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Abstract— In the field of outdoor navigation, there still
remain largely unsolved problems. In this paper we address
the problem of detecting road intersections. We present two
approaches to solve the problem of intersection detection in an
unstructured outdoor setting. The first is a natural extension
of the popular VFH∗ obstacle avoidance algorithm. It detects
intersections and tracks, over a period of time, the angles
at which gaps in the robot’s certainty grid (CG) are first
observed. The second approach uses techniques from image
processing and computational geometry on the certainty grid
image, to extract a skeleton of the navigable region, thus provid-
ing the intersections. We show experimental results portraying
intersection detection due to both methods and show the results.
On the whole, we found that the robot was able to detect all
possible intersections.

I. INTRODUCTION

Most of the literature on autonomous exploration has
concentrated on the indoor setting. Exploring an unstructured
outdoor environment is a far more challenging problem for a
robot. Solving them can lead to the development of various
outdoor robotic applications such as search and rescue in
bio-hazard regions, surveying and security and planetary
exploration.

Unstructured outdoor environments pose various chal-
lenges for an autonomous vehicle. When compared with the
indoor environments, distances are greater, color and lighting
conditions are more varied, the ground surface is never level,
and in a populated region there are moving obstacles. For
autonomous outdoor exploration, a robot must be able to
handle all of the above.

In order for any outdoor exploration to be complete, the
exploring robot must be able to detect the intersections
to the road it is traversing. Without intersection detection,
the exploration is left incomplete, i.e there will remain
unexplored regions in the environment.

Intersection detection is a hard problem. One cannot rely
on visual cues like sign boards because they are not present
at every intersection. Indoors the surface on which the
robot moves is usually flat and smooth. Any data obtained
from sensors in such a setting will give reasonably accurate
information about the environment. In contrast outdoors,
uneven road surfaces can lead to noisy sensor readings,
leading to an inaccurate representation of the environment.

In our system, the sensor data is fused into a certainty grid
image. For an indoor environment, the certainty grid image
is characterized by precise contours with sharp and straight
edges. Thus, for intersection detection in an indoor setting,
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Fig. 1. A comparison of indoor and outdoor certainty grid images. (a)
The indoor certainty grid has sharply defined edges and contours. (b) The
outdoor certainty grid in comparison has much more noise.

one can simply find gaps between edges and mark them. Fig.
1(a). shows how such a simple approach for edge detection
would never work for the noisy certainty grid image of an
outdoor environment. Figures 1(a) and 1(b) illustrate the
situation corresponding to an intersection detection in indoor
and outdoor settings. While indoor laser maps provide for
crisp obstacle locations and gaps, outdoor maps show a much
larger uncertainty. This uncertainty stems from, amongst
other things, due to (i) calibration errors that determine the
laser pose with respect to camera, (ii) with a tilted laser
pointing to the ground it always returns a reading unlike
indoors where free space is easily detected by laser returning
a maximum reading, (iii) sub-optimal means of weighing
camera and laser data when fusing onto a certainty grid, (iv)
the dimensionality increase in representation of vehicle pose.
Due to this the entropy of the regions around the intersection
and the overall certainty grid is considerably more than in
an indoor setting. Robust state estimation within a SLAM
framework could be one way of alleviating some of the
issues. Since the problem is one of intersection detection for
road network exploration, wherein a topological map of roads
and intersections would suffice, SLAM is not a concern. We
propose two novel methods for intersection detection under
the duress of suhc large uncertainty regions in the map.

Due to the reasons mentioned above, there may be high
certainty values concentrated in a small number of cells for
some obstacles, while low certainty values may be spread
over a large number of cells for others. Thus, instead of
considering individual pixel values, we are limited to a
statistical method operating over a region of pixels. As the
component data for certainty grid input is mainly range data
from the LRF and and range inferred from the single camera
image , the desired statistical method should account for
uncertainties in obstacle ranges from the robot positions. As
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with the VFH*[1] algorithm we make use of polar certainty
histograms. The polar histograms in these techniques are
generated by an integration of certainty values along the rays
from the robot and another integration of a set of rays into
a sector, thereby identifying free directions around the robot
for navigation, without requiring an exact range estimation
to obstacles.

