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ABSTRACT
Detecting multiple planes in images is a challenging prob-
lem, but one with many applications. Recent work such as
J-Linkage and Ordered Residual Kernels have focussed on
developing a domain independent approach to detect multi-
ple structures. These multiple structure detection methods
are then used for estimating multiple homographies given
feature matches between two images. Features participat-
ing in the multiple homographies detected, provide us the
multiple scene planes. We show that these methods pro-
vide locally optimal results and fail to merge detected planar
patches to the true scene planes. These methods use only
residues obtained on applying homography of one plane to
another as cue for merging. In this paper, we develop addi-
tional cues such as local consistency of planes, local normals,
texture etc. to perform better classification and merging.
We formulate the classification as an MRF problem and use
TRWS message passing algorithm to solve non metric en-
ergy terms and complex sparse graph structure. We show
results on Michigan Indoor Corridor Dataset and our chal-
lenging dataset, common in robotics navigation scenarios.
Experiments on the datasets demonstrate the accuracy of
our plane detection relative to ground truth, with detailed
comparisons to prior art.
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1. INTRODUCTION
Detecting multiple planes in images is a challenging prob-

lem. If done accurately, it can provide strong cues to effi-
ciently perform many vision tasks. Previously, Kähler and
Denzler [6, 7], Zhou et al. [12] demonstrated the use of mul-
tiple planes for 3D reconstruction. Zhou et al. also exploit
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Figure 1: Multiple Plane detection from images.
Top Left Initial Image to be segmented. Top Right
Initial planar patches detected from ORK. Bottom
Left Refined patches after distance based segmen-
tation of planes Bottom Right Multiple planes de-
tected corresponding to scene planes after optimal
MRF labelling.

multiple planes for video stabilization [13]. Pham et al. de-
velop an augmented reality application using multiple pla-
nar regions of images [9]. Kumar and Jawahar use multiple
planes to guide camera positioning for robot manipulators
[8]. To find planes, these methods use: (i) manual annota-
tion [7] or, (ii) iterative RANSAC methods [7, 12] or, (iii)
fit planes in the 3D reconstructed output (easier than de-
tecting the planes in images) [13]. We leverage recently
developed multiple structure detection methods and build
a sophisticated approach to identify multiple planes given
two images. Our approach gives good results on challenging
datasets (few are shown in Figure 1), on which the methods
discussed above either fail or work, but use extra informa-
tion in the form of 3D reconstruction.

Though detecting multiple planar regions from only a sin-
gle image is possible [4], it is an ill-posed problem. These
methods make strong assumptions such as orthogonality of
planes, or depend on tough to find features such as vanish-
ing points, or require large labelled training datasets. As



a result of these limitations, single image plane detection
methods cannot have wide applicability. In most of the ap-
plications discussed above viz. 3d reconstruction, augmented
reality, video stabilization etc. more than one image of the
planar scene is available. In this paper, we focus on the
problem of detecting multiple planes given two images (i.e.
an image pair). Given this setting we can compute stable
features such as SIFT, SURF and also find feature matches
between the two images. These matches can then be used
to compute a homography, which encodes the transforma-
tion between planar region seen in the image pair. There
are robust RANSAC based methods, for estimating a sin-
gle homography, a survey of these methods can be found in
[1]. Estimating a single homography typically gives us only
the single most dominant planar region in the image. To
find multiple planar regions, we need to estimate multiple
homographies from the feature matches.

