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Abstract— This work addresses path planning for reactionless
visual servoing of a redundant dual-arm space robot through
exploration in the image space. The planner explores the image
moment based feature space, impends acceleration to the image
features and extends the feature tree. A reactionless visual
servoing control law is integrated to extend the tree in the
configuration space simultaneously. The proposed algorithm is
able to incorporate the necessary coupling between the motions
of the the dual arms and the base of the robot to ensure
zero base reactions. Additionally, it also gives the flexibility
to apply multiple constraints in both the image space and
the configuration space. The effectiveness of the proposed
framework is exhibited by implementing the algorithm on a
numerical model of a 14-DoF dual arm space robot.

I. INTRODUCTION

The use of robots in space, especially in future On
Orbit Services (OOS)[1], is inevitable due to the efficiency,
reliability, and ease of operation of robotic manipulators [2].
Redundant manipulators are especially useful for applica-
tions in deep space since they are capable of performing tasks
that require high dexterity. But path planning for redundant
manipulators involves computations in high dimensional
state spaces. Tree based random sampling techniques like
Rapidly exploring Random Trees (RRT) [3], [4] are effective
in exploring high dimensional spaces and are capable of
performing goal based exploration. The main challenge in
such methods is that for most manipulators, the goal is
defined in the task space. The inverse kinematics that map
the task space onto the configuration space is not trivial for
a redundant system. For a point in the task space, there is an
infinite number of solutions in the configuration space of a
redundant robot. This challenge was addressed in [5] where
the node in the exploration tree closest to the task space goal
was chosen using a task space based distance metric and
extended in a random direction in the configuration space.
This eliminated the need for inverse kinematics. The work
presented in [6] improves the convergence of the tree further
by directing the extension towards the goal using an error
function defined in the task space.

There is extensive literature dedicated to visual servoing
such as [7], [8], that utilises an error function in the image
space to control the motion of the robot. In these works,
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the main motive was to generate a feasible image feature
trajectory that guides the manipulator towards the goal in
the task space while abiding to certain constraints.

For space manipulators, ensuring zero base reactions
during manipulation is preferred [9]. Reactionless visual
servoing [9] was proposed, which utilised a task functional
approach to minimize base reactions to zero. However, upon
occurrence of algorithmic singularity in presence of a task
conflict, this framework sacrifices the secondary task. This
problem was addressed to some extent in [10], where a
switching-based path planning framework was proposed for
avoiding algorithmic singularity due to such task conflicts.
The planning was done by switching between two phases, a
Servoing to Goal phase and a Singularity Avoidance phase,
depending on whether or not singularity was encountered.
Nevertheless, the planner can possibly take many cycles to
complete the task successfully and even get infinitely stuck
in a switching loop between the two phases.

This motivated the proposal of a random sampling tech-
nique, RRT in this work. Planning through RRT inherently
allows taking into account various constraints as obstacles.
An RRT based approach for path planning for vision-based
control of earth-based robot was demonstrated in [11]. The
outcome was discrete feature trajectories. In such approaches
where planning and execution are decoupled, the underlying
dynamic system may not be able to follow the trajectories
even after fitting kinematic paths that are optimized to fit
the dynamic constraints. The work presented in [12], [13]
for earth-based robots addressed this issue by implementing
randomized kinodynamic path planning through exploration
in the camera state space. The algorithm presented in the
aforementioned works however, cannot be applied directly
for reactionless visual servoing, mainly due to the nonholo-
nomic constraints associated with reactionless manipulation.
More importantly, the work done in [12], [13] does not take
into account the dynamic coupling between the arms and
base of the robot.

In this paper, we propose path planning in image space
for reactionless visual servoing of a satellite mounted dual-
arm redundant robot. The proposed algorithm uses tree
based sampling in the image feature space, where tracking
the end goal is easy and straightforward. By utilising a
sampling based planning algorithm, the framework is able
to incorporate several tasks or constraints in the image space
and configuration space such as field of view limits, joint
angle limits and singularity avoidance. The algorithm uses
certain feature based criteria and a local planner in the image
space to ensure smooth extension of the tree in the feature
space. Additionally, a vision based control law is developed