Hence, these techniques are further adapted/extended as
our first algorithm to identify intersections on a road being
travelled. First, in the noisy environment, the algorithm
tries to identify the gaps in the road sides using the polar
histogram. Next, the algorithm tracks these gaps in order
to accumulate evidence of the presence of an intersection.
If there is sufficient evidence for an intersection it is stored
and marked. If due to noise, a non-existent gap is detected, it
is unlikely that the same gap will de detected in subsequent
scans, and so will not be marked as an intersection. Since two
of the detected gaps correspond to the forward and backward
direction of the road, detection of the same set of three or
more gaps over multiple such views indicates the presence
of an intersection. The directions of these gaps represent the
directions of the road branches from the intersection point
as well.

Our second method, uses a multi-resolution wavelet analy-
sis followed by a modified Hough transform and skeletoniza-
tion. As input the algorithm receives a pictorial representa-
tion of the environment, in the form of a certainty grid image.
A multi-resolution analysis checks for the invariant features
in the image at different scales. This helps to eliminate the
noise or blurred influence in the image and detect the edges
corresponding to the borders of the road. A modified hough
transform is then used to detect the borders of the road in the
image. The last step is skeletonization, after which the we get
the intersections, by finding the points at the intersections.

A. Related Work

Most autonomous exploration systems have used frontiers
as the basis for their exploration. They have been used in var-
ious forms. The seminal work of Yamauchi used a frontier-
based exploration[2]. Most of the exploration algorithms that
came after this were also frontier-based.

They have varied from using greedy strategies to explore
the frontiers [3], to more sophisticated heuristics or semantic
cues to guide the exploration [4], [5]. Most recently, a PDE
based exploration that enforces boundary conditions using
the frontiers co-ordinates was proposed in [6].

For exploring a network of roads detection of intersections
where the road forks become more critical than frontier de-
tection. Frontiers prove to be sufficiently low level primitive
outdoors, whereas one is primarily interested in a higher level
primitive/ topological construct such as an intersection.

After an extensive literature search, we were unable to
find many papers that addressed the problem of intersection
detection explicitly. The literature we found most relevant to
our problem came from geo-spatial images, where techniques
were developed to detect road networks from images.

These techniques can roughly be classified into 3 types:

Fig. 2. The modules that make up the system and their various intercon-
nections.

• Edge-Based
• Morphological
• Gradient-Based
Edge-based methods are the most commonly used. They

are simple and computationally unintensive but may contain
spurious detections due to their high sensitivity to noise.
They work best on images containing orthogonal intersec-
tions, but fail at roundabouts.

Morphological methods, as used in [7], [8], use morpho-
logical operators such as the dilation and erosion operators
to identify the roads in the image. These methods are also
computationally unintensive. These methods unfortunately
yield incomplete detection of the road networks and spurious
detections. Other methods involving gradients of the pixels
also have similar problems.

Another line of research involves matching a reference
profile to a region in the image [10] or getting the robot to
learn the various possible intersections [9]. Such methods,
yield better results than the others, but fail when the image
obtained is itself noisy. Also, they are usually computation-
ally intensive and require a large training set.

Our algorithms, in comparison require no training data and
make no assumptions as to the shape of the road.

