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Abstract

Depth information has been shown to affect identification of visually salient regions
in images. In this paper, we investigate the role of depth in saliency detection in the
presence of (i) competing saliencies due to appearance, (ii) depth-induced blur and (iii)
centre-bias. Having established through experiments that depth continues to be a sig-
nificant contributor to saliency in the presence of these cues, we propose a 3D-saliency
formulation that takes into account structural features of objects in an indoor setting to
identify regions at salient depth levels. Computed 3D saliency is used in conjunction
with 2D saliency models through non-linear regression using SVM to improve saliency
maps. Experiments on benchmark datasets containing depth information show that the
proposed fusion of 3D saliency with 2D saliency models results in an average improve-
ment in ROC scores of about 9% over state-of-the-art 2D saliency models.

1 Introduction and Related Work

Salient region detection has attracted much attention recently due to its ability to model the
human visual attention mechanism, which has its roots in psychology but has been a topic of
research in diverse areas such as neuroscience, robotics and computer vision. Identification
of salient regions finds applications in object recognition [24], image retargeting [1], visual
tracking [17] etc. There are two main approaches to salient region detection — top-down
and bottom up, where the former is task dependent while the latter seeks to identify pop-
out features that enable the extraction of distinct regions in an image. Bottom up saliency
models have been developed as a pre-processing step to prioritize the search space for object
detection tasks reducing the computational overhead [4]. Top-down approaches include [20]
for scene recognition and [8] for tracking. Saliency detection has also been used as a pre-
processing step for active segmentation of the objects in point clouds for manipulative tasks
in robotics [3, 11].

Computational models have typically modelled saliency as a certain uniqueness or non
repetitiveness of an area or pixel based on some features. For example Achanta ef al. [2]
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Figure 1: Four different scenes and their saliency maps; For each scene from top left i)
Original Image, ii) RGB-Saliency map using RC [7], iii)Human fixations and iv) Fused
RGBD-saliency map

proposed a frequency tuned (FT) model that computes the pixel’s saliency as a difference of
the its color from the average image color. Zhai et al. [25] (LC) gives the saliency based on
its contrast to all other pixels using only the luminance cue. Hou et al. [9] gave a spectral
residual (SR) method that computes the saliency in the spectral domain. Cheng et al. [7]
proposed two methods with one on the histogram based contrast (HC) and other on region
based contrast (RC) and claim that the performance of RC is superior compared to FT, SR
and LC.

With the advent of the Kinect sensor, depth information has been used in addition to color
images for object recognition [13], human action recognition [22] and saliency detection
[14, 16, 18]. In[18] and [16] , authors incorporate depth information from stereopsis making
use of disparity maps of saliency detection. This implies that the accuracy of saliency maps
(grayscale image showing salient regions with brighter intensities) depends on the disparity
maps, which are not accurately obtained for cluttered indoor settings. Their work is limited
to well framed images using stereoscopic cameras and does not cater to the needs of indoor
environment. In [14], the authors use the Kinect sensor to obtain the depth and integrate it
with a 2D saliency model. They develop a large 3D dataset along with fixations using a 3D
eye-tracking system which is first of its kind. They study the spatial distribution of human
fixations on 2D and 3D images and draw conclusions to the effect that incorporating depth
information improves the quality of saliency maps. These conclusions effect in deciding
priors that could be used to enhance the existing saliency maps.

Our work contrasts with [14] through the additional observations on depth saliency re-
ported from our experiments, through the formulations of our 3D saliency model and the
model for fusing 3D and visual saliency. It is well known that in images of large depth of
field scenes taken using conventional cameras, the farther regions are out-of-focus, but im-
ages from the Kinect camera does not contain this phenomenon. Moreover, there is a bias
towards the centre of the image by the human visual system during fixation [23]. Our experi-
ments on depth-induced blurred images and on the centre-bias characteristic further reinforce
the importance of depth in visual saliency. We also conduct experiments to study the role
of depth in saliency detection when there are competing saliencies attributed to appearance,
such as color contrast (this was also not done in [14]).

