion in
section IV-D.

Finally, we show results on various publicly available
datasets wherein often the camera and object motion can
be co-planar. Reconstruction is shown for such potentially
degenerate situations confirming the fidelity of the proposed
method. Each of these datasets are challenging in their own
way and consists of outdoor vehicles, indoor robots and
drones.

The relative scale estimation is the final module in the
pipeline that includes motion detection and segmentation
along with the VSLAM framework [5], [6]. The framework
provides for both sparse and dense segmentation using a
combination of optical flow and multi view geometry cues.

We explain the overall pipeline briefly in later parts of the
paper as we begin first by presenting a brief review of related
literature.

II. RELATED LITERATURE

Motion reconstruction from a single moving camera is
considered ill posed for it is quite impossible to triangu-
late a moving object without some assumptions regarding
trajectory or camera motion or both. There are broadly
two paradigms that have appeared in literature. In the first
paradigm, often called trajectory triangulation, the motion
of the moving camera is considered well known. In other
words it does not attempt the SLAM problem in dynamic
environments but focuses on triangulating a moving point
from a sequence of known camera matrices. The seminal
work in this first appeared in [7] for linear and conic
trajectories. However this method cannot triangulate a mov-
ing point if the camera motion is linear or is coplanar
with the moving object. Very recently [8] showed how to
reconstruct trajectories that can be represented as a linear
combination of basis functions. They analysed and showed
in detail that when the object trajectory can be represented
as a linear combination of camera trajectory and a constant
vector, reconstruction is not possible. The reconstruction
was over several views. Unlike a SLAM framework real
results were from multiple cameras observing motion from
known locations. In another paper they present a method to
reconstruct articulated trajectories [9] given a set of image
projection and the parent trajectory in 3D.

In the second paradigm motion is reconstructed by ex-
plicitly providing for camera motion estimation. This has
typically taken the form of multibody extension to multi-view
geometry that tackles multiple moving rigid objects using
classical SfM formulations. This appeared in [10], [11], [12].
These methods either used factorization techniques [10], [12]
or statistical method [11] to segment multiple moving objects
in two views. They assumed known correspondences. While
initial papers showed results over few views, often with
known correspondences and manually segmented objects,
the practical aspects relating to implementation of such
a multibody SfM over longer sequences is discussed in
[13]. [2] devoted itself to the relative scale problem. In
[14] moving objects are reconstructed through multibody
multiview stereo. However their work does not address the
relative scale problem since the scales were not so crucial
from the point of view of segmentation, one of the main
focus in that paper.

Within the robotic community the number of approaches
that perform MonoSLAM within a dynamic environment and
as well as provide some information about the target has
been rather sparse. The pioneering work has been due to
[15] that used a Bearing Only Tracker (BoT) within a Vi-
sual SLAM and Object Tracking (VSLAMMOT) framework
with inverse depth parametrization. It presented comparisons
with stereo SLAMMOT and showed superior performance
with stereo SLAMMOT vis-a-vis VSLAMMOT due to the
problems of observability. A similar approach that combines
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Fig. 1. This figure depicts overview of our complete multibody VSLAM system. Any one of two kind of motion segmentation, sparse or dense motion
segmentation can be used in multibody VSLAM. The final result is unified map of the scene which includes, 3D-structure of moving object, 3D-structure
of stationary world, camera trajectories and trajectories of moving objects at correct relative scale.

moving object tracking through BoT and MonoSLAM done
on stationary parts of the environment, which does not
reconstruct the moving object was proposed in [17] . A stereo
or bicameral method of SLAM cum motion tracking that
overcomes the observability problem was also presented in
[18]. An approach that keeps or filters the dynamic features
out of the SLAM framework without resorting to provide
additional information in form of BoT of such features
was presented in [19]. [16] demonstrated a technique for
simultaneous co-operative localization and moving object
tracking.

In contrast to most approaches in the Multibody setting
the current approach invokes the incremental Multibody
VSLAM framework introduced in [5] and shows explicit
trajectory reconstruction in challenging outdoor scenarios
over long sequences. The reconstruction is an outcome of
several individual components such as motion detection
and segmentation [5], [20], [6], the Multibody framework
integrated with relative scale computation. The method of
solving scale for circular trajectories in four views is novel
and the solution based on planarity constraints is also
different from [13]. Such reconstruction of stationary and
moving elements along with camera trajectory estimation in
uncontrolled scenes previously appears apart from our earlier
effort [5] in [13].