B. System Overview

The system used consists of several modules working
asynchronously. Fig. 2 displays the various modules and the
interconnections between them. The camera looks in front
of the vehicle and is tilted such that the image contains a
large part of the road ahead as well as obstacles. The frames
captured from the camera are sent to the image processing
module to differentiate between navigable and non-navigable
terrains. The Image Processing Module takes simultaneous
inputs from both Camera and Laser Range-Finder (LRF).
The LRF is also tilted (approx 4.2 degrees) in order to
provide a 3D-style obstacle and road point cloud (upto 5
metres ahead of robot) by the virtue of robot’s forward
motion (see Fig. 3). The tilted LRF and a subset of resulting
point cloud determine free ground region(s) in front of the
camera, which are projected onto camera image through
known calibration and orientations of LRF and camera Fig.
4.a. These projected regions serve as training samples for
Gaussian Mixture Models algorithm. These Gaussians form
the possible template road colors on the basis of which
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Fig. 3. A 3D Point Cloud of the Laser

the image is segmented into navigable and non-navigable
terrains. Such a method allows for adaptation to the different
colors and textures a road might possess very quickly. A
similar method was used in [11].

The segmented image along with the laser data and robot
encoder readings are used to generate a certainty grid of
the robot’s local environment. Messages from the GPS are
stored in the waypoint management module. The Obstacle
Avoidance Module generates steer messages using the GPS
data. It consists mainly of an implementation of the VFH∗

algorithm. The stored waypoints are later used by the Way-
point Management Module to play a strategy for exploration.

The road mapping problem does not require rigorous
estimation of the robot’s state as well as it’s surrounding
environment in terms of precise metric co-ordinates, quite
unlike an outdoor SLAM system. The locations of the robot
when it detects intersections are stored by GPS readings with
an accuracy of 2m. While revisiting these positions the robot
is able to identify these intersections again and move onto
another branch of the road.

C. Data Fusion

This section contains how the data from the LRF and
camera are fused. The calibrations of the laser and camera
are known to us, as are their relative orientations. We use
laser scan data to determine the free space regions in front
of the robot. These regions are then projected onto the image.
To detect the road a subset of this region is selected as
our sampling region on the basis of which we train our
Gaussian Mixture Models algorithm. These Gaussians form
the possible template road colors on the basis of which
segmentation is done. Such a method allows for adaptation to
the different colors and textures a road might possess quickly.
A similar method was used in [11].

We use data from two sensors to generate the certainty
grid for the following reasons. The camera is used to detect
the obstacles from distances greater than LRF (providing an
early population of certainty grid) and the ground level non-
traversible regions on the sides of road (like mud, grass, etc).
However, the camera based detection is noisy (has range
errors) and frequently produces false positives or negatives.
Also, it needs to learn the actual current appearance of
road which varies greatly when travelling outdoors. Thus the

(a) (b)

(c)

Fig. 4. (a): The region known to be ground from laser is marked here
with a translucent overlay. (b): Segmentation and Classification result while
approaching a divider. The black parts of the image represent road. (c):
Top-View of the Segmented Image generated by homography.

Fig. 5. The certainty grid. The red dot is the current position of the robot.
The blue dot is the position that the gap-tracking algorithm receives.

LRF is able to identify obstacles at shorter distances and is
able to determine their positions and more accurately than
camera. Also, it is able to provide a training dataset for the
image processing module and allows it to quickly adapt to
the changing road appearance. Thus, the regions wrongly
classified by one sensor are correctly classified by the other.
A laser scan of a non-navigable region like mud would not be
detected as obstacle, but, the camera on the basis of a marked
color difference would classify it as an obstacle. Likewise, a
grayish obstacle on the road would be classified as road by
the camera but be detected as an obstacle by the laser. The
certainty grid image from the fused data serves as input for
the intersection detection module. Fig. 5 shows a certainty
grid image.

II. INTERSECTION DETECTION BASED ON GAP ANGLE
TRACKING

Through accumulated experience over several outdoor
experiments we found that the intersection detection is best
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(a) (b)

(c) (d)

Fig. 6. The process of gap tracking and intersection detection is shown
in these figures. Top-Left: Initially there are only two gaps being tracked.
The one in the front of the robot, and, the one behind it. Top-Right: The
first sighting of a gap on the left is shown. The path ahead of the robot
bifurcates. Bottom-Left: The path continues being tracked. Bottom-Right:
When the path has been tracked for long enough, the intersection is detected.
The red circles Show that the intersection has been detected.

