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Abstract— Stair Climbing is a key functionality desired for
robots deployed in Urban Search and Rescue (USAR) scenarios.
A novel compliant modular robot was proposed earlier to climb
steep and big obstacles. This work extends the functionality
of this robot to ascend and descend stairs of dimensions that
are also typical of an urban setting. Stair Climbing is realized
by equipping the robot’s link joints with optimally designed
passive spring pairs that resist clockwise and counter clockwise
moments generated by the ground during the climbing motion.
This 3-module robot is only propelled by wheel actuators.
Desirable stair climbing configurations are estimated a-priori
and used to obtain the optimal stiffness for springs. Extensive
numerical simulation results over different stair configurations
are shown. The numerical simulations are corroborated by
experimentation using the prototype and its performance is
tabulated for different types of surfaces.

I. INTRODUCTION

For any robot that is deployed in an urban setting, the
ability to successfully ascend and descend stairs is indis-
pensable. Several kinds of robots that are deployed in urban
settings, such as Bipedal Robots [1], [2], [3], Wheel-Legged
systems [4], [5], Segway Robots [6], [7], Tracked [8], [9],
[10] and Modular Robots [11], boast of this feature. [12]
also provides an interesting work for unstructured and uneven
terrain. Conventionally, stairs have been treated as an uneven
terrain and thus most robots that demonstrate stair climbing
are tracked or legged. Though tracks and legs have better
traversing ability on an uneven terrain, they are still slower
than wheeled robots with the same actuator system. Hence
there is an added advantage for articulated wheeled robots
for stair climbing. However, except for a few notable ones
like Shrimp [13] and an optimally designed Rocker-Bogie
[14], there is a dearth of literature on articulated wheeled
robots ascending and descending stairs. Even in the above
two cases, only stair ascent is shown.

In the current work, we attempt to bridge this gap with
our proposed compliant modular robot, shown in Fig. 1. The
compliant modular robot consists of three modules, each
consisting of a link and a wheel-pair. The link-joints are
fitted with passively compliant elements (springs) to limit the
robot’s flexibility to desired levels and efficiently traverse on
uneven terrain. Our previous work [15] has already shown
that the robot can climb heights up to three times its wheel
diameter. The robot developed was very light-weight, made
of simple and easily replaceable off-the-shelf parts thus
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helping in quickly prototyping and deploying such robots
in larger numbers and lowering the time taken for search
and rescue by facilitating a large scale parallelization of the
process.

Fig. 1: Compliant modular robot prototype

It was shown in our previous works [15], [16] that
compliance helps in redistributing normal forces acting on
the wheels and thereby allowing them to generate higher
traction force while climbing. Hence, wheels tend to slip less
and traverse better on uneven terrains. Note however that,
the choice of spring stiffness has an impact on the robot’s
traversing ability. This paper discusses in sufficient detail
how this optimal spring stiffness is determined for effectively
ascending stairs. The key novelty of this work is the usage
of a spring-pair at every link joint as opposed to a single
spring [15].

During stair climbing, both clockwise and counter clock-
wise moments act at the robot’s joints, in a periodic manner,
while tracing the contour of the steps. During ascent, an
optimally designed torsional spring-pair is used at every link-
joint to store the energy generated from bending along the
step, and effectively re-use it while straightening, to push
the robot upwards. During descent, the spring-pair helps in
absorbing the kinetic energy generated while falling off the
step riser and using it to move faster on the tread. This
clearly demonstrates the utility of compliance in enabling a
wheeled robot to swiftly navigate on uneven terrain. Exten-
sive numerical simulation results are presented to validate
this climbing behaviour. The robot is able to ascend and
descend a wide variety of steps whose slopes range from
≈ 20◦ to 35◦. Clearly, it is a broad spectrum of slopes in
terms of the variations in both riser and tread lengths. This
is experimentally presented as well.
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The paper is organized as follows. In Section II, the stair
climbing ability of the modular robot is analysed and the
need for a spring-pair as opposed to a single spring at the
joints, is justified elaborately. Also, a method to estimate
robot configurations is introduced. Section III outlines the
quasi static analysis of the robot and the optimization proce-
dure to estimate the joint stiffness. The numerical simulation
results of ascending and descending stairs are shown and
analysed in Section IV. Section V presents the experiments
carried out for ascending and descending of stairs on various
types of surfaces. Finally, conclusions and the scope for
future work are discussed in Section VI.

II. STAIR CLIMBING ANALYSIS FOR A COMPLIANT
MODULAR ROBOT

Fig. 2: Schematic of the 3-module robot

Since the robot is active wheel - passive joint type, it is
necessary to ensure that the wheels don’t slip while traversing
and the robot maintains forward motion. A schematic of this
3-module robot is shown in Fig. 2 and its model parameters
are provided in Table I. The link joints are denoted by J1
and J2, whereas wheel joints are denoted by W1, W2, W3

and W4. θi denotes the absolute angle of module i while
φi denotes the relative angle between modules i and i + 1
measured from module i+1. The moment acting at joint Ji
is denoted by τi.