Desired Features 
and Initial 

configuration

Random 
feature vector 

generator

Selection of
Parent Node

Image 
Planner 

Joint Planner Validation of
constraints

Trees in Feature Space 
and Configuration 

Space

Generate 
trajectory

Planning Stage

𝒔𝒔𝒓𝒓 , np

qp

Feature tree

qnew , 𝒒̇𝒒𝒏𝒏𝒏𝒏𝒏𝒏

Validated node

Discard node & restart 

𝒔𝒔𝒑𝒑 , ̇𝒔𝒔𝒑𝒑

𝒔𝒔𝒓𝒓

𝒔𝒔𝒏𝒏𝒏𝒏𝒏𝒏, 𝒔̇𝒔𝒏𝒏𝒏𝒏𝒏𝒏

Restart 

Γ
q1 , 𝒔𝒔𝒅𝒅

Configuration 
tree

𝑭𝑭𝒏𝒏𝒏𝒏𝒏𝒏, 𝑪𝑪𝒏𝒏𝒏𝒏𝒏𝒏

Configuration tree

Fig. 1: Block diagram for image-based path planning algorithm for reactionless visual servoing of a space robot

to provide a unique mapping from the feature velocities to the
joint velocities that ensure reactionless manipulation. These
are the main contributions of this work.

The following section provides a brief outline of the pro-
posed algorithm. Sections III and IV describe the planning in
the image space and configuration space respectively. Results
obtained from simulation of the proposed algorithm on a
numerical model of a 14-DoF dual arm space robot are
summarized in section V. This is followed by the conclusions
in Section VI. The video accompanying the paper discusses
the motivation behind the algorithm and its implementation
on the aforementioned space robot model.

II. OUTLINE OF THE PROPOSED PLANNING ALGORITHM

The algorithm presented in this work has been developed
for a dual-arm free-floating robot with eye-in-hand systems.
The algorithm is initiated by feeding the desired features (in
both image planes) sd and the initial configuration q1 to the
planning stage. These inputs are used to initialize the trees in
the feature space and the configuration space. It is important
to note here, that configuration collectively refers to the robot
base pose and the joint angles in both the arms. As shown
in Fig.1, each iteration of the planning stage begins with the
generation of a random goal feature vector sr in the image
space. For the generated sr , the parent feature node with
index np is selected from the feature tree using the Direction
criteria and Distance criteria. Given the index, the parent
feature state and parent configuration state information can
be extracted from the respective trees. The image planner
takes in the random goal, the parent features sp and parent
feature velocities ṡp as the inputs and impends accelerations
to the features. The image planner, thus gives the feature
velocities of the new node, ṡnew as the output. The new
feature vector, snew is obtained by updating sp by integrating
ṡnew over a small time interval.

The configuration velocity q̇new , which contains the base
velocity tbnew and joint velocity θ̇new (for both arms) is
generated from ṡnew using the joint planner. By numerical
integration of q̇new over a stipulated time, the change in
the configuration is attained. This change is used to update
the parent configuration, qp to attain the configuration of
the new node qnew , which contains the new pose of the
base bnew and the joint angles of both arms θnew. The
newly generated feature state and configuration state are
validated for constraints in order to ensure an unobstructed

extension of both the trees. Upon validation, the newly
generated feature state is encoded as the feature node Fnew

and the configuration state is encoded as the configuration
node Cnew. These nodes are added to their respective trees.
Otherwise, the node is discarded. After either case, a new
random goal is generated and the planning stage loop is
restarted. The planning stage loop terminates when the L2
norm distance of the new feature vector snew from the
desired features, sd is less than a threshold r.

When the loop terminates, a trajectory is generated in the
configuration state space by backtracking from the current
node to the root node. The resultant configuration state
trajectory Γ, will ideally move the robot from the initial
configuration to the goal configuration. This trajectory en-
sures reactionless visual servoing to the goal while avoiding
constraint violations in the image space and joint space. The
following two sections give a detailed description of the
proposed algorithm.

III. PLANNING IN IMAGE SPACE

This section summarizes the steps involved in generating
the new feature state [snew, ṡnew] by exploration in the
image feature space.