The main contributions of this paper are: i). The development of a 3D saliency model
that integrates depth and geometric features of object surfaces in indoor scenes ii). Fusion
of appearance (RGB) saliency with depth saliency through non-linear regression using SVM
iii). Experiments to support the hypothesis that depth improves saliency detection in the
presence of blur and centre-bias. The effectiveness of the 3D-saliency model and its fusion
with RGB-saliency is illustrated through experiments on two benchmark datasets that contain
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depth information — University of Washington RGB-D dataset [12] and Berkely 3D object
dataset [10]. Current state-of-the-art saliency detection algorithms perform poorly on these
datasets that depict indoor scenes due to the presence of competing saliencies in the form
of color contrast. For example in Fig. 1, saliency maps of [7] is shown for three different
scenes, along with its human eye fixations and our proposed saliency map after fusion. It is
seen from the top left scene of Fig. 1, that illumination plays spoiler role in RGB-saliency
map. In bottom left scene of Fig. 1, the RGB-saliency is focused on the cap though multiple
salient objects are present in the scene. Bottom right scene of Fig. 1, shows the limitation of
the RGB-saliency when the object is similar in appearance with the background.

2 Effect of Depth on Saliency

The correlation and influence of depth cues in modelling saliency was studied in [14]. Based
on fixations on 2D and 3D images, they conclude that humans fixate preferentially at closer
depth ranges. They determine that the relation between depth and saliency is non-linear.
However, they do not consider three important issues in their study. Firstly, as mentioned
in the previous section, what is the effect of depth on saliency in the presence of competing
saliencies in the background? In other words, if there is a high color contrasting object in the
background, will the foreground object closer to the camera still capture saliency? Secondly,
a conventional camera looking at a large depth-of-field scene will be focused at one depth
implying that objects lying at other depths will be blurred. In such a situation, blur adds
to the effect of depth in determining the salient regions. The third issue is that of centre-
bias which implies that human fixations are biased to the centre of the screen when viewing
2D data. Would such a bias exist even when viewing large depth-of-field images? In this
section, we answer these questions through experiments on each of the three cases with 15
images for each case and analyze human fixations on them. Eight participants (4 male and 4
female) were shown the images. Images were displayed for 6 seconds. The observations are
as follows.

Competing saliency: Typical indoor settings have been created and captured by Kinect
depth camera, which, it must be noted, does not have option to focus at a depth. It can be seen
from Fig. 2(a) that objects lying closer to the camera and whose appearance does not contrast
with the background are fixated by human subjects and these fixations are comparable to
the other regions in the scene. However the RC saliency model is not able to capture this
information, as shown in the last row, since it considers only appearance.

Depth levels are the quantized levels of the depth range of the particular set of images.
In all these images the object closer to the camera is placed at a distance of 0.5 meters.
Hence the depth level 1 is the one that constitutes to the fixations on the bland object in
the experiment. Fixations are analyzed at each depth levels and plotted as unique fixations,
repetitive fixations and temporal fixations. Fig. 3(a) shows that the low contrast object at
closer depth gets equivalent unique fixations when compared to farther attentive regions.
However the closer objects are not fixated for large period of time to get multiple fixations,
as seen from Fig. 3(b). Hence we see darker red spots are on objects that are not closest to
the camera in the Fig. 2(a). Observing the sequence of fixations by Fig. 3(c), we note that
low contrast object at closer depth gets more attention in initial couple of seconds than the
later stage, which attests to the temporal characteristics of visual attention.
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(a) Competing saliency (b) Blurred (c) Centre-bias

Figure 2: (Top) Original images, (Middle) Human eye-fixations shown as a heat map on
the count of fixations, (Bottom) Saliency map given by state-of-the-art model RC [7]. In all
these settings objects at closer depth get comparable fixations, which is not reflected in the
saliency model without depth cues
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Figure 3: Depth stimulates the human fixations in practical indoor scenes; a) unique fixations

vs depth levels, b) repeating fixations vs depth levels, c¢) temporal fixations vs depth levels

Blurred scenes: Fig. 2(b) shows scenes where the background has been blurred (since
Kinect does not provide depth-induced blurred images) using the relationship between depth
map and image captured by the Kinect. Image regions beyond a depth is blurred by Gaussian
blur function of OpenCV [5] using Kernel size of (27, 27) with auto-computation of the
sigma values enabled.

To know quantitatively how the fixations are at foreground and background, effective
fixations at these levels are analyzed. Effective fixation at a foreground is the number of fix-
ations per-pixel in the foreground region. Similarly the effective fixations at the background
is computed and plotted for 15 images as shown in the Fig. 4(a). From this plot it is ob-
served that effective fixations at the foreground is higher compared to the effective fixations
at the background (blurred). This leads to an observations that the humans fixate on objects
that are focused irrespective of whether the objects have low contrast with respect to the
surroundings or not.