III. SYSTEM ARCHITECTURE

We here delineate the Multibody VSLAM architecture and
its pipeline(figure 1). The pipeline consists of a motion de-
tection and segmentation module that segments independent
motion. Each segmented moving object is given to a separate
VSLAM module and another VSLAM module processes the
static content (stationary world) in the image sequence. The
output of each such VSLAM module is either the camera
trajectory with respect to the stationary world or the moving
object and the reconstruction of the stationary world or the
moving objects. Each reconstructed moving object is then
given to the module that finds the relative scale of that
object with respect to the stationary world, which has been
elaborated in detail in the section IV.

The motion detection framework which is sparse model
of tracking and segmentation uses fast corners as means

of tracking. Each such track is given to a module which
estimates either epipolar constraint or flow vector bound
constraint [20]. The output of these constraints is then fed to
a probabilistic Bayes filter. The output of this Bayes filter is
classfication of features into moving and non-moving. The
technical details of this work can be found in [20].

The dense motion segmentation is that of [6]. It is an
incremental framework in which dense optical flow features
are tracked and motion potentials based on geometry are
computed for each of these dense tracks. A graph based clus-
tering algorithm then clusters and segments various moving
objects.

The VSLAM module is that of bundle adjustment based
optimization framework [21], [22], [23], [24] than filter based
approaches [25], [26]. Our VSLAM system closely sembles
with [21], [22], [24]. In brief, a five point algorithm [23]
is used to estimate initial structure and camera parameters.
A resection algorithm [27] subsequently estimates structure
and motion parameters. Global and local optimizations are
performed on key frames in two different threads to robustify
structure and camera estimates.

IV. SOLVING FOR RELATIVE SCALE

Consider a moving object B and the frame fixed on it as D.
The multi-body VSLAM/SfM outputs reconstructed points
and cameras which see these points. Let one such point is
P (see figure 2) which has a position vector DP with respect
to moving frame D. Let the camera C which sees this point
P has transformation given by D

CT = [DCR,
DtC ]. Where D

CR
represents orientation and DtC represents position vector of
origin of camera frame C, with respect to dynamic frame D.
Then P is represented in the camera’s frame C as

CP = D
CR

−1 · (DP − DtC) (1)

Since the pose of the camera C with respect to the sta-
tionary/ground frame G is also known through the multi-
body framework, let this be represented as G

CT = [GCR,
GtC ],

where G
CR is the rotation of the camera frame C with respect

to G and GtC represents position vector of origin of camera
frame C with respect to ground frame G, then the point P
can be represented in the frame G as,

GP = s G
CR · CP + GtC (2)
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Fig. 2. This figure shows how a points P on the moving object B, measured
in the coordinate frame D fixed on the object gets transformed to the frame
G of the stationary world. The transform involves a scale apart from rotation
and translation.

where s is the relative scale between the object/dynamic and
the stationary world frame.

A. For Planar Motion

Herein we present solution of relative scale when the
moving object undergoes a planar motion. Let the point P
on the reconstructed moving object be represented as GPn,
GPn+1.... GPn+m−1, in ground frame G, at m consecutive
time instances then,

GPn+r = s G
C

n + r
R · Cn+rP + GtCn+r

∀r ∈ (0,m) (3)

Suppose if the points on the moving object undergoes a
planar motion then we propose the following methods of
solving for scale:
Search Based Solution: This solution is similar to cross
product scale search solution mentioned in [4]. We need four
camera views to solve for relative scale using this solution.
Let us assume that,

GPn+r = xr î+ yr ĵ + zrk̂∀r ∈ (0,m)

where each of

xr = x1r + s x2r & yr = y1r + s y2r & zr = z1r + s z2r

Then equation of plane from first three points GPn+0,GPn+1

and GPn+2 can be given by∣∣∣∣∣∣∣∣
x y z 1
x0 y0 z0 1
x1 y1 z1 1
x2 y2 z2 1

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣
x− x0 y − y0 z − z0
x1 − x0 y1 − y0 z1 − z0
x2 − x0 y2 − y0 z2 − z0