Fig. 7. The corresponding intersection detected by the gap-tracking
algorithm. The intersection is marked by yellow. Note the similarity in
alignment between the chains in the polar histograms and the certainty grid
image.

when it is delayed, in other words it is easier to detect the
intersection once the robot has already passed through the
intersection. For this purpose we consider locations visited
by the robot (points from robot’s trajectory) some time
instances into the past as candidate locations from where
to detect gaps. We denote the extracted portion of certainty
grid within a given radius of the robot’s chosen past location
(P) as critical region (CR).

Our algorithm can be thought of as an extension of the
ideas used in the VFH∗ algorithm. The algorithm receives a
subsection of the certainty grid with robot’s past position at
its center as input. The red dot in Fig. 7 shows the actual
current position (P’) of the robot, while, the blue dot shows
the position of the robot for which the CR must be extracted
(P).

The first step of our algorithm involves mapping the CR

to a polar histogram. The method for generating a polar
histogram is same as that mentioned in [1] and takes the
CR image with P being the Robot Center Position (RCP).
The vector field direction (βi) and magnitude (mi) for each
pixel of the CR are determined with respect to the RCP in
conformance with [1] as follows:

βi = tan−1(
yo − yi
xi − xo

) (1)

mi = c2i (a− bd2i ) (2)

where,

xo, yo = Coordinates of the RCP

xi, yi = Coordinates of ith pixel

ci = Certainty value of ith pixel

di = Distance from ith pixel to the RCP

The parameters a and b are chosen according to the
following rule in [1]:

a− b(ws − 1

2
)2 = 1 (3)

To be noted is the fact that the distance function (di in
Eqn. 2) is rotationally symmetric with respect to the RCP.
Thus, there is no biasing on any bin/sector due to robot pose.
Finally, we generate a polar histogram by adding each pixel’s
vector magnitude to the bin corresponding to its vector
direction with respect to the RCP. Each bin of this polar
histogram represents a sector and its total value (ξ) represents
the obstacle density in the corresponding direction.

The larger the value of total obstacle certainty (ξi) in a
bin/sector the more likely it is an obstacle. Based on this
observation, we construct a binary polar histogram. Each
sector is classified as either obstacle, free or uncertain on
the basis of the following equations:

γi,t =

 1, if ξi,t > τhigh
0, if ξi,t < τlow

γi,t−1, otherwise
(4)

where,

γi,t = Binary Value for bin i at time t (1 =⇒ blocked)
ξi,t = Value of polar histogram in bin i at time t

τhigh = Polar Histogram high threshold
τlow = Polar Histogram low threshold

Gaps in the polar histogram are defined as sets of consec-
utive sectors that are 0 in the binary polar histogram. Only
gaps with size i.e. angular span (φ) above a certain threshold
(φthresh) are finally selected as gaps that will be tracked.
This ensures that only if a gap has a width comparable to a
road will it be tracked, ruling out small off-road paths.

The direction of a gap over time changes as the robot
moves forward. Provided that the gap observations are made
at consecutive certainty grid positions, it can be proven
that the maximum possible positive change in gap direction
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Fig. 8. The diagram of the 2nd proposed intersection detection algorithm.

(a) Input Image (b) Wavelet Transform (c) Hough Transform (d) Skeleton

Fig. 9. The sub-figures show the steps of the 2nd algorithm. As can be seen the wavelet transform effectively gets rid of the most of the noise while
maintaining the edges. In fig. (d) the intersection point is shown in yellow.