A. Feature Selection and Initialization

The planning is initiated by exploring the image space for
a random goal. A common issue faced during exploration is
the choice of features. In the presented framework, image
moment based features [14] are being used. Use of image
moment based features over conventional point features
provides many practical advantages. Since image moments
are recalculated in each frame, it not only eliminates the
need for feature tracking but also removes the problem of
correspondence in the two cameras. Additionally since it is
dependent on the sum of all pixels rather than individual
pixels, it is also less affected by image noise in comparison
to point features. As shown in [14], given a visual feedback,
the image moments of order i + j, mij can be calculated
very easily. Since there are two cameras being used for visual
servoing (one for each arm), the 6 dimensional feature vector
takes the form

s =
[
xc1 , yc1 , a1, xc2 , yc2 , a2

]T
,

Here, [xc1 , yc1 ] and [xc2 , yc2 ] represents pixel coordinates
of the centroid (calculated as [m10/m00, m01/m00]) and a1
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Fig. 2: Selection of candidates for parent node using direction
criteria. Each of the right circular cones have a half angle α and axis
equal to the direction vector between the candidate node features sp
and its own parents features sg . The cones serve as the boundary
for the heading of the direction vector between the random goal
features sr and the candidate node features sp . In this figure the
feature vector of nodes P1 and P2 validate this criteria and are
added to list of candidate parent nodes

and a2 represents the area of object (calculated as m00) in the
images formed by the two cameras respectively. With respect
to the 14 DoF space robot, using such a low dimensional
feature vector to control a high dimensional robotic system
provides Degree-of-Redundancies (DoR) of order 8. This
DoR can be used to incorporate other tasks besides the
reactionless visual servoing task, such as field of view limit
avoidance, joint limit avoidance and singularity avoidance.
Once the features are selected, the algorithm begins by
initializing two different trees. The first tree is the feature
tree Tree1 which stores data about [s,ṡ], the image moment
based features and the respective feature velocities at that
instant. The second, the configuration tree Tree2 stores data
about [q,q̇], the state of the configuration (state of the joints
in both the arms and state of the floating base) of the dual arm
space robot. Tree1 is initialized by calculating the features
s1 from the images captured from the two cameras in their
initial states. Since the system starts from rest, the initial
feature velocity ṡ1 is set to zero. This data is encoded to
a feature node F1 and added to Tree1. Tree2 is directly
initialized using the input initial configuration q1 . Since the
robot starts from rest, the initial configuration velocity vector
q̇1 is also set to zero. This data is encoded to Tree2 as the
configuration node C1 . As nodes are being simultaneously
added to each of these trees, node i in Tree2 stores the
configuration state of the robot that gives the feature state
represented by node i in Tree1.

Additionally a bias k is set which represents the frequency
of greedy extensions (once for every k iterations) during
image space exploration. Finally, a radius r is also set.
The radius serves as a threshold for the euclidean distance
between the desired features and the latest feature vector
snew . After initialization, the planning stage loop begins.

B. Random Node Generation and Parent Selection

Each loop begins with the generation of a 6 dimensional
random goal feature vector sr. The generated random goal
should lie within the limits of the image space, so that the
tree does not expand beyond the image space and the object

stays completely in view. Additionally, the area of the object
in the random goal image must not be too small or too large
in comparison to the size of the object in the initial or desired
image. These constraints can be expressed as,

xcmin ≤ xc ≤ xcmax ,

ycmin ≤ yc ≤ ycmax ,

min(aini, ad) ≤ a ≤ max(aini, ad),

where xcmax
, xcmin

, xcmin
and ycmax

are defined by the
limits of the image space and aini and ad are the intial and
desired areas of the object in the image. The random goal sr
is generated by randomly sampling a 6 dimensional space (3
features, 2 camera views) that is bounded by the conditions
above. This ensures that the features do not violate the field
of view limits. Additionally, after regular intervals of time
(depending on bias k), the random goal is set equal to the
actual goal sd. This ensures a greedy extension in the image
feature space which raises the rate of convergence of the
planning stage. Once the random goal has been generated,
the parent for the random goal needs to be selected from the
nodes present in the feature tree, Tree1. The parent node is
selected by applying certain feature based criteria.