∣∣∣∣∣∣ = 0

Now if the fourth points also lies on this plane then we have,∣∣∣∣∣∣
x3 − x0 y3 − y0 z3 − z0
x1 − x0 y1 − y0 z1 − z0
x2 − x0 y2 − y0 z2 − z0

∣∣∣∣∣∣ = 0 (4)

We can search for all possible value of scale and find the
solution of s such that it satisfy equation 4. In practice
we need a solution such that L.H.S of equation 4 has its
non-zero minimum value. It should be noted that instead of
considering first four camera views we can consider any four
camera views.

A Linear Solution for Scale: It should be noted that
equation 4 which is in determinant form can be represented
as third order polynomial in relative scale s as,

αr s
3 + βr s

2 + γr s+ δr = 0 (5)

Instead of four if we consider five views, it is possible to
obtain a linear and exact solution for relative scale which will
not have any scale search criteria. Let us consider first five
views as, GPn+0,GPn+1...GPn+4 then, we can consider any
3 or 4, four view combinations from (54)=5 combinations of
these views. Similar to equation 5 we formulate a 3rd order
polynomial from each of these four view combinations. Let
the polynomials be,

αr s
3 + βr s

2 + γr s+ δr = 0∀r ∈ (1, 5) (6)

Now considering the above equation 6 for r=1,2,3,4 and
eliminating s3 and s2 term from above equations we will
have a linear solution of relative scale.

B. For Circular Motion

We now present a method of estimating relative scale
for the scenario when moving points undergoes a circular
motion. This solution requires four camera views. Let us
consider the first four views to be GPn+0,GPn+1...GPn+3,
then,

Let GPn+0 and GPn+1 be the end points of first chord
of circle and let GPn+1 and GPn+2 be the end point of the
second chord of circle. Let,

−→
A = GPn+1 − GPn+0

−→
B = GPn+2 − GPn+1

Let the mid point of first and second chord be
−→
I ,
−→
J

respectively, where
−→
I = (GPn+1 +

GPn+0)/2

−→
J = (GPn+2 +

GPn+1)/2

The perpendicular bisector of first chord has the direction of−→
A × (

−→
A ×

−→
B ). Now, the equation of perpendicular bisector

of first chord can be given by,
−→r =

−→
I + t1

−→
A × (

−→
A ×

−→
B )

Similarly the equation of perpendicular bisector of second
chord can be given by,

−→r =
−→
J + t2

−→
B × (

−→
A ×

−→
B )

The point of intersection of above two perpendicular bisector
is the center of the circle. Let it be represented by

−−→
Cen. Now

let,
f = |radius− dis(Cen,GPn+3)|

then, for fourth point (GPn+3) to dwell on the circle, we
have,

f = 0

In principal we need a value of scale at which this function
f attains a non-zero minima.
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C. RANSAC and Temporal Smoothing

It is quite possible that, in real datasets the estimates from
VSLAM/SfM system could be noisy. In such situations we
compute the scale for multiple points on the objects over
three or four views and resort to RANSAC to estimate the
most likely scale.

Though, it requires only four views for estimating the
relative scale, we adapted a temporal smoothing and initial-
ization schema for improving the accuracy of initial unified
reconstruction. Instead of first four views first n (6 in our
case) views are considered. Now there will a total of (n3)
(for linear method) or (n4) (for circular and planar method)
combinations of camera views. For each such combination of
camera views, a relative scale was estimated and RANSAC
computed value of all these estimated scales was used for
precise reconstruction. For example, if we consider first 6
views for initialization then we will have (64) (assuming only
circular method is required) values of scale and RANSAC
computed value over all these scales was considered for
initialization.

D. Degeneracies

Since our reconstruction framework handles motion along
lines and curves we describe degenerate conditions for re-
construction of a line. The degenerate situations that arise for
linear motion has not been elaborated elsewhere and forms
an important contribution of this work.