Centre-bias: In this experiment, when the foreground objects are placed left, center and
right in the field of view, their fixations vary largely. Five sets of scenes with these 3 varia-
tions were setup to confirm this observation. One such set is shown in the Fig. 2(c) with the
foreground object at left, center and right positions. Percentage of the foreground fixations
at these 3 spatial locations for 5 settings are computed and plotted in the Fig. 4(b). This
plot shows that the low-contrast object placed at the centre of the field of view gets more
attention compared to other locations. Thus, the notion of centre bias is also applicable in
large depth-of-field scenes.

‘We have shown that depth continues to affect saliency even when there are other attentive
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Figure 4: a) Percentage of Effective fixations at foreground and background for 15 images,
b) Percentage of fixations for spatial locations left, right and center for 5 different settings

cues present in the image. In the next section, we develop a model to capture depth saliency
in an indoor environment.

3 3D-saliency for Indoor Environment

Having established through experiments that depth has an important role in identifying
salient regions, we develop a method to measure saliency from depth information and the
structural features of objects in the scene. We call this as 3D-saliency denoted by D. A
challenging scenario in obtaining 3D-saliency is shown in Fig. 5(a), where there is very low
contrast between the salient region — the tall mug — and the surroundings causing appearance
based saliency techniques to fail. In such a situation, it is imperative to depend on depth to
determine saliency.

Compared to the stereo technology, active projection approach used in depth sensors like
Kinect results in reliable depth readings. The point cloud created from the depth image is
segmented using a region growing technique [19] which is implemented in Point cloud li-
brary [21]. Features used in this region growing technique are curvature and smoothness
of the surface. We adapt the region based contrast method from Cheng et al. [7] in com-
puting contrast strengths for the segmented 3D surfaces/regions. Each segmented region is
assigned a contrast score using surface normals as the feature. Structure of the surface can
be described based on the distribution of normals in the region. We compute a histogram of
angular distances formed by every pair of normals in the region. Every region Ry, is associ-
ated with a histogram H. Contrast score Cy of a region Ry is computed as the sum of the
dot products of its histogram with histograms of other regions in the scene. Since the depth
of the region is influencing the visual attention, the contrast score is scaled by a value Z,
which is the depth of the region R; from the sensor. Z; of the any region from the sensor is
computed by finding the depth of the centroid region. Hence the constrast score becomes

Cr =21 Y, Dy; ()
J#k
where Dy is the dot product between histograms Hy and H;.
Dimension of the regions after segmentation, plays a significant role in deciding the
saliency of the region. Suppose there are only two regions in the scene whose surfaces are
contrasting with each other. Since the contrast score calculated in the above section depends
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Figure 5: a) Two images in which the salient objects are unique due to their geometric
characteristics, b) Block diagram of proposed RGBD-saliency computation: Point cloud is
segmented into regions, which are assigned saliency scores by Depth saliency module. The

obtained 3D-saliency map is fused with the RGB-saliency map to obtain RGBD-saliency
map

RGB Image RGB Saliency map

on the surface description through histograms, they get equal scores. However, in order to
define the saliency, sizes of the regions i.e. the number of points in the region, have to be
considered. We find the ratio of the region dimension to the half of the scene dimension.
Considering ny as the number of 3D points in the region Ry, Eq. 1 becomes

ZZ n
XY Dy 2)

Z”J J#k

The region with less C score is considered to be the one that is unique in the scene with
respect to depth only. Hence saliency of the region Ry becomes Sy, = 1 — C/Cinax, Where Cpay
is the maximum contrast score in the scene for a region. Having a one to one correspondence
between every 3D point in the point cloud to a pixel in the image, the 3D-saliency map can
be computed by assigning the saliency score to its corresponding pixel. With the obtained
3D-saliency map, we fuse saliency maps given by the state-of-the-art algorithms to obtain
the RGBD-saliency map.

4 RGBD-Saliency Fusion

In this section, we describe a method to fuse depth (3D) saliency with 2D saliency models
to obtain the final saliency map, which we call the RGBD-saliency map. Fig. 5(b) shows
the block diagram of proposed fusion of depth and RGB-saliency, where the 3D-saliency is
obtained for each region generated by a region segmentation of the point cloud.