Initially, multiple homography estimation was performed
using iterative methods. These methods eliminated the in-
liers of homography estimated for current iteration and again
performed homography estimation on remaining matches.
They typically need a priori knowledge of number of ho-
mographies/planes, otherwise we do not know when to ter-
minate the iterative procedure. Also, the errors get com-
pounded if a few wrong inliers are removed in the initial it-
erations and we end up achieving spurious results. More re-
cently, sophisticated multi-structure detection methods have
been developed by Toldo and Fusiello [11], Chin et al. [2],
Pham et al. [9] and Jain and Govindu [5]. These methods
bootstrap by randomly generating many hypotheses that fit
a subset of data. The individual data points (in our case
feature matches) are then associated with all the hypothe-
sis (in our case homographies) that they fit well. The data
points are then clustered into multiple structures based on
the similarity of the set of hypothesis that they match to.
The underlying idea is data points belonging to the same
structure will show a preference to the same hypotheses from
our initial sampled set. These multiple structure detection
methods are domain independent and they show remarkable
results when applied to problems such as multiple 2d-line
fitting, multiple 2d-circle fitting, multiple 3d-plane fitting
etc. When we use these methods for our problem of multiple
homography estimation, we see that these methods at best
provide us with multiple small planar patches (after some
post processing), far exceeding the number of planes in our
image pair. We use realistic scenes for all our experiments.
This difference in performance is a result of sampling homo-
graphies that fit nearby points and also, there being more
ambiguity in the problem of homography estimation as com-
pared to curve fitting.

After detecting multiple structures, typically some heuris-
tic merging methods are used. These methods merge two
homographies provided the residual error after merging is
small. These methods do not work well in practice, this is
demonstrated by the experiments done in Section 4.4. In
our work, we develop a novel alternative to merge the pla-
nar patches output by multiple structure detection meth-
ods. We use homography decomposition to associate esti-
mated homographies of planar patches to their normals in
3d world. At this stage, some planar patches have incor-
rect normals and cannot be trivially merged. We propose
an MRF model using TRWS to achieve the merging. Each
feature match is assigned a random variable, which can take

labels corresponding to initial patches. We arrive at an op-
timal labelling of the feature matches by minimizing an en-
ergy function defined over these random variables. Using
texture and locally computed normals in our energy mini-
mization function, we show that we are able to assign cor-
rect labels to feature matches that span large scene planes.
This is primarily because we incorporate local normals in
our MRF formulation, majority of which are correctly ori-
ented despite the normal of the entire patch being incorrect.
Also, our smoothness term in the MRF formulation ensures
that labels assigned to a feature match are consistent with
its neighboring matches. As discussed in section 5, we show
good results on challenging datasets and compare our per-
formance to other state-of-the-art multiple plane detection
methods.

2. RELATED WORK
RANSAC based homography estimation methods have

been extended to the problem of detecting multiple planes
by removing inliers and re-estimating new homographies it-
eratively. Further, Zuliani et al. [14] developed a multi-
RANSAC algorithm that is capable of estimating all homo-
graphies simultaneously. These methods do not work well
in practice and also, need additional knowledge of number
of planes.

2.1 Methods using J-Linkage
Recently, sophisticated algorithms which do not require

prior knowledge of number of planes have also been devel-
oped. Toldo and Fusiello [11] develop one such algorithm
called J-Linkage. For homography estimation, J-Linkage
starts by generating M homographies from randomly sam-
pled nearby feature matches. For each feature match, a
preference set of the homographies (out of the M) that fit
to the match within a threshold ε is created. A cluster-
ing step iteratively merges the feature matches that have
similar preference set using the Jaccard Distance measure

(dJ(X,Y ) = |X∪Y |−|X∩Y |
|X∪Y ). This clustering step proceeds

till the minimum dJ is 1, i.e. the preference set of all clus-
ters have no more overlap.

Fouhey et al. [3] observe that J-linkage uses only nearby
feature matches to generate initial homographies. The down-
side of such an approach is that the homographies output by
J-linkage are also locally optimal and do not fit a large scene
plane. Fouhey et al. [3] solve this by continuing to cluster
the matches (after J-linkage) using the distance measure:

dF (X,Y ) = 1
|X∪Y |

∑
cεX,Y

errH′(c)

2.2 Methods using Ordered Residual Kernel
Another category of multiple structure detection algorithms

based on ordered residues have been formulated by Chin et
al. [2]. For the problem of multiple homography estimation,
again these methods start by randomly sampling M homo-
graphies. Residues (x′ − Hx) are then computed for each
feature match and homographies are ordered on the basis of
increasing residue for each feature match.