Let the moving point P be represented as GPn+0,GPn+1

and GPn+2 in ground frame G at three time instances.
Then, considering equation 3 for r = 0, 1 and doing simple
algebraic manipulations gives,

GPn+1 − GPn+0 = s [GC
n + 1
R · Cn+1P − G

C
n + 0
R · Cn+0P ]

+[GtCn+1
− GtCn+0

]

With simple notations this equation can also be written as,

GPn+1 − GPn = γ1p̂1 + s δ1r̂1 (7)

Similar we can have,

GPn+2 − GPn+1 = γ2p̂2 + s δ2r̂2 (8)

The left hand side of above two equations can be interpreted
as the displacement of the object between two time instances,
as represented in the stationary/global frame G.

The right hand side consists of a combination of unit
vectors p̂1, p̂2, r̂1 and r̂2. This is a combination of the camera
displacement as represented in G and the displacement of the
object with respect to camera rotationally aligned with G.
More conveniently p̂1 and p̂2 represent the unit vector in the
direction of the camera velocity in time instances [t0,t1] and
[t1,t2], while r̂1, r̂2 represents the direction of the relative
velocity vector of the object with respect to camera aligned
with frame G.

Thus the above equations represent the true object velocity
as a combination of the camera velocity and object’s relative

velocity. For locally linear motion,

GPn+1 − GPn = k(GPn+2 − GPn+1)

or

γ1p̂1 + s δ1r̂1 = k(γ2p̂2 + s δ2r̂2)

For degeneracy we seek situations wherein above equation
holds for all s. Two cases arise,

Case1: The case of velocity degeneracy. If p̂1 = p̂2 and
r̂1 = r̂2 then,

γ1p̂1 + s δ1r̂1 = k(γ2p̂1 + s δ2r̂1)

In such a situation we are able to equate components as
γ1 = kγ2 and δ1 = kδ2 independent of scale resulting in
degeneracy. We denote this condition as velocity degeneracy.
Velocity degeneracy occurs when the camera velocity and
object’s relative velocity do not change direction and the
ratio of their magnitude remains constant.

Case2: The case of parallel degeneracy If p̂1 = p̂2 =
r̂1 = r̂2 = p̂ then, we have a situation where the locally
linear condition holds for all s. In this situation camera and
object’s relative velocity are parallel to each other, which in
effect imply the camera and the object velocity are parallel
to each other.

However, practical occurrences of such precise conditions
of linear degeneracy is extremely rare in a real world
scenario. For example a camera mounted on a vehicle would
change its velocity ever so slightly, nor is it possible for
the moving objects to maintain their ratio of velocities
constant over time. Even very minute alterations from these
degeneracy conditions will results in successful solution of
relative scale.

At this point it is worthwhile to note the difference
in degenerate conditions obtained above vis-a-vis planar
degeneracies of [2]. The degeneracy of [2] prevents coplanar
object and camera motion as well as object and camera to
move in parallel planes.

For circular motion degeneracy occurs only when the
camera and object both moves in parallel concentric arcs.
This kind of degeneracies are far more rare than planar
degeneracies.

V. RESULTS

We show results of our relative scale estimation algorithm
and the contingent unified representation of object and
stationary world in various indoor, outdoor and synthetic
datasets. In various ways we argue how the relative scale
computed is precise or close to true scale.

A. Synthetic Data

We generated a set of 200 3D points. Some of these
points are stationary while rest of them moved on various
trajectories to simulate moving points. Pinhole camera model
with a fixed focal length was assumed. Random extrinsic
matrix were used to generate camera translations and ro-
tations. These cameras were used to project 3D points to
generate synthetic 2D image points. Our synthetic SfM or
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(a) (b) (c)

Fig. 3. This figure portrays synthetic simulation results for Circular method.
(a) shows assumed ground truth points. Stationary points are shown in
green and moving in red. (b) shows multibody SfM output. Blue points
show stationary points and cyan points show reconstructed moving points
in ground frame of Multibody SfM. As SfM gives upto scale results, this
result is scaled version of original simulated structure. (c) shows result of
(a) and result of (b) scaled to ground truth values in one single image. The
purpose of (c) is to verify the accuracy of circular method of relative scale
solution. The cyan points are invisible as they have completely coincided
with the ground truth red points of (a).