between consecutive observations (∆θ = θi,t−θj,t−1) would
be approximately equal to maximum of the angular spans
of the both gaps (max(φi,t, φj,t−1)). Thus, we define the
following condition as the rule for matching two gaps at
consecutive positions or time instances:

|θi,t − θj,t−1| <= max(φi,t, φj,t−1) (5)

where,

θi,t = Median angle value of the ithgap at time t

θj,t−1 = Median angle value of the jthgap at time t− 1

φi,t = Angular span of ith gap at time t

φj,t−1 = Angular span of jth gap at time t− 1

The implemented gap tracking is an iterative process that
tracks gaps over successive positions a robot moves to or
the successive time-instances when the gaps are observed.
We use a polar graph as shown in Fig. 6 to keep track of
the gaps. It should be noted that where the polar histogram
represents the obstacle density across directions, this polar
graph represents the directions in which gaps are observed
w.r.t. time. (see relation between Fig 7 and 6) The radius
of the blue circles in Fig. 6 denote the time or the recency
of position. The direction of a gap in the graph is same
as its direction in the certainty grid from the RCP. Also,
on the radial axis the farther a point from the center, the
more recent is the update. The green dots on each of the
blue or red circles denote the angles at which the gaps were
observed at the corresponding time instant. A link between
two vertices indicates that the two vertices represent the same
gap at consecutive instances of time i.e. there is a match
between them according to Eqn. 5.

Intuitively, one can see that over time (i.e. along the radius
in graph) the longer a chain gets, the more certain is that the
particular gap is wide enough to be a road because it was
seen from a large set of positions. Since a minimum of two
gaps would exist for the road itself (forward and backward
directions), presence of any extra gaps gives evidence for

another branch. If three or more chains extend simultane-
ously across a sufficiently long time segment (as shown in
Fig. 6(d) with red circles), it would denote presence of an
intersection near the location of RCPs used for corresponding
gap observations. These RCPs form the zone a forking
branch of the road is visible and hence, these coordinates are
marked as an intersection zone. Additional details about the
intersection, such as direction(s) of the forking road(s), are
derived from the gap directions observed from these locations
and used along with the marked coordinates later for further
exploration.

III. ALTERNATIVE TWO-STEP APPROACH TO
INTERSECTION DETECTION

Our second approach to intersection detection is a 3
step process. First, we do a multi-resolution wavelet based
analysis of the certainty grid image. This is followed by a
modified hough transform. Finally, we do a skeletonization
to determine the intersections in the image.

A. Multi-Resolution Wavelet Analysis

As the certainty grid image represents the fusion of data
between two sensors it is inherently noisy. On an uneven
road, the representation of the environment obtained from
the sensor readings may have a large component of noise
to it. Therefore, we need a method that will help recognize
the actual edges in the image from the noise. These edges
correspond to the boundaries of the navigable regions in the
environment.

A Multi-resolution wavelet analysis has several advantages
over simple edge detection operations. At a larger scale,
wavelet filters are effective at removing noise, at the same
time they increase the uncertainty of a region rightly being
detected as an obstacle or not. On a smaller scale the obstacle
detection is far more accurate but is susceptible to noise.
Thus, combining the multiple scales results in a technique
that is robust and accurate.

We use a wavelet based MRA because, sensor readings
obtained from certain problematic regions in the map, like
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mud, may not be recognized as non-navigable and therefore
not classified as obstacle.

Fig. 10 shows the flowchart of how MRA works. In order
to smooth the image we have to use a smoothing function
φ(x, y). In our case, we use a standard Gaussian smoothing
function θ(x,y):

θ(x, y) =
1

2πσ2
e

−(x2+y2)

2σ2

For edge detection we use a special class of wavelets,
which are the derivatives of the smoothing function, i.e.

ψ1(x, y) =
∂θ

∂x
= − x

2πσ4
e

−(x2+y2)

2σ2

ψ2(x, y) =
∂θ

∂y
= − y

2πσ4
e

−(x2+y2)

2σ2

where
∫ ∫

R2 φ(x,y)=1 and . Since the wavelets use a
Gaussian as the smoothing function, this class of wavelets is
called the Gaussian wavelet.

The scale of a wavelet can be used to detect edges at
different levels of scale. The smoothing function used in
the construction of a wavelet reduces the effect of noise.
What we have in effect is a robust, scale invariant method
for extracting the boundaries of a road from a noisy image.
Wavelets are used in a similar way in detection of clouds
from geo-spatial aerial images that have a high noise content
[10].