Thus, given a data point θi we obtain ordered homogra-
phies λi1 (minimum residue) to λiM (maximum residue):

θ̃i = {λi1, λi2, λi3, ..., λiM−1, λ
i
M}



Figure 2: Scene planes detected for corridor, cor-
ner dataset respectively (from left). Connected
meshes with the same color indicate matches that
are grouped together as belonging to one plane by
[2].

An Ordered Residual Kernel (ORK), kr, is defined be-
tween two data points:

kr(θi1, θi2) = 1
Z

M/h∑
t=1

ztk
t
∩(θ̃i1, θ̃i2)

kt∩ = 1
h

(|θ̃i1
1:αt ∩ θ̃i2

1:αt | − |θ̃i1
1:αt−1 ∩ θ̃i2

1:αt−1 |)

kt∩ is the Difference of Intersection Kernel (DOIK) defined

on the homographies ordered by residues (θ̃i1 and θ̃i2) of the
two data points.

The ORK is a weighted sum of the difference in number
of intersecting homographies taken over some step size h.
This kernel is a valid mercer kernel and induces a mapping
of the data points to a Reproducing Kernel Hilbert Space
(RKHS). Chin et al. show that data points belonging to the
same structure form clusters in this RKHS. They use kernel
PCA and spectral clustering to detect these structures. To
minimize the number of structures detected after this step,
they also give a structure merging scheme. This merging
scheme sequentially merges structures if the overall residue
after merging is below a threshold. The merging continues
till all the data can be explained satisfactorily by identified
structures (i.e. sum of all residues is bounded).

2.3 Single Image Methods
Recently lot of work has been done in extracting spatial

layout using single image. Hedau et al. [4] have used parallel
lines to estimate the Vanishing Points, thus estimating the
orthogonal planes along the dominant directions. The scene
is divided into super pixels which are then classified into the
dominant directions based on the assumption of box like
configurations. Box like configurations are learnt and then
fitted to choose the correct hypothesis for the surface. This
in principle places a constraint on the number of planes, also
these methods essentially use machine learning to learn the
descriptors making them unfeasible in real time.

3. CONTRIBUTIONS
In this work, we build a system to detect multiple planes

from a pair of images using a monocular camera having
6DOF motion. We build on the existing state of the art
Multiple Plane Detection system in the following way:

• Use of local constraints.

• Computing and using 3D properties from a pair of im-
ages.

Figure 3: Planar patches obtained after the dis-
tance based refinement step for corridor and corner
dataset. In comparison to Fig 2, the images show
that our distance based refinement step is able to
cut the detected scene planes (that spanned two or
more real world planes) into smaller planar patches
(that span only a single scene plane).

• Removing Manhattan constraints.

• Not requiring initial motion estimate.

4. OUR APPROACH
The following sections describe the different steps of our

approach.

4.1 Initial Planar Patch Estimates
Given two images we compute SURF features and ob-

tain feature matches. On obtaining these matches, we use
the multiple structure detection method described in section
2.2 for estimating multiple homographies and hence, multi-
ple scene planes. We perform the steps of: (i) computing
ordered residues of feature matches, (ii) using the ordered
residual kernel, (iii) performing kernel PCA and spectral
clustering. We avoid using the cost of residues based struc-
ture merging scheme given by Chin et al. [2]. We justify in
Section 4.4 that such schemes do not work well in practice.
Refer [2] for more details of this method. Figure 2 shows
the scene planes that are found by using this method on two
datasets: (i) corridor, consisting of 4 planes and (ii) corner,
consisting 3 planes representative of a corner of a cuboid.
As seen in Figure 2, the detected planes have two major
problems:

Firstly not all detected planes correspond to a planar
patch. For example, the blue mesh in corridor dataset shows
that the detected plane spans left as well as right plane,
the 2 red meshes in corner dataset show that 2 detected
planes span ground and left, right and left planes respec-
tively. Also,the number of planes detected by the multiple
structure detection method exceeds the number of true scene
planes.