VSLAM closely resembles with TorrSAM [28] and VLG
[29]. Figure 3 portrays synthetic results for circular method

(a) (b)

(c)

Fig. 4. This figure depicts results of our relative scale solution when
object moves on a path which has straight line segment followed by a
circular arc which is followed another line segment. (a) and (b) shows
result of Multibody SFM. (c) shows results for variation in scale with time
for this dataset. Scale breaks only at the instances when model switching
takes place and it is close to accurate except for these instances. At these
instances median of all the previous scale computations is used to represent
the moving object. From these results the accuracy of our system to switch
from circle to straight line (and vice versa) stands vindicated.

of relative scale estimation. From this figure the fidelity
of circular method stands substantiated as the multibody
VSLAM reconstructed points almost blends with original
ground truth structure. 3(a) shows assumed ground truth
points. Stationary points are shown in green and moving in
red. 3(b) shows multibody SfM output. Blue points shows
stationary points, in ground frame of Multibody SfM and
cyan points depict reconstruction of moving points at the
accurate scale. 3(c) shows result of 3(b) scaled to ground
truth scale and merged with ground truth structure shown
in 3(a). In 3(c) cyan points are invisible as they completely
coincide with the ground truth red points. Figure 3(c) sub-

stantiate the accuracy and soundness circular method. Figure
4 delineates result for a scenario when object moves in a path
which has a straight line segment followed by a circular arc
which is further followed another line segment. This figure
is of importance as it depicts a scenario where straight line
relative scale solution and circular method of relative scale
solution are used as and when needed. These results are
for a scenario of planar object and camera motion hence
inheriting planar degeneracy. But, we are able to solve for
relative scale using our circular and linear method of relative
scale solution. Variation in computed scale with time for
this kind of motion is shown in figure 4(c). In this graph,
the first three scales corresponds to linear object motion
and scale was estimated using linear method. After this
scale breaks at two instances. This is the time when model
switching takes place. Neither of the two methods namely
linear and circular method works while model switching
takes places. At these instances median of all the previous
scale computations is used to represent the moving object.
After these two instances scale computations are rectified
and remains close to accurate until the time when next model
switching takes place. Meanwhile, figure 5 portrays result for
simulated serpentine motion using circular and linear method
wherein once again multiple model switching between circles
occur.

Fig. 5. This figure depicts results on simulated serpentine motion of our
relative scale estimation. This result vindicate the efficacy our system to
switch from one circle to other.

B. Real Results for various datasets

We now present real results on various publicly available
and dataset collected outdoor. All the datasets are very
important as they present very common real life scenario.
We present in detail the reconstruction and the verification
of all of the results.

1) Moving Car Dataset: This dataset was collected by
a high resolution camera. In this dataset moving car was
moving on a circular arc while ascending on a slight ac-
clivity. This dataset depicts a highly challenging scenario
where planar degeneracy exists. We are able to successfully
reconstruct the moving car at correct relative scale. We used
circular method of relative scale estimation for reconstructing
the moving car at correct relative scale. The results for this
dataset are shown in figure 6 and figure 7.

Figure 7 shows one of the cars at the correct relative scale
of 0.15 (blue) and also at scales of 0.03 and 0.7. Qualitatively
as well it is possible to discern from these plots that the scale
returned by the algorithm (0.15) ought to be closest to the
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(a) (b)

(c) (d)

Fig. 6. Results on MovingCar Dataset. In this dataset the moving car was
moving almost on a circular arc while ascending on a slight acclivity. (a)
An instance of the image sequence. (b) depicts segmented moving car. (c)
delineates structure and trajectory of moving car in blue. In this unified map
black dots show stationary world. (d) shows results of unified reconstruction
from top view. The camera trajectory is shown in red.

(a) (b)

Fig. 7. Moving object trajectory and its structure for three different scales
of 0.03, 0.15 and 0.7 where 0.15(blue) being the correct scale. Qualitatively
as well it is possible to discern from these plots that the scale returned by
the algorithm (0.15) ought to be closest to the correct scale. At scale 0.05
the car shown in green lies very close to the moving camera. At the scale
of 0.7 the moving car assumes a bigger structure than it should be and it
lies beyond the road through which it travelled. (a) depicts result from front
and (b) from top view.

correct scale. At 0.03 the object is too close and almost lies
on the camera while at 0.7 it goes beyond the road in which
the car moved.