The value of σ associated with the Gaussian kernel is
chosen so that:

• In areas of uniform intensity, its value is large, thereby
allowing it to smooth out random noise.

• In areas of intensity change it’s value is small, allowing
the edges of the image to be preserved.

• It does not change drastically in it’s neighborhood,
avoiding broken edges.

B. Hough Transform

After, the MRA, we use points uniformly sampled from
a curve to fit lines using the hough transform. This usually
results in too many spurious images. Thus, we propose a
merging condition to merge similarly oriented lines close to
each other.

The straight line hough transform [13] involves transform-
ing a pair of points from the normal Cartesian space to a

Fig. 10. The process diagram of a multi-resolution analysis.

parameter space, where lines are detected through a voting
procedure. Associated with the voting procedure are certain
parameters, which are set as per requirement.

C. Skeletonization

Our merging procedure is:

Input: The algorithm receives two line segment objects
L1 and L2

Each line object has 3 attributes: slope, startPoint, endPoint
L = null
if ‖L1.slope−L2.slope‖ ≤ δslope & minDist(L1.L2) ≤
δdistance then

Select L.startPoint and L.endPoint from the
points L1.startPoint, L1.endPoint, L2.startPoint,
L2.endPoint such that the length of L is maximized.

end if
Output: The line object L

minDist(L1, L2): The minimum distance between L1 and L2.

The final stage of our process involves extracting the
topological structure (skeleton) of the boundary image. Once
extracted, the skeleton contains all the valid topological in-
formation required. From the significant branches (branches
of more than a certain length) of the skeleton we can extract
the location of the intersections. And mark the corresponding
stored GPS co-ordinates as intersections.

We use the method proposed in [12] for our skeletoniza-
tion due to its robustness against noise in the edges. The
method uses a significant measure called the bending poten-
tial ratio (BPR) which is used to remove spurious skeleton
branches.

The BPR is an efficient measure of the way in which
contours in the image significant in context to the whole
image are considered for skeletonization. The location of a
contour is taken into account with respect to the entire object
boundary (which in our case is the obstacles in the certainty
grid). The BPR effectively integrates both local and global
information about the contour. Fig. 9(d). shows the result of
the skeletonization after the Hough transform.

We observed that the skeleton branched out at an intersec-
tion site only if the gap corresponding to the intersection was
sufficiently wide. There is only one parameter, a threshold,
that needs to be tuned in order to detect intersections. If
the BPR is greater than the threshold then the corresponding
contour generates part of the skeleton.

IV. RESULT

Over the course of several runs we have found that our
algorithms have been able to detect intersections with a high
degree of certainty. Both algorithms have been used under a
variety of lighting and crowd conditions and have proven
to be robust and accurate. Two examples of intersection
detection are given below. These are followed by the results
of a rudimentary exploration.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 11. Top Row: Pictures of intersections. Middle Row: The corresponding intersection detected. by our first method. Bottom Row: The corresponding
intersection detected by our second method. The first image is of a roundabout. The black arrows show intersections and the red arrows show the path of
the robot.

(a)

(b) (c)

Fig. 12. The roundabout intersection. A top-view. The red arrows in (b)
and (c) point to intersections.

Fig. 13. Path Taken By the Robot During Its Test Run

Fig. 12(a) shows a top-view of the roundabout in question.
Three roads meet at the roundabout junction, so we have
three corresponding intersections. Fig. 12(b) and 12(c) show
the certainty grids of the intersections. Our algorithm is able
to differentiate and detect all three intersections.

While not encountered during several experiments out-
doors, there could be a tendency of the first method to
get confused with intersections if the RCP locations for
the two intersections overlap. In other words if the robot
first detects an intersection, A and while approaching from
another direction detect B that is close to A such that their
RCP’s overlap the intersections could be merged. However,
this would not be a problem with the second approach
based on wavelets since the skeletonization would detect two
distinct branches corresponding to the two forks.
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We present the results of an exploration that used the first
intersection detection algorithm proposed. The exploration
was done using a P3-AT. The P3-AT is equipped with
differential wheel encoders, a SICK-LMS laser, an Xsens
mti-G inertial unit with GPS and an ordinary webcam. The
system was developed in C# using Robotics Developers
Studio. The robot has the option of being teleoperated by
joystick. This is used as a safety precaution to prevent the
robot from crashing.

