
  

 

Abstract— In this paper, we automate the traditional 
problem of Simultaneous Localization and Mapping (SLAM) 
by interleaving planning for exploring unknown environments 
by a mobile robot.  We denote such planned SLAM systems as 
SPLAM (Simultaneous Planning Localization and Mapping). 
The main aim of SPLAM is to plan paths for the SLAM process 
such that the robot and map uncertainty upon execution of the 
path remains minimum and tractable. The planning is 
interleaved with SLAM and hence the terminology SPLAM. 
While typical SPLAM routines find paths when the robot 
traverses amidst known regions of the constructed map, herein 
we use the SPLAM formulation for an exploration like 
situation. Exploration is carried out through a frontier based 
approach where we identify multiple frontiers in the known 
map. Using Randomized Planning techniques we calculate 
various possible trajectories to all the known frontiers. We 
introduce a novel strategy for selecting frontiers which mimics 
Fast SLAM, selects a trajectory for robot motion that will 
minimize the map and robot state covariance. By using a Fast 
SLAM like approach for selecting frontiers we are able to 
decouple the robot and landmark covariance resulting in a 
faster selection of next best location, while maintaining the 
same kind of robustness of an EKF based SPLAM framework. 
We then compare our results with Shortest Path Algorithm and 
EKF based Planning. We show significant reduction in 
covariance when compared with shortest frontier first 
approach, while the uncertainties are comparable to EKF-
SPLAM albeit at much faster planning times. 
 Index Terms – SPLAM, Exploration, trajectory Planning, 
FastSLAM. 

I. INTRODUCTION 

HE problem of SLAM involves estimating the state of 
the robot and map simultaneously and concurrently. 

Long considered the holy grail in mobile robotic systems 
there now exist several matured algorithms for SLAM [12]. 
Most SLAM maps are built by remotely controlling or 
teleoperating the robot. Often the human in loop uses his 
vast experience by appropriately driving the vehicle in a 
fashion so that the uncertainty of the whole system 
represented often through its covariance matrix does not 
explode or grow beyond bounds. For example it is common 
practice to to keep the robots close to landmarks that has 
already been seen to keep the error covariance so as to speak 
within control. This transfer of human experience onto a 
planner is a critical step in automation of SLAM. A fully 
automated SLAM system must decide where next to move to 
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continue the process mapping, often called exploration. Most 
exploration systems involve finding regions known as 
frontiers [1] and finding the best frontier to move. Often the 
best frontier is one that is shortest [1] or one of maximal 
information gain [2], [3].  

However in SLAM automation or SPLAM systems the 
critical criterion has typically been to consider state 
covariance more than anything else as the deciding factor 
where to move [4], [6]. The trace or the determinant of the 
covariance often indicates the amount of uncertainty of the 
state and is used in the automation policy. While the path 
that churns out the least possible uncertainty value can 
seldom be found due to the exponential nature of the search 
involved, most paths obtained as an outcome of the SLAM 
process do show reduced uncertainty in state during and at 
the end of the robot’s sojourn.  

Most methods that perform SPLAM use an EKF 
framework [4], [5], which essentially involves computing 
the full state covariance for a finite time horizon over a 
future path. Later SPLAM was modified into an Active 
SLAM framework in [6]. The path that provides the least 
covariance trace is selected as the best possible path. 
However computing the full state covariance for a finite time 
horizon is computationally unwieldy especially as the 
number of landmarks increase. The full state covariance 
considers all possible correlations between landmark and 
robot poses that tends to be the main cause of computational 
bottleneck.  

Herein we propose an alternate fast randomized planner 
that interleaves planning into SLAM framework. Multiple 
paths are generated to each frontier location and further each 
path is estimated by a certain small number of particles [11]. 
Since the entire path to the frontier is now assumed known it 
is mathematically sound to decouple the landmark and robot 
state covariances [7]. This results in a much faster planner 
when compared with a planner operating on a full 
covariance matrix. A new metric that weighs both landmark 
and robot state uncertainty vis-à-vis distance is used to 
compute the best possible path in terms of reduced 
uncertainty of map and robot states. 