Consider S,,5(x,y) as RGB-saliency and S3p(x,y) as 3D-saliency value for a pixel at
(x,y) for below discussion. Both Srep and S3p are high at the regions which are attentive in
appearance and 3D shape marked as H in the Fig. 6(a). These cases can be obviously consid-
ered to be highly salient in the fusion. Similarly when both S,,, and S3p are low marked as
L in the Fig. 6(a), they have to be considered as less salient in the fusion. Then there are the
cases where S,¢, and S3p conflict with each other. These complementary scenarios where
one is high and the other is low are marked as C in Fig. 6(a). The fusion of such cases is
not always straightforward for a high in one model and low in the other could be due to false
positives making one of the saliency values high. Tricky are also those cases where S, and
S3p depict average values.
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Figure 6: a) Fusion cases: Original image (first from left), RGB-saliency map(second), 3D-
saliency map(third) and Fused RGBD-saliency map. Regions are marked H-high, L-low and
C-compliment to show scores of both RGB-saliency and 3D-saliency and the regions where
they compliment each other, b) Percentage improvement in fusion vs increase in the features

To generalize these cases we consider training SVM regression using libsvm [6] with
some images and learn how to fuse the saliency maps. To avoid the computational expense
we sample entire pixels of training images into training and validation data. Using libsvm
we cross validate the same for varying C and 7y of the SVM kernel. We choose the training
model with least mean squared error in the validation. With this trained model, we fuse
the values of RGB-saliency and 3D-saliency of test images and get the predicted value for
each pixel. We also experimented with additional local features of the regions to improve
the performance of the fusion process. Overall fusion by learning is a function of saliency
scores, features and weights assigned by these features to determine its fused saliency score.
This function is given by

rgbd; = f(w, fi,rgbi,d;) 3)

where w is the weight vector learnt by the SVM model with the help of local feature vector
fi and saliency scores rgb;, d; to determine rgbd; at i'" pixel of an image.

Additional features used in the fusion process are (along with their feature lengths):
Color Histogram (30) of region both in terms of RGB and HSV each of 15 bins . Contour
Compactness (1) is the ratio of the perimeter to the area of the region. Dimensionality (2)
is the two ratios, minimum dimension by maximum dimension and medium dimension by
maximum dimension. Perspective score (8) is the ratio of the area projected in the image to
the maximum area spread by the region in 3D. Discontinuities with neighbours (10) is mea-
sure of how much the region is connected with its neighbouring regions. Size and Location
(9) of the region with respect to the scene gives the range and location of the region in three
dimension. Location here constitutes to the scaled location of the region with respect to the
scene by computing min and max values in each dimension. This takes into account of our
third observation of spatial context in the Section 2. Verticality (20) is the histogram measure
of difference of the normals in the region with respect to the camera pose. They combinely
constitute a feature length of 82 along with the RGB and 3D-saliency score. Fig. 6(b) shows
the improvement in the performance with the addition of these features.

S Experiments

We start by discussing the dataset and the benchmarking techniques. By fusing the proposed
3D-saliency with the available RGB-saliency models we show significant improvement in
ROC scores of the generated saliency maps.
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Table 1: ROC scores of saliency models on UW dataset images

Saliency Models | RGB D RGB-D | % change in RGB
FT 0.6433 | 0.7558 | 0.7975 11542
LC 0.5748 | 0.7558 | 0.7994 12246
HC 0.5980 | 0.7558 | 0.7912 119.32
SR 0.7838 | 0.7558 | 0.8347 15.09
RC 0.7105 | 0.7558 | 0.8053 19.48

Table 2: ROC scores of saliency model RC [7] for subset of Our dataset images categorized
for blurred and spatial variations in the experiments

Category of Images RGB-RC D RGBD-RC | % improvement
Our dataset - Blurred 0.6881 0.7016 0.7391 15.10%
Our dataset - Spatial variations | 0.7688 | 0.7138 0.8267 15.79%

Datasets and Benchmarking: Public benchmark datasets for evaluating saliency algo-
rithms available, include only monocular images without depth maps. To the best of our
knowledge, there is no publicly available RGB-D database for saliency analysis. In order
to test the RGBD-saliency and make comparisons, we used RGB-D dataset provided by the
University of Washington (UW) [12] and also the Berkeley 3D object dataset [10]. In ad-
dition to this we generate our own dataset with 33 images. These datasets have different
scene categories, out of which we choose 28 images from UW dataset and 50 images from
Berkeley dataset, which are distinct in terms of back ground and objects for our experiments.
In the fusion process with UW dataset, we train on 4 images and test on 24. With Berkeley
dataset we train on 10 images and test on 40. Similarly we train on 6 images and test on 27
in our own dataset captured using Kinect sensor.