We solve these problems using the following pipeline:

• Distance based refinement of detected planes.

• Computation of plane normals.

• MRF based optimal labelling due to local normal and
texture constraints.

4.2 Distance Based Refinement of Plane Hy-
potheses

In this step, we first perform a delaunay triangulation
on the feature matches. If the detected plane has feature



matches from multiple scene planes, chances are these would
be at a larger distance from each other. We set a thresh-
old on distance and cut the delaunay mesh into smaller
meshes (when any side exceeds the distance threshold). This
step, to some extent, separates the planes output by multi-
ple structure detection method into smaller planar patches.
These smaller planar patches have stable properties as com-
pared to detected planes which spanned multiple true scene
planes. The results of performing this step on corridor, cor-
ner dataset are shown in Figure 3.

4.3 Plane Normal Computation
Planar points between two images are related by homog-

raphy. Homography is a relation between the plane and the
relative pose between the images which can be decomposed
[12] to find the plane normals.

H = (R+ TNt

D
)

where N is the plane normal and D is the perpendicular
distance between the plane and camera. We have found that
in cases of perspective motion between the camera and the
plane, in presence of multiple planes, the decomposition is
mostly erroneous due to the bilinear nature of the normal
and translation term. We also discard planes formed by less
than 10 points as they are mostly erroneous.

4.4 Residue Based Merging of Plane Hypothe-
ses

Typically methods of detecting multiple homographies, in-
cluding Chin et al. resort to merging the detected planes by
applying the homography of one to other. The merging is
done, if the residue after applying the homography of an-
other plane is below a threshold. We design an experiment,
where we perform the above on: (i) planar patches out put
by Chin et al. before doing the merging and (ii) on planar
patches that are manually marked, these planes have desir-
able properties (viz. they span entire planar region). As
shown in Figure 4, for (i) we have 6 ground, 3 left and 3
right planes. For (ii), we have use 10 ground, 10 left and
10 right planes. We create a matrix where the rows indi-
cate the homography taken and columns indicate the plane
to which it is applied. We mark out the first and second
minimum residues by 1 and 2 in this matrix. The second
minimum residue will dictate the merging in residues based
merging approach. In ideal conditions, all the 1’s and 2’s
should lie in the shaded regions of Figure 4. This is the
case for controlled experiment (ii), but not for (i) (5 out of
12 planes marked in red have second minimum residues for
incorrect homographies). Since our experiments show that
using residues alone is not sufficient, especially for multi-
ple structure detection methods like Chin et al., we develop
other cues that can be exploited to achieve merging.

4.5 Top Down Approach
Based on the discussion above, we propose exploiting the

local consistency constraint (viz. same direction of normals,
similar texture etc.), that should hold for a planar patch,
to merge scene planes. We consider each feature match in
its local neighbourhood (k nearest neighbours in detected
planar patch) to form a small local planar patch. This is
in cognizance to local patches embodying a scene plane [3].
With our decomposition to local planar patches, we can now

Ground Plane 
Homography 

Right Plane 
Homography 

Left Plane 
Homography 

Ground Plane 
Feature Matches 

Right Plane 
Feature Matches 

Left Plane 
Feature Matches 

Figure 4: The minimum and second minimum after
applying the homography of one plane to feature
matches of the other.

compute local surface normal for each such planar patch.
The consistency in orientation of local normals spanning a
single scene plane is an important cue, so is its texture. We
use these cues to refine and recompute association of feature
matches to the detected planes. Note that we do an MRF
optimization on a sparse graph of only feature matches and
not a dense graph of all pixels. Such dense graphs are com-
mon in image segmentation literature. We call our approach
a top-down approach, because we resort to feature matches
and local planar patches to merge detected planes, after
having performed one step of planar patch detection (us-
ing multi-structure detection methods). For our approach
it is necessary to perform an initial multiple structure de-
tection step. Because we assume that the true structure is
present in the output of multiple structure detection method
and develop a method to merge the detected structures to
these true structures.