It is well known that maps and trajectories resulting from 
a Fast SLAM like sampling process is not as robust as EKF 
SLAM [7]. To combine advantages of both we use a 
sampling based planner with Fast SLAM like decoupling of 
landmark states while retaining the EKF-SLAM [10] for the 
baseline SLAM framework. In other words when the robot 
moves to a new location its update is based on EKF SLAM 
while the path to that location is based on a planner with 
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decoupled states. 
We show several results that vindicate the efficacy of the 

proposed method. In particular we show significantly 
reduced planning times and comparable robustness via-a-vis 
an EKF based SPLAM. Also shown is that the proposed 
planner is far more robust than one that selects a path, which 
is merely the shortest to frontiers.  

 

II. RELATED WORK 

One of the well-known methods in SPLAM literature is 
due to Dissanayake’s group [4]. The method proposed a 
finite time look ahead based planning for EKF-SLAM 
baseline. The method dealt with the full covariance matrix 
throughout the planning stage. Later the method was cast 
into a Model Predictive Control Paradigm (MPC) in [5] 
while still working with the full covariance matrix. Whereas 
in [6] a new criterion for optimality called A-optimality 
within SPLAM was proposed. The paper in effect showed 
how considering the trace rather than the determinant of the 
covariance matrix as an appropriate metric gave better 
results. In [8] a Bayesian framework was proposed to 
decouple the localization, planning and control problem and 
showed how a planning problem becomes one of stochastic 
control under bounded uncertainty. However the paths 
shown therein were under a localization than SLAM 
framework. In [9] an exploration for SLAM was proposed 
that considered several heuristics while selecting a path. 
Essentially the theme was to select locations from where 
already seen landmarks would be visible to prevent 
uncertainty growth. However this work failed to integrate 
the exploration with SLAM and did not bring in explicitly 
uncertainty based formalism and metrics while computing 
the paths 

The current work contrasts in bringing about an 
integration of a faster but robust sampling based planner into 
a baseline EKF-SLAM based SPLAM thereby availing 
benefits of both. The work is supported by extensive 
simulation results, comparisons and real experiments. 

 

III. OVERVIEW 

 
In this section, we provide an overview of the proposed 

Exploration with SPLAM system. Refer to flow chart in Fig. 
The system can be broadly divided into 4 basic modules – 

EKF-SLAM, Frontier Map Generation, Random Path 
Generation and Path Planning. We use Extended Kalman 
Filter based SLAM for generating map and localization of 
robot in that map. SLAM is conducted after every step of 
robot motion. Then, we generate an occupancy grid map 
based on existing knowledge of explored and unexplored 
area. This map is updated after every SLAM update. Using, 
this Occupancy grid map we identify various frontiers, 
present at junction of explored & unexplored area. Then, a 
random planner generates various multi-step paths to each 

frontier from the current location. We calculate a quantity – 
“Potential” for each path using a novel metric. The path 
which gives maximum potential is then chosen for robot 
motion to the corresponding frontier with SLAM being 
conducted at each step. The path planning process is 
conducted as robot reaches every subsequent frontier in its 
motion. 

 
 

 
 
 

Fig1. System Block Diagram 
 

IV. METHODOLOGY 

 

A. SLAM using Extended Kalman Filter (EKF) 

 
In this section, we review the estimation-theoretic SLAM 

algorithm using the Extended Kalman Filter, 
Let robot state be denoted by xv = [xv , yv , θv]

T and its 
motion model is given by, 
 

௩,௞ାଵݔ ൌ ݂൫ݔ௩,௞,  ௨.௞൯ݒ			,௞ݑ
 
where uk is control input at time k, vu,k is the Gaussian 
motion noise with covariance Q. The exact expression of f 
depends upon kind of robot used and noise. 

We assume that the landmarks are stationary and we 
denote their state as xf. Then the state vector will be ݔ ൌ
ሾݔ௩், ௙ݔ

்ሿ் 
Sensor measurement model that describes the formation 

process by which the sensor measures in the physical world 
is, 

௞ାଵݖ ൌ ݄ሺݔ௞ାଵሻ ൅	ݓ௭,௞ାଵ 
 
where zk+1 is the observation at time k+1. and h is a model 
of the observation of the system states as a function of time 
and wk+1 is Measurement Gaussian Noise vector with 
covariance R. 

The SLAM algorithm uses the EKF to optimally estimate 
the state vector x and the state error covariance matrix P. 
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The EKF-SLAM algorithm is divided into 2 stages- 
1. The prediction stage involves updating the state mean and 
variance after a movement. This is done using the control 
information and the process error variance. 
      	