2) Drone Dataset: In this dataset a flying quad-copter
(drone) was captured from a hand-held camera. The drone
hovered almost in a plane. As this dataset was captured
from a hand-held camera the stringent degeneracies of object
and camera moving in parallel planes do not apply here.
For the hand held camera can be made to move in a non
planar trajectory or along a plane not parallel to the plane of
drone’s motion. Therefore we used planar method to estimate
the relative scale of this drone. The results for this dataset
are shown in figure 8. From this result the accuracy and
efficacy of our VSLAM system to handle the reconstruction
of flying vehicles undergoing highly dynamic motion stands
corroborated. This dataset is of prime importance as this kind

(a) (b)

(c) (d)

Fig. 8. Results on Drone Dataset. In this dataset a flying quad-copter
(drone) was captured by a hand-held camera. This hand-held camera
introduced human error thereby avoiding planar degeneracies and making
it possible to use planar method for estimating relative scale. (a) shows an
image from the dataset. (b) shows segmented Drone. (c) and (d) portray
results of Multibody VSLAM. Structure of reconstructed drone along with
its trajectory is shown in blue. Black dots represents stationary world.
Trajectory of moving camera is shown in red.

(a) (b)

Fig. 9. (a) An image from the Versailles Rond sequence. (b) shows the
an instance of unified map from Multibody VSLAM. Black dots represents
stationary world. Structure and trajectories of moving car is shown in blue.

of results of reconstruction of a flying drone with a moving
monocular camera is not seen anywhere in earlier literature.

3) Versailles Rond Dataset: We have shown our results
on publicly available Versailles Rond dataset [30]. Only
right images from the stereo pair have been used. We show
reconstruction of one of the moving car along with the
stationary world at the correct relative scale for the car vis-
a-vis stationary world. Figure 9(a) shows an image from the
sequence while 9(b) depicts final unified map from multibody
VSLAM.

4) Line-Circle-Circle-Line (LCCL) Dataset: The purpose
of this dataset is to capture serpentine object motion. This
dataset starts with a straight line object motion which is
followed by a serpentine segment made of two semicircles
of almost same radius. This serpentine segment is further
followed by a straight line. The result for this dataset are
shown in figure 10. The accurate results on this dataset
vindicate the ability and efficacy of the system to deal
with difficult motion involving multiple model switches. The
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(a) (b)

(c) (d)

Fig. 10. Results on LCCL dataset. In this dataset a pioneer (P3DX)
robot moved in path which is a combination of 2 circles and 2 straight
line simulating serpentine kind of trajectory of the object points. (a) shows
an image from the dataset. (b) shows segmented robot. (c) and (d) portray
results of Multibody VSLAM. Structure of reconstructed robot along with
its trajectory is shown in blue.

results are that of a P3DX robot moving along a serpent
like non holonomic curve and the camera moved in a plane
parallel to the motion of P3DX.

Video sequences of results are attached in the video pro-
vided as supplementary material. A high resolution version
of the video could be found at http://web.iiit.ac.
in/˜rahul_namdev/videosequence.

VI. CONCLUSION

This paper presented solution to the relative scale problem
in a multibody setting for non-holonomic motions within
four views of reconstruction of the stationary world and
moving object. Two solutions are proposed based on pla-
narity and circular constraints of object motions. The specific
advantages of either of them have also been well argued.
The solution differs from the recent probabilistic approaches,
which involve many views as well as earlier approaches that
involved an exhaustive search in scale space. The proposed
method for handling circular motions in four views is novel
and does not appear in literature earlier. That the method
is also able to seamlessly switch between multiple motion
models is vividly depicted in synthetic and real world sce-
narios. The analysis of degeneracies especially in the context
of linear object motion seems to be the first of its kind to
have appeared in literature. The method has been verified
on publicly available datasets and the unified representation
of the stationary and dynamic worlds are shown accurate
through qualitative visual appeal by contrasting the scene
when objects are represented at wrong scales. Quantitative
verification with ground truth on synthetic data confirms the
fidelity of the formulation. The method works in presence
of high degrees of correlation between camera and object
trajectories as well as when the object and camera trajectories
are coplanar or move in parallel planes. Such extensive
results portrayed on outdoor vehicles, indoor ground and
aerial robots is also an unique aspect of this effort.
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