1) Direction Criteria: When generating a new branch in
the feature tree, it would be favourable that there is a smooth
transition between the parent features and the new features.
From the nodes already existing in Tree1, the direction
criteria generates a list of the candidate parent nodes that will
lead to such a smooth transition. This criterion is explained in
Fig. 2 where the feature node P1 has feature vector sp1 . Let
dr = sr−sp1 represent the direction feature vector between
sr and sp1. Additionally, let dp = sp1−sg1 be the direction
feature vector between sp1 and the features sg1 of the parent
of P1. Note that dp also represents the direction of the feature
velocity ṡp1 of the parent P1. The direction criteria simply
limits the angle between the two feature direction vectors by
some manually defined α. It can be mathematically written
as,

arccos
dr.dp
|dr||dp|

≤ α, (1)

This constraint can be visually expressed as setting a right
angled circular cone with half angle α and axis dp as an
upper bound on the the heading of dr. In other words, for
each node in Tree1, this criteria sets a constraint on the
direction of the feature error represented by dr with respect
to the direction of the parent velocity represented by dp . In
Fig. 2, for P1 and P2, the direction feature vectors (in green)
lie within the respective cones, and hence satisfy the criteria.
In the same figure, direction feature vectors originating
from P3 and P4(in red), lie outside their respective cone
boundaries. Thus P3 and P4 violate the criteria. Each node
in Tree1 that satisfies this criteria is added to the candidate
parent nodes list mentioned above.

2) Distance Criteria: From the list of candidate parents
generated by the direction criteria, the parent node is selected
as the node closest to the random goal. This is done by



calculating a distance metric,

disti = ||sr − si||, (2)

where disti is the euclidean distance of the feature of the ith

node si in the list from the random goal. The parent feature
node Fp with features sp, feature velocity ṡp and index np

in Tree1 is the one which has the minimum value for this
distance metric. This results in minimal feature error between
the chosen parent node and the random goal. This minimal
error ensures that the acceleration impended on the parent
feature velocities by the local planner (discussed in next
subsection) is minimal, thus allowing for a smooth transition
between the feature nodes. Hence, by setting constraints on
the direction (using Direction Criteria) and the magnitude
(using Distance Criteria) of the feature error, these criteria
select a parent node that ensures smooth extension of the
feature tree for a random goal sr. Also note that these criteria
do not sacrifice the integrity of the RRT since extension is
still towards a random goal. The extension of Tree1 will
still be in the less explored regions of the feature space.
C. Local Planner

Once the parent feature node is attained, the error in
features, e = sp - sr can be calculated. Using this error
and the parent feature velocity, the local planner calculates
an appropriate feature velocity of the new node ṡnew. It does
so by impending acceleration to the parent features as shown
in the following equation,

ṡnew = ṡp + β
(−λe− ṡp)
|(−λe− ṡp)|

δ. (3)

Here −λe is the feature velocity obtained from the exponen-
tially decreasing error control law where λ is the convergence
rate. The convergence of the difference between the two
velocities −λe and parent feature velocity ṡp is controlled
by a constant β. A smaller value of this constant allows
for a more smooth transition in velocity with an increased
time of convergence. The acceleration to be impended on the
features, δ can be calculated as,

δ = min(|(−λe− ṡp)|, abound),

where abound is an upper bound on the acceleration which
is limited by the capabilities of the motors of the joints.
A salient feature of this local planner is that it preserves
the convergence of the exponentially decreasing error con-
trol law, while incorporating acceleration constraints, thus
resulting in a smooth transition in the feature space. sp can
now be updated over a small time step dt as,

snew = sp + ṡnew.dt.

The newly generated feature state [snew,ṡnew] is used to
generate the new configuration state using the joint planner.

IV. JOINT SPACE PLANNING AND REACTIONLESS
MANIPULATION

This section focuses on the extension of the configuration
tree Tree2 once ṡnew is attained. It highlights the steps

involved in calculating the instantaneous configuration state
[qnew,q̇new] that corresponds to the newly generated feature
state [snew,ṡnew]. Additionally, this section also examines
the capability of the proposed framework to ensure zero base
reactions and handle multiple constraints in the configuration
space simultaneously during path-planning of the two arms.