ො௞ାଵ\௞ݔ ൌ ݂൫ݔො௞,  0൯			௞,ݑ

௞ܲାଵ|௞ ൌ ௞ܨ	 ௞ܲ|௞ܨ௞
் ൅	ܩ௞ܳܩ௞

் 
 
where Fk ,Gk are Jacobians of f with respect to x and vu,k 
evaluated at ൫ݔො௞,  .0൯, respectively			௞,ݑ
2. The update stage uses the acquired information of 
associated features extracted from sensor readings to 
simultaneously update the robot pose and the map. 
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௞ܲାଵ|௞ାଵ ൌ 	 ௞ܲାଵ|௞ െ ௞ାଵܭ௞ାଵܵ௞ାଵܭ
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Where, 

௞ାଵܭ ൌ 	 ௞ܲାଵ|௞ܪ௞
்ܵ௞ାଵ

ିଵ  
ܵ௞ାଵ ൌ ௞ܪ	 ௞ܲାଵ|௞ܪ௞
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Where Hk is the Jacobian of h evaluated at ݔො௞ାଵ|௞. 
 

B. Frontier Map Generation 

 
After every iteration of SLAM, we generate a occupancy 

grid map of the environment. It uses the laser sensor scan 
data to create grid based map that shows explored and 
unexplored region in the surroundings of robot. While, this 
same laser data is used by SLAM to show landmark 
positions, here it is used to identify frontiers. 

 

C. Random Path Generation 

The next task is to select the next frontier and to plan an 
optimum trajectory for reaching there, such that we 
minimize error in robot and map states as the robot reaches 
the frontier. We employ a random path generator algorithm 
that generates a finite number of paths from current location 
to all the known frontiers. Around 15-20 paths are generated 
for each of the frontier destinations. These paths have step-
size and step count constraints. A path can have maximum 
10 intermediate nodes, i.e. point where SLAM is conducted, 
and the maximum distance between two nodes can be 
50cms. Also, no two paths generated intersect at any point, 
this ensures that paths are sparsely distributed and thus cover 
more possible permutations. All these constraints limit total 
path length and thus, the choices of frontiers. As a result, 
chosen frontiers are around about same distance from the 
current robot location and they have unbiased similar chance 
of being selected. Finally, we have to select the optimum 

trajectory through the proposed planning method as in 
section. IV.D. 
 
The Need for a Planner: 
 

Path planning is important part of Autonomous 
Localization and Mapping problem by a robot. Since the 
goal is to explore the unknown surroundings and also at the 
same time to minimize the landmark and robot uncertainty, 
we need to find a optimum trajectory which helps achieve 
this.  

One approach to reduce the map uncertainty is to move 
robot in the known area such that it revisits the good 
landmarks, with smaller covariance, frequently. This will 
improve the map but won’t result in any exploration. Thus, 
for exploration to occur, the robot must be moving in 
direction of a frontier and at same time taking a path that is 
in vicinity of many good landmarks to achieve good maps.  
One of the important requirements is to decide upon a 
benchmark for measuring the outcome of planning 
algorithm. This can be done based on two criterions – Final 
Robot-Map Uncertainty and Total time required for 
exploration, planning and mapping of entire map. We 
consider trace of final state matrix, trace (P), as the criterion 
for measuring accuracy of robot localization and map 
generation. More is the trace more is the uncertainty in 
localization and mapping. We keep the baseline SLAM and 
the frontier generation process to be the same across the 
methods that are compared. Hence any difference in time is 
dependent only on how fast planning algorithm is. We have 
implemented 3 planning algorithms – Shortest path 
algorithm, EKF based planning and our novel planning 
algorithm. 
 

D. Fast Planning Algorithm 

 
A Planning algorithm is basically a simulation of robot 

motion along all possible paths with SLAM being conducted 
at each step. A criterion quantity – ‘Potential’ decides the 
quality of SLAM outcome at end of each path. Thus, main 
aim of planning algorithm is to speculate which path will 
give the best possible SLAM state on reaching the next 
frontier. This speculation is done based on the information 
available till now. This is so because during simulation we 
don’t actually move the robot and conduct SLAM updates. 
Thus, we cannot see any new landmarks and have to make 
our decision based on presently explored map. Due to this 
constraint, it becomes important to use an efficient planning 
algorithm that can give good paths. Also, for this system to 
run in real-time on a robot, it must be considerably fast. 