4.6 Graph Optimization
The feature matches are connected to form a graph using

delaunay triangulation. This graph structure is formulated
as Markov Random Field where the goal is to assign each
feature match a maximal posterior probability (MAP) la-
bel. This label is one out of the detected planes by multiple
structure detection step. As a common practice [16], instead
of direct probability maximization, we minimize the energy
as discrete labelling problem on the graph in the form of
Eqn1.

EMRF =
∑
X

E(p, lεL) +
∑
x

∑
qεN(X)

E(p, q) (1)

In the above equation, L = (p1..pn) is the set of labels where
n is the number of initial planar patches obtained from initial
planar patch estimate step. The set N(X) is the neigbour-
hood of the node X. The E(p, l) defines the unary energy
potential. It determines the likelihood of the feature match
corresponding to a scene plane labelled l output by multiple
structure detection step. E(p, q) defines the pairwise en-
ergy potential which represents the graph similarity of the
neighbourhood.

4.7 Unary Energy Term
Unary energy is defined by us as a sum of energies relat-

ing to residues of local planar patch and normal similarity
between feature and plane.

Eunary = E(X)normal + E(X)residual (2)

4.7.1 Residue of local planar patch



Each feature match has a local planar patch defined around
it using k nearest neighbours. Our energy is the sum of
residues of this local patch with respect to the parameters
of the patch labelled l.

E(X, l)residual =
∑
XεP

||(X ′ −HlX)||L2 (3)

Here P represents the local planar patch. We use k = 10 as
smaller patches can be erroneous while decomposition.These
nearest neighbours are members of the same planar patch
found initially as this implies that they are part of a larger
plane rather than some local surface fit to a scene.

4.7.2 Normal Similarity measure
The local normal of each feature match should ideally be

aligned with the normal of the scene plane. So the energy
term for each feature decreases if it aligns with the plane
labelled l.

E(X, l)normal = (1− NX .Nl
|NX ||Nl|

)2 (4)

4.8 Pairwise Energy Terms
Pairwise energy defined by us consists of three terms sim-

ilarity measure, mutual plane consistency and texture simi-
larity.

Ebinary = λ1E(X,Y )sm+λ2E(X,Y )mp+λ3E(X,Y )ts (5)

where λ1 ... λn are the weights of pairwise terms.

4.8.1 Similarity Measure
We use the standard Potts Model where the neighbour-

ing edges with different labels are penalized. Initially each
feature is assigned the label of the initial planar patch to it
belongs.

E(X,Y )sm =

{
1 if pX 6= pY
0 otherwise

(6)

4.8.2 Mutual Plane Consistency
Neighbouring features should have similar surface nor-

mals, utilizing this constraint we find the measure.

E(X,Y )mp = (1−
NXp .NXq

|NXp ||NXq |
)2 (7)

4.8.3 Texture Similarity
This measure takes into account the local texture between

neighbours should be similar. Here we compare the mean of
a image patch around each feature match with its neighbour.
We use a 5 × 5 patch centred at the feature. This term
brings in the smoothness of texture across a plane, typically
common in images.

µ =
ΣWS(R,G,B)

WS
: WS = WindowSize

(8)

E(X,Y )ts = (µp(x) − µp(y))||L2 (9)

This combination of energy terms segments out the planes
robustly. We choose Tree Weighted Sequential(TRWS)[15]

message passing algorithm to solve the optimization prob-
lem.