We create ground truth by region based method [15]. Eight subjects with 4 males and
4 females of non-technical background were requested to draw bounding borders around
objects/regions (maximum number of objects allowed in marking is 4) that attracts them in
the image. It is noticed that the objects marked by the subjects under the scenes where there
are many objects in the scene had inconsistency in being a salient ground truth. Hence we
set the pixel value to 1 if at least 2 subjects agree that the pixel it belongs to a salient region
and zero otherwise.

Performance Evaluation and Results: Experiments are performed to show how the pro-
posed RGBD-saliency enhances the performance of existing saliency models, across differ-
ent datasets. ROC scores showing the improvement in performance of five RGB-saliency
models after fusing with the 3D-saliency is shown in Table 1 for UW dataset. It can be ob-
served that the fusion improves the scores across all the five models by a significant amount.
Scores showing the performance of the fused RGBD-saliency for (RC [7]), across three
datasets is shown in Table 3. This concludes that the improvement is not specific to a par-
ticular setting. ROC scores are computed for our dataset where experimental settings with
blurred images and spatial variations are categorized. Improvements in scores is shown in
Table 2.

UW dataset is entirely lab/workspace setting, whereas Berkeley 3D dataset also includes
household settings along with lab/workspace scenes. Our own dataset is taken at settings
as discussed in Section 2 for experimental analysis which also includes indoor settings that
is entirely different from the other two datasets. All these three datasets are different from
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Figure 7: From left (1) Original image and its (2) Human annotated ground truth, (3) RGB-
saliency map using RC [7], (4) 3D-saliency map and the (5) Fused RGBD-saliency map.
RGB-saliency fails to map the objects that are closer, but the fusion of 3D-saliency helps in
recovering these objects.

Table 3: ROC scores of saliency model RC [7] for all three datasets used in this work

Datasets RGB-RC D RGBD-RC | % improvement
Univ of Washington | 0.7105 | 0.7558 0.8053 19.48%
Berkeley 3D dataset | 0.7246 | 0.7518 0.8157 19.11%
Our dataset 0.7287 | 0.7312 0.8001 17.14%

each other in their scenic structure and objects included. Hence it is worth evaluating the
performance of the proposed saliency model on these datasets. Table 3 shows that RGB-
saliency across all these datasets perform to a similar level, while the 3D-saliency performs
superior compared to their visual saliency models. This superior performance of the 3D-
saliency is because of the largely varying depth levels and structures in the indoor scenes.
But however this alone does not constitute to a better saliency because, appearance is the
primary cue to the visual attention. Hence the fusion is performed and it can be seen in
Table 3, that fused RGBD model provides an improvement of around 9% across all these
datasets. Having shown the improvement on the state-of-the-art method (RC) [7] in Table 1
we show the improvements across the other visual saliency models on UW dataset. Results
of these models on other datasets is shown in supplementary material. Table 2 shows how the
ROC scores are for the blurred and center biased setup in the Section 2. It can be infered that
RGB-RC score of the Blurred category is less compared to the D and there is an improvement
of 5.10% by the fusion process. Whereas in spatial variations, the images contain subset of
images where the object closer to camera is placed at left and right locations, which decreases
the D score compared to RGB-RC score but overall, improves the score by 5.79% when
fused.

It can be seen from the Fig. 7, that the RGB-saliency fails to map the objects that are less
contrast with the background. However fusion of 3D-saliency and RGB-saliency helps in
recovering the objects that were missed out. It should also be noticed that the regions of the
background which has slightly higher saliency score in pure 3D-saliency has been brought
down to least score in the fusion. Hence both RGB-saliency and 3D-saliency compliment
each other in the fusion process. Saliency maps of all the models discussed and proposed in
this paper are shown in supplementary material across three dataset images.
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6 Conclusion

In this work we proposed RGBD-saliency to resolve the drawbacks of the existing visual
saliency models in a pratical indoor settings. We derived RGBD-saliency by formulating
a 3D-saliency model based on region contrast of the scene and fused it with the existing
saliency models using SVM. It is shown that the resulting fused model clearly outperforms
the individual models by a significant amount of 9% on average. We conclude that all the
models compliment the 3D-saliency very well to produce the RGBD-saliency. We test this
behaviour successfully across different datasets and quantify the enhancements.
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