A. Calculation of Reactionless Joint motions

While extending the tree in the configuration space, it is
essential that the features move towards the random goal
while ensuring negligible base reaction. Assuming that the
new joint rate for both arms is collectively represented by
θ̇new, the primary task, the visual servoing task is mathe-
matically represented as

J1θ̇new = ṡnew (4)

where J1 = LmJg is called the Modified Image Jacobian.
Here, Lm is the interaction matrix [14] which contains
combined information from both the camera systems and Jg

is the the Generalized Jacobian Matrix (GJM) for the space
robot [15]. Given Ĩbm, the coupling inertia matrix between
the two arms and the base of the system, the secondary task,
the reactionless manipulation task can be mathematically
represented as [9]

Ĩbmθ̇new = 0, (5)

where Ĩbmθ̇new represents the coupling angular momentum.
Given the primary task Jpθ̇ = vp and secondary task

Jsθ̇ = vs, the solution θ̇ can be directly calculated using
the task priority framework [16] as

θ̇ = J+
p vp + (Js(In − J+

p Jp))
+(vs − JsJ

+
p vp) (6)

Upon substituting the 2 tasks represented by (4) and (5)
in (6), θ̇new is obtained as

θ̇new = Jrṡnew, (7)

where Jr = J+
1 +(Ĩbm(In−J+

1 J1))
+ĨbmJ

+
1 . It is worth

noting that (7) represents a novel servoing framework. This
control equation represents the reactionless visual servoing
control law. The above equation provides a unique optimal
solution for the joint velocities of the 2 redundant manip-
ulators of the space robot. It provides a unique mapping
from the feature velocity ṡnew to the joint velocity θ̇new
that enables reactionless manipulation of the redundant space
robot system. It is worthwhile to note that since the joint ve-
locity is attained by imposing nonholonomic constraints that
incorporate the dynamics of the system, the path planning
framework is kinodynamic in nature. As shown in [9], the
generated joint rates can be used to directly calculate the
new base velocity vector tbnew

using the relation,

tbnew = J−1
be (te − Jmeθ̇new), (8)

where te is the end effector velocity vector, Jbe is the Base
Jacobian and Jme is the Manipulator Jacobian. The above
calculated base velocity along with the joint rates form the
rate of change of configuration of the robot q̇new . This q̇new
is integrated over the time step dt, to generate the change



in configuration. This change is used to update the parent
configuration qp = [bTp ,θ

T
p ]

T , where bp is the base pose and
θp is the joint angles of both arms in the parent configuration.
Note that the parent configuration has been extracted from
node Cp (with index np) in the configuration tree, the node
corresponding to Fp having index np in the feature tree. The
above steps can be summarized by the following equations,

q̇new = [tTbnew
, θ̇

T

new]
T

qnew = qp + q̇new.dt = [bTnew,θ
T
new]

T .

B. Joint limits and singularity avoidance

After generating the new configuration state it needs to
be validated for several constraints in order to ensure an
unobstructed extension in the configuration tree. For joint
limit avoidance, each joint angle is simply checked to lie
between an upper and lower bound, which are decided
by the limitations of the system. Ensuring algorithmic and
dynamic singularity avoidance, on the other hand, requires
the calculation of a singularity index,

µ =

√
det|JsJs

T | (9)

where Js = (Ĩbm(In−J+
1 J1)). Note that the parameter Js

is dependent on the configuration of the space robot. A lower
bound is set for this index. A configuration is considered
not singular if its index lies above this lower bound. If
the configuration is validated for both the constraints, the
new feature state and robot configuration state are encoded
as nodes Fnew and Cnew respectively and added to their
respective trees. If either constraint is violated, the newly
generated states are discarded. After either case, a new
random goal is generated and the entire path planning loop
is restarted.

As mentioned earlier, before starting each loop of the
planning process the L2 norm distance between the new
feature vector snew and sd is calculated. When this value
is less than a threshold r, the planning stage terminates.
Following this, backtracking is done in Tree2 from the
newest added node (the goal node) until the root node is
reached. The result of this random sampling in image space
based planning procedure is the configuration state [q,q̇]
trajectory Γ that ensures reactionless visual servoing of a
redundant space robot system, while avoiding various con-
straints set in both the image and configuration state spaces.
Algorithmic implementation of the proposed algorithm is
shown in Algorithm 1.