All the above discussed parameters are considered in our 
Fast Planning algorithm. Initially, the robot pose, as obtained 
from EKF-SLAM state, is sampled into M particles and we 
consider separate maps for each particle. It means that each 
particle has its own state and correspondingly all landmark’s 
mean and covariances associated with it. This decoupling of 
landmark and robot state precludes the need for bulky  

 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(2N+3) X (2N+3), P matrix. Instead we have N-2X2 

matrices associated with each of the M particles.  These N-
2X2 matrices are covariance matrices of N landmarks, which 
can be taken from P matrix. Decoupling procedure will 
significantly reduce the computational complexity as 

calculations involving small matrices are lot faster that that 
on larger matrices especially, the inverse.  

Next, we conduct a modified fastSLAM for all the 
trajectories derived from random path generator. This 
involves traditional fastSLAM prediction, update and 
resampling being done at each and every node on all the 
trajectories.  We employ a novel way to calculate weights of 
particles after every update. It is given as the ratio of 
previous weight to the sum of trace of visible landmark 
covariances from that particle. This approach will give more 
weights to particles which can see good landmarks, i.e. with 
less trace. Thus, particles which are close to good landmarks 
have higher weights and are more likely to be selected in 
resampling stage.  
 Finally, we introduce a quantity - ‘Path Potential’, sum of 
inverse of trace of all the visible landmarks averaged over all 
particles for all the nodes. This quantity determines, on an 
average, quality of landmarks visible when moving through 
a particular trajectory. Higher Path Potential for a trajectory 
suggests that, this trajectory approaches more good 
landmarks and so if robot moves along this trajectory then it 
has better chance of obtaining good SLAM states. 

 

V. RESULTS 

 
We have implemented three Exploration with SPLAM 

methods for comparing results. All these methods have 
common EKF-SLAM, Frontier Map Generator and Random 
Path Generator implementations. They each have different 
Planning algorithm – 1) shortest-path planning algorithm, 
that always finds the shortest path from current location to 
the next frontier. 2) EKF based planning algorithm as in [4]. 
3) the fast randomized planner of this paper. All these 
algorithms were implemented on Matlab, while some of the 
library functions of C were also used. 

The exploration with SPLAM system was tested 
rigorously on simulation by changing the simulation 
environments and system variables. Performance was 
analysed on basis of accuracy and time taken. The measure 
of accuracy is done by calculating the trace of the covariance 
matrix at the end, when full map is explored. Fig.3 shows 
the complete exploration trajectory for all three methods. It 
is evident that in Fast Planning methods, the trajectories 
taken are such that good landmarks are visited frequently. 
Fig.4 shows how the whole frontier map grows during the 
whole exploration process.  

Consider an example of an instance in Planning process as 
shown in Fig.2. Here, robot is currently at location D, and 
considers 3 frontiers to visit, A, B and C. Note that not all 
the three frontiers are visible from D as some of them are 
frontiers from a previous view that have not yet been visited. 
Now, the random path generator generates around 15-20 
trajectories to each frontier. Fast planning algorithm then 
identifies a trajectory, in red, that it believes will be best for 
robot motion to next frontier, C. This path is taken by the 
robot.  

Fast Planning Algorithm (x, P, Path, R, Q) 
//  ‘x’ is SLAM state matrix, ‘P’ is state covariance, 
‘Path’ contains all random trajectories, ‘R’ is 
measurement covariance, ‘Q’ is motion covariance 

 
For each ith random trajectory in path 

Sample robot position uncertainty into M particles with, 
x0

[k] , for k=1 to M      // x0
[k] is kth particle state at initial 

position 
w0

[k] = probability at x0
[k] in Ɲ (x, P) 

Generate Y0 by taking landmark covariances from P, 
Y0 = {x0

[k], (µ1,0
[k], Ʃ1,0

[k])………… ,(µN,0
[k], ƩN,0

[k])}    
//for all k 

// µ is mean and Ʃ is covariance of Nth landmark 
 pathPotential(i) = 0 

for tth node in path(i) 
 Potential = 0 
 for k=1 to M 

Retrieve  {xt-1
[k], (µ1,t-1

[k], Ʃ1,t-1
[k])………… ,(µN,t-

1
[k], ƩN,t-1

[k])} from Yt-1 

xt
[k] ~  p(xt | xt-1

[k], ut)          //sample pose 
    J = visible landmarks from xt

[k]  //observed feature 
  For all j   
   G = g′ (xt

[k],  µj,t-1
[k])            //Calculate Jacobian 

   S = GT Ʃj,t-1
[k] G + Rt           // measurement             

Covariance 
   K =  Ʃj,t-1

[k]GS-1    //Kalman Gain 
   µj,t

[k] = µj,t-1
[k]     //Update mean  

   Ʃj,t
[k] = (I – KGT) Ʃj,t-1

[k] //Update Covariance 
  End 
  Potential = Potential + ∑J 1/trace(Ʃj,t

[k]) 
  wt

[k] = wt-1
[k]/∑J trace(Ʃj,t

[k]) 
  for all j not included in J 
   µj,t

[k] = µj,t-1
[k] 