This method is similar to Loopy Belief Propagation and
solves on the principles of linear programming and its du-
ality for NP hard MRFs. The method has experimentally
shown better results than LBP while working well in cases
of non metric pairwise terms. It also finds the lower bound
of the energy which acts as a guidance for convergence.Thus
this method provides flexibility to include varied and sophis-
ticated energy terms with complex graph structures. [10]

4.9 Learning
Parameter learning for MRF is itself an open problem and

various approaches have been adopted. For instance Dahua
et al. [15] employ a primal-dual message passing approach.
This is an online algorithm which was shown to work with
videos but since we work only on a pair of images it does not
suit our settings. The pairwise energy terms in the MRF
framework are a linear combination of different cues rep-
resenting label smoothness, mutual plane consistency and
texture similarity. Each metric has a different dimension
and scale factor, hence for better performance, the weights
(MRF parameters) must be carefully calibrated. Since each
individual metric is very sensitive to input images, instead
of constant weights, we propose a learning framework. For
each metric, the feature vector comprises of top 3 DCT co-
efficients followed by top 3 Eigenvalues. We assume these
metric to be independent of each other, and train regression
based SVM for them separately using RBF kernel. The pro-
posed feature vector is chosen due to the energy compaction
property of DCT and variance consolidation property of
Eigenvalues. The weights are learned offline based on previ-
ous experiences i.e. supervised, which makes the approach
different from other online parameter learning approaches.
The model is tested using leave-one-out cross-validation as
the data is limited but varies across the dataset.

5. EXPERIMENTAL RESULTS
We evaluate our approach on various images taken in an

indoor environment. The images of our datasets and the
results of different methods for multiple plane detection on
them have been shown in Figure 5. Our images are repre-
sentative of scenes that will be encountered by a robot in
SLAM setting and also in other 3d reconstruction methods.
These datasets are challenging because some of our planes
have multiple textures (ground plane of corridor) and a spec-
ular reflection (glass in the left and right planes of corridor,
ground plane of box). The images have been taken from a
dataset captured for VSLAM by a Flea2 camera mounted on
P3Dx robot and hand held cameras. There is considerable
movement between the images (≈ around 20cm for corridor
dataset and for others it is in the range of 5 to 10cm, with
5 to 10 degrees rotation). We compute SURF features at
the low threshold for the Hessian. Since we have a distinct
motion we are able to use the KLT tracker to find correct
feature matches. These features generally encompass the
image and the corresponding planes well. We compare our
approach to the three approaches – Fouhey et al. [3], Chin
et al. [2] and Hedau et al.[4] – discussed in Section 2. For
Fouhey et al., Chin et al. and Hedau et al. we use their
publicly available code. For fairness we run the codes sev-
eral times and the best results were taken.

Using 1500 SURF features tracked by KLT, code by Fouhey



Figure 5: This figure compares the results of different multiple plane detection methods on different datasets.
Datasets - Box, Corner and Corridor (top to bottom). From (from left to right), each column corresponds to
the following methods - Chin et al. [2], Fouhey et al.[3], Hedau et al.[4] and our approach.

et al. took in the range of 5 to 10 mins per experiment. As
can be seen from Figure 5, for corridor it finds erroneous
planes. For box dataset, where there are parallel planes
(with different textures) it labels both of them as same.
Also, it fails to detect the front facing plane.It performs
badly on such image’s as the data has high amount of out-
liers and purely residue based merging does not help. For
the corridor and lab dataset it finds multiple planes span-
ning other planes as well as the number of planes is grossly
oversegmented .

We tested our images using the pre-trained models for
Hedau et al.Ẇe cant train the models as we show our method
only on 2 images and training for each dataset defeats this
purpose. The method, though ill- posed for detection of
planes, is a benchmark in indoor environments using van-
ishing points for scene understanding. The method can ex-
tract only 3 orthogonal dominant directions (walls , ceiling
and floor) using vanishing points. For the box dataset it
completely fails as it is trained for box like structure of the
dominant directions while this dataset doesnt confirm to it.
It finds the right box models for the the corner and corridor
dataset but fails to segment them accurately.