V. RESULTS AND DISCUSSION

In order to validate the presented framework, a 14-DOF
dual arm space robot is considered as shown in Fig. 3. The
model parameters of the dual arm space robot are shown in
Table I. Each of the manipulators in the robot has 7 DoF.
Each pair of links in the system are connected by revolute
joints. The dual-arm robot is placed in 3D space, and the end-
effector of each arm is mounted with a camera (eye-in-hand
system). To prove the validity of the proposed algorithm a

Algorithm 1 Image based path planning for reactionless
visual servoing of a dual arm space robot
Input: Initial configuration (q1) and desired image (sd)
Output: Desired robot configuration state trajectory (Γ)

1: procedure PLANNING
2: F1← Feature node(s1,ṡ1)
3: Tree1← F1

4: C1← Configuration node(q1,q̇1)
5: Tree2← C1

6: k ← bias
7: r ← radius
8: while || sd − snew || > r do
9: if modulo(count,k)=0 then

10: sr ← sd
11: else
12: sr ← RandNode(s1, sd)
13: np ←Get Parent Index(sr,Tree1)
14: [Fp, Cp]← Get Parent Nodes(np,Tree1,Tree2)
15: [sp, ṡp]← Get Parent Feature(Fp)
16: [qp, q̇p]← Get Parent Config(Cp)
17: ṡnew ← Local Planner(sp, ṡp, sr)
18: q̇new ← Joint Planner(ṡnew)
19: [snew, qnew]← [sp, qp] + [ṡnew, q̇new]× dt
20: if Constraints Validate(snew, qnew) then
21: count ← count + 1
22: Fnew← Feature node(snew,ṡnew)
23: Cnew← Configuration node(qnew,q̇new)
24: Tree1.add node[Fnew]
25: Tree2.add node[Cnew]
26: restart while loop
27: else
28: count ← count + 1
29: restart while loop
30: Γ←Get Trajectory(Tree2)

return Γ

performance evaluation is done for different goal positions.
Additionally, the results also discuss the effects of using the
direction criteria (section III B) in the image space and the
singularity avoidance constraint (section IV B) in the joint
space during the path planning process.

A. Path planning of a 14-DOF dual-arm space robot

In order to validate the proposed algorithm, path planning
was carried out on the mathematical model of the 14 DoF
dual arm space robot. The object considered is a rectangular
plane described by a set of four points in the image space as
shown in Fig. 4a and Fig. 4b. In each test case, the camera
parameters and the model of the goal was assumed to be
known a priori. The initial configuration and the desired
moment features were fed to the planning stage. The robot
was initially considered to be at rest. The resultant trajectory
generated the set of images shown in Fig. 4a and 4b for
camera 1 and 2 respectively. The convergence of feature error
in Fig. 4c and of joint velocities in Fig 5a to zero highlights
the successful completion of the visual servoing task. The
negligible base angular velocities in Fig. 4d proves that the
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Fig. 3: Model of 14 DoF Dual Arm Space Robot on which the
proposed algorithm was implemented (Symmetric case in table II).
The robot is in its final state. The green trajectory shows the path
followed by the end effector.

TABLE I: Physical parameters for the model of the 14 DoF dual arm
space robot system

Parameters Satellite
Arms 1 and 2

Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 Link 7
Mass (kg) 500 3 0.63 0.756 6.85 7.606 0.653 0

Length (m) 0.5 x 0.5 1 1 1 1 1 1 1
Ixx 1283.6 0.1 0.1 0 0.1 0.1 0 0
Iyy 1283.6 0 0 80.4 115.8 0 0 0
Izz 1283.6 0 0 0 115.8 0 0 0

TABLE II: Numerical results for application of the proposed algorithm
on the model of the 14 DoF dual arm space robot. The table highlights the
efficacy of the algorithm with changes in the nature of the goals for both
the arms and the number of features.

Exp
No.

Nature of
desired goal

Number
of

nodes

Number
of

features

Total
Base

Reaction
(rad.)

Norm of
Final Joint

Velocity
(rad/s)

Norm of
Final
Error

(Pixels)

1 Symmetric
1515 6 1.71E-17

Arm1 9.96E-06 0.8815
Arm2 1.09E-05 0.4791

1572 10 1.21E-13
Arm1 1.88E-05 0.8739
Arm2 1.80E-05 0.4904

2
Moderately

unsymmetric

1549 6 5.92E-17
Arm1 1.29E-05 0.8473
Arm2 9.41E-06 0.5391

1576 10 6.42E-15
Arm1 2.05E-05 0.8534
Arm2 1.57E-05 0.5241

3
Extremely

Unsymmetric
1694 6 9.48E-17

Arm1 9.83E-06 0.9203
Arm2 7.22E-06 0.3923

task was completed in a reactionless manner. Additionally it
can be seen that the joint angles shown in Fig. 6 lie within
the designated limit of -π to π throughout the planned path.