Ʃj,t
[k] = Ʃj,t-1

[k] 
   End 
  End 
  Potential = Potential/M 
  pathPotential(i) = pathPotential(i) + Potential; 
 End  
 pathPotential(i) = pathPotential(i)/size(path(i)) 
 Yt = {}        // initial new particle set 
 Do M times      // resample M particles 
  Draw random k with probability α w[k]  //resample 
  Add {xt

[k], (µ1,t
[k], Ʃ1,t

[k])………… ,(µN,t
[k], ƩN,t

[k])} to 
Yt  

 End 
End 
Select path(i) for which pathPotential(i) is maximum 



  

We simulated all three methods for various different kinds 
of indoor maps. Accuracy comparison statistics for 4 of the  
  
  

Fig.3 Complete Robot Trajectory for Fast, EKF and 
Shortest path based SPLAM 

Fig.4 Occupancy Grid Maps generated during course of 
Exploration from left-right then down in order 

Fig.5 Time variation for different Planning methods with 
respect to number of landmarks visible 

Fig.2 Planning instance : A – frontier 1, B – frontier 2,     
C - frontier 3, D – Robot 



  

 
Maps 

Planning Methods 
Map 

Characteristics 
Shortest 

Path 
SPLAM 

EKF 
SPLAM 

Fast 
SPLAM 

 
Map1 

Many 
landmarks & 

Scattered 

 
0.1583 

 
0.15030 

 
0.13940 

Map2 Few landmarks 
& Scattered 

0.19611 0.081705 0.050423 

 
Map3 

Many 
landmarks & 
Clustered at 

Center 

 
0.21994 

 
0.072572 

 
0.067625 

 
Map4 

Few landmarks 
& Clustered at 

Center 

 
0.36318 

 
0.10424 

 
0.11964 

 
TABLE 1. Trace values of Final Covariance Matrix for 3 

different SPLAM methods 
 

 
Fig.6 Maps obtained after Fast Planner based SPLAM 
 
 
maps is given in Table.1 . As evident from the values in the 
table, the proposed planner is far more robust than the 
shortest path based planner and has better or comparative 
accuracy when compared with the EKF based planner. An 
important observation to be noted is that, in a map where 
landmarks are clustered as in Map3 and Map4 (Fig.6), a 
significant advantage of Fast Planned and EKF Planner can 
be seen over Shortest path Planner when compared with 
scattered landmarks as in Map1 and Map2(Fig.6). This 
happens because in scattered-landmarks maps, almost any 
trajectory will see significant number of good landmarks but 
for clustered-landmarks maps, planning trajectory becomes 
vital as there exist only few locations from where good 
landmarks can be seen. 

We compare time taken for all the three methods considering 
time taken for planning decision made at nodes. Fig. 5 shows that 
time varies according to number of visible landmarks, as higher the 
number of visible landmarks more is the time taken for computing 
the inverse matrix required in computation of Kalman Gain, in an 
EKF based planner. Time comparison for Fast Planning method 
with different particle counts is also shown. It is evident from the 
figure that Fast Planning method works significantly faster than 
EKF Planning method. 

VI. CONCLUSION 

In this paper, we have considered a fast trajectory planning 
algorithm in Extended Kalman Filter (EKF) based SLAM. The 
objective is to plan robot’s path in such a way that it completely 
explores the surrounding environment autonomously and also 
conduct SLAM simultaneously to finally achieve minimum 
estimation error. Planning process also has to be fast enough so as 
to work on robot in real time applications. 
 According to theoretical analysis and as confirmed in 
simulations, it is evident that our planning algorithm performs 
much better than the algorithm that visits the closest frontier in 
terms of robustness of the final estimates of robot path and 
landmark pose. It shows significant reduction in computational 
time (planning time) vis-à-vis EKF SPLAM while maintaining the 
robustness of EKF SPLAM. Thereby it realizes a novel means of 
automating the SLAM process. 
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