The robot initially is moving on a straight road, as shown
in Fig. 11(a). The first intersection it encounters is at a round-
about. The robot takes the path on it’s right. In a delayed
fashion, this first intersection is detected. The robot follows
the curvature of the road, it then detects an intersection to
it’s right. It goes on straight following the road until the
third intersection. The robot then goes on the road extending
from the third intersection. As it continues moving along the
same road, the robot is able to detect the three intersections,
Fig. 11(b),(c),(d) it encounters on it’s left. It then continues
moving forward upto a point. The robot then goes back to
the last intersection and takes the path extending from it.
Fig. 11 (e)-(h) show the certainty grids with the detected
intersections mentioned in the above paragraph by the first
method. Fig. 11 (i)-(l) show the the same intersections by
the second method.

In comparison, if a frontier based method was used for
exploration and intersection detection, most of the frontiers
would correspond to the road curbs. Therefore, some crite-
rion would be needed to choose the frontiers that may be
possible intersections. This would have to be done once the
frontiers of a particular region have been calculated. Since
intersections in an outdoor environment are varied, designing
a criterion for selecting the frontiers that correspond to them
would be challenging.

(a) (b)

Fig. 14. Fig. (a) shows the path the robot takes when returning to an
intersection. Fig. (b) shows the corresponding certainty grid.

A. Recognizing a detected intersection
For exploration it is vital that a robot is able to recognize a

previously detected intersection and continue exploring along
the fork in the road. Our algorithms have proven robust in
recognizing already detected intersections. In this section
we show how the robot recognizes an intersection it had
previously detected.

Fig. 14 (a) shows a sample path the robot would take
in order to detect an intersection. While recognizing an

intersection the robot logs the GPS co-ordinates of the
intersection. The intersection is also marked in the certainty
gird image by a trail of yellow dots. The perpendicular to
the trail giving the direction where the road branches out.
Once the robot reaches the destination co-ordinates, it turns
to face this perpendicular direction. As the robot reaches this
intersection it re-detects it. Facing the perpendicular direction
it detects road from the sensor information confirming that
the current intersection is indeed the previously detected
intersection. The recognized intersection is shown by a trail
of green dots in Fig. 14(b). The original intersection is shown
in yellow adjacent to it.

V. CONCLUSION

In this paper, we presented two methods for outdoor
intersection detection. We have shown extensive results in
inhomogeneous conditions on a variety of intersections. We
have also shown an application in the form of an exploration.
During our search, we were unable to find much literature
on the subject of outdoor intersection detection, and believe
our methods are novel and have proven robust and accurate
in practice.
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Madhav
Sticky Note
we certainly need to discuss this.The figure captures the underlying theme of this effort, i.e. by robustly detecting an intersection and further recognizing the same later, one is able to offset the lack of metric accuracy. For example while the metric map of the road on return does not coincide with the earlier map, the intersection is detected as the RCPs while not coinciding are not too far apart bounded by the GPS error. The robot is further able to confirm the intersection's presence by detecting the road along the perpendicular fork. Thus intersection detection paves way for a topological map ping of the road network, with intersections as the cornerstones in the map. The map is topologically accurate while not metrically so.One such topological map constructed through the exploration module is shown in figure
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Sticky Note
While the VFH* based method takes into account the local statistics of the region to detect intersection under the duress of sensor noise, the wavelet based approach invokes advantages of multi resolution filtering for the same. The paper also shows through initial results that intersection detection with bounded GPS errors can construct topologically accurate outdoor maps through an exploration algorithm albeit lacking metric accuracy.
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with their accuracy confirmed empirically over several experimental runs.