B. Performance Evaluation of the Proposed Algorithm

To prove the efficacy of the proposed algorithm, it was
implemented on the space robot model for a variety of
constraints and parameters as discussed below.

1) Effect of variation in Desired Goal position and Num-
ber of Features : The algorithm was tested for changes
in the nature of goals for both the arms and the number
of features, as shown in Table II. In terms of number of
features, the algorithm was tested for the 6 feature case
discussed in section III A. In addition, a 10 feature case,
which also takes into account the coordinates of one of the

corner points of the rectangle (2 coordinates in 2 cameras) as
features, was also used to test the robustness of the algorithm.
As is evident from the negligible norm values for both the
final joint velocities and feature errors, the path successfully
converges for all the cases. Note that the threshold r was
set as 1 and bias was set as 1 for every 20 iterations during
implementation. Additionally, it can be seen for all the test
cases that the total base reaction is almost zero. The different
test cases prove that the algorithm is able to conduct visual
servoing in a reactionless manner and is robust to the nature
of the desired goal and the number of features.

2) Singularity Avoidance: Upon observing the results
obtained in Fig. 7, it can be seen that as soon as µ (red
in Fig. 7b) falls towards the zero value, the norm of joint
velocity vector θ̇ begins to vary erratically (red in Fig. 7a).

To avoid this singularity, a lower bound of 1e+5 was
applied on the singularity index µ of the latest configuration.
It is only when the index value for the new configuration lies
above the lower bound that the new node is validated for the
singularity avoidance constraint. The result of applying the
constraint during path planning of the space robot was the
µ profile in blue in Fig. 7b and a converging norm of joint
velocity profile (blue in Fig. 7a).

3) Effect of Direction Criteria: Finally, results were also
generated for path planning for the setup used in section
V A, but without implementing the Direction Criteria. This
resulted in the joint and feature velocity profiles shown
in Fig. 5b and Fig. 5d respectively. The velocity profiles
for both the joints (Fig. 5a) and features (Fig. 5c) while
implementing Direction Criteria were found to be observably
smoother than their counter parts. It is owing to the Local
Planner in the image space and the Direction Criteria, that
Tree1 is able to extend smoothly in the feature space.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, an image space based random sampling path
planning technique for a dual arm space robot is presented.
The paper introduces the notion of tree based exploration
in the image space using moments based features. Random
goals generated in the image space are directly used for
planning in the feature and configuration state spaces. The
algorithm is able to include the effects of the motion of the
manipulators on the base using the reactionless visual servo
control law. It is also able to incorporate several constraints
in the image space and configuration space by utilising an
RRT-based framework. By doing so it is able to achieve
reactionless visual servoing without violating constraints
such as field of view limits and joint limits and also avoid
singularity. To prove its efficacy, the proposed algorithm was
also implemented on a numerical model of a 14-DoF dual
arm space robot. While the proposed system works well
on the numerical model, execution on the real-world setup
is not very simple. Setting up a test-bed for reactionless
manipulation of a spatial space robot is a challenging task.
Execution of the algorithm in our in-house setup [17] will
be handled in our future work.
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Fig. 4: Results exhibiting the completion of the reactionless visual servoing task on a 14-DoF free floating dual arm space robot (a) Set
of images obtained in camera 1. (b) Set of images obtained in camera 2 (c) Convergence of feature error in both the cameras. (d) Angular
velocity profiles of the base.
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Fig. 5: Results exhibiting the effect of the Direction Criteria (D.C.) on the feature and the joint velocities (a) Joint velocity profile for
arm 1 with D.C. (b) Joint velocity profile for arm 1 without D.C. (c) Feature velocity profile for cam 1 with D.C. (d) Feature velocity
profile for cam 1 without D.C.
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Fig. 6: Joint angle trajectories in arm 1 while following the path
generated by the proposed algorithm. The dotted lines represent the
limits of -π and π applied on the joint angles.
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Fig. 7: Results highlighting the effect of occurrence and avoidance
of singularity (a) Behaviour of norm of joint velocity vector θ̇ (b)
Behaviour of µ (Singularity index)
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