Taking this performance into consideration we do a quan-
titative and qualitative analysis of results only between ORK
and our approach. We run both approaches with Multi
Guided Sampling Pham et al . [9]. Table 1 shows Classi-
fication error of the data and number of planes detected in
the image. Our approach shows competitive results for clas-
sification error while having a lower error for most of the
datasets. The number of planes detected by ORK is more
erroneous than ours as it over segments the same plane.

5.1 Qualitative Analysis

Table 1: Classification Error

METHOD OUR ORK

Dataset

No of
Ground
truth
SPs

error(in
’%’)

No of
SPs de-
tected

error(in
’%’)

No of
SPs de-
tected

Corner 3 18.9 5 12.33 7
Box 3 13.24 5 13.53 6

Corridor 4 18.78 3 23.65 6

Chin et al. perform better than Fouhey et al. for our
datasets, but there is still scope for improvement. For the
box dataset, the topmost plane (detected in blue) has a few
other planes detected in between. Similar is the case with
ground plane in the corner dataset, it is split into multi-
ple planar patches. There are also erroneous planes viz.
the plane marked by green feature matches in the corridor
dataset. This plane has matches from the left as well as
ground plane. Similarly, plane marked by blue in corner
dataset spans the left and ground plane. We are able to solve
these problems in our approach, since we impose strong lo-
cality constraints and also look at the local normals, texture
to perform merging. In the box dataset the floor consists
of specular reflections and the texture varies along the floor
leading to oversegmentation but we still clearly segment the
top of the box from the floor. In the corridor dataset, the
perspective plane is not segmented as the normal decom-
position for perspective motion is a special case due to the
bilinear nature of homography.



Table 2: Classification Error

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6 Image 7
Precision for ORK 48 40 68 41 49 47 76
Precision for Ours 63 77 69 74 74 86 69
Recall for ORK 88 51 80 46 67 65 78
Recall for Ours 95 68 81 69 75 92 70

We also test our approach on publically available Michigan
Indoor Corridor dataset [16]. Michigan dataset comprises
of several images of 11 different views. This is a challeng-
ing dataset for plane segmentation due to high variation in
texture and Non-orthogonal planes, where it is difficult to
detect vanishing points. We choose to compare 2 images
with wide motion variation to show robustness to motion.
We compare our plane segmentation results with ORK. As
shown by Table 2, we outperform the approach suggested by
ORK. Being a plane segmentation algorithm,instead of us-
ing classification accuracy, we use precision-recall based per-
formance criterion to evaluate the performance. Precision-
recall for an image is computed by weighted sum of indi-
vidual precision-recall of individual planes. Our results as
shown in Figure 6 perform better than ORK for both preci-
sion and recall. A reason sampling based methods like ORK
degrade in performance is due to generalized sampling. We
do not subsample our features in the dataset as we aim to
utilize the whole scene. Supplementary results for sequences
showing our invariance to motion can be found at [17].

6. CONCLUSION
In this work, we develop an MRF based top down ap-

proach to merge multiple small planar patches detected by
multiple structure detection methods. We show significant
improvement over previous methods. This improvement re-
sults from the fact that we bring in domain knowledge to the
problem of multiple plane detection. Our domain knowledge
is in the form of cues such as local normals, texture and lo-
cal consistency of planes. We formulate an energy function
using this domain knowledge and minimize it through an
MRF optimization.
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Figure 6: This figure compares the results of different multiple plane detection methods on the Michigan
dataset. Datasets - Image 1-7. (from top to bottom). From top to bottom, each column corresponds to the
following methods - Chin et al. [2] and our approach.