TABLE I: Model Parameters of the Compliant Module Robot

Symbols Quantity Values

l Link Length 0.15 m
b Link Breadth 0.1 m
r Wheel Radius 0.045 m
l0 Wheel Joint and Link Joint Offset 0.03 m
c Link Height from Wheel Center 0.0626 m

τwmax Stall Torque of Wheel Motors 0.6 Nm
mw Mass of Each Wheel 0.1 Kg
ml Mass of Each Link 0.4 Kg

A. Challenges in Stair Climbing

In our previous work [15], it was shown that adding an
optimally designed compliant joint at J1 enabled the robot
to climb obstacles up to three times the wheel diameter.
This robot with only one spring at J1, was tested on a
staircase of pitch angle 25◦. Here, pitch angle (hereafter
denoted by α) is defined as tan−1(h/t), where h and t
denote the lengths of riser and tread respectively, as shown
in Fig. 3. The spring aids Wheel-1 in climbing the riser
of the first step. Once on the top, as Wheel-2 grazes
the tread and Wheel-1 begins climbing the riser of the
second step, the robot gets into an undesirable configura-
tion where φ1, the relative angle between Module-1 and
Module-2, decreases significantly causing Wheel-2 to lift
off the ground. This results in a stationary configuration
(which occurs just after the configuration shown in
Fig. 3) that stalls forward motion along the stairs. We propose

Fig. 3: The robot getting stuck while ascending stairs with
only one spring at J1

to overcome this situation by using another spring at J1 that
resists clockwise moments. Similar requirement will arise
at J2 also as the robot ascends higher. Ideally, when an
articulated robot is used to climb stairs, it is desired that
the high degree of freedom enables the robot to naturally
deform along the contour of the stairs. Cases arise during
stair ascent and descent where wheels lose contact resulting
in stationary configurations as discussed above.

We propose to avoid this by using two springs at each
joint. k1 and k2 are stiffness values for Joints J1 and J2,
respectively. For the sake of convenience, we denote the
stiffness of springs opposing counter-clockwise and clock-
wise moments for joint i as k+i and k−i , respectively. The
optimal stiffness for both springs can be determined by
estimating the range of clockwise and counter-clockwise
moments acting on the robot during stair climbing. The robot
typically traverses at speeds of 0.25 m s−1 on flat ground.
Therefore, it is observed that the inertial forces are minimal
and a quasi-static analysis could be used to study robot’s
climbing motion.

In order to get better insight into the problem discussed
above, expressions for normal forces of Wheel-1 and Wheel-
2 with and without springs are derived from the static equi-
librium equations for moments at J1 and J2, respectively,
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i.e.,

∑
MJ1

= 0
∑

MJ2
= 0

Without the springs at the Joints J1 and J2 the normal forces
N1, N2 are obtained as :

N1 =
2wwlcosθ1 + wl(

l
2cosθ1) + csinθ1

D1
(1)

N2 =
A+BN1

D2
(2)

where,
D1 = 2lcosθ1 + 2µ(r + lsinθ1)

A = wl(
3l
2 cosθ2 + locosθ2 − csinθ2) + 2wwlocosθ2

B = 2(l + lo)(µsinθ2 − cosθ2)

D2 = 2lcosθ2 − 2µ(lsinθ2 − r)

With the addition of springs k−1 and k+2 , the normal forces
N ′1 and N ′2 are obtained as follows.

N
′

1 = N1 +
k−1 φ1
D1

(3)

N
′

2 = N2 +
1

D2

[
k+2 φ2 − k

−
1 φ1(1−

B

D1
)

]
(4)

Rearranging the above equations, we have,

D1(N
′

1 −N1) = k−1 φ1 (5)

D2(N
′

2 −N2) =

[
k+2 φ2 − k

−
1 φ1(1−

B

D1
)

]
(6)

The values of D1 and D2 are found to be positive for all
the progressive stages (Iterations as mentioned in Fig. 4) of
the robot from the instance Wheel-2 has climbed the riser
of the first step till it reaches the configuration shown in
Fig. 3. Note that, given the design of the compliant joint,
k+i comes into play when φi is positive and k−i when
φi is negative. It is evident from (5) that the difference
between N

′

1 and N1 is 1
D1

[k−1 φ1]. Similarly from (6), the
difference between the normal forces N

′

2 and N2 at W2 is
given by 1

D2

[
k+2 φ2 − k

−
1 φ1(1− B

D1
)
]
. Therefore one may

always design springs, k−1 and k+2 to impose N
′

1 < N1 and
N2 < N

′

2, since this avoids the stationary configuration dis-
cussed above. This condition is encompassed in the objective
function considered in subsection III B. The profiles for the
normal forces with springs (stiffness values taken from those

obtained in subsection III B) and without springs are plotted
in Fig. 4. These were calculated using (1), (2), (3) and (4).
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Fig. 4: Normal Force for (a) Wheel-1 and (b) Wheel-2
without (Block line) and with (Dashed line) k−1 and k+2

B. Robot Configuration Estimation

Quasi static analysis of the robot plays an important role
in finding the optimal spring stiffness values. Therefore, in
order to perform the analysis, the stair climbing motion of
the robot needs to be divided into discrete phases and the
static forces must be estimated at each configuration. This
is a non-trivial problem for highly articulated systems like
the modular robot. For a given position of Wheel-1 center
on the staircase, the subsequent modules can have more than
one possible configuration. This problem can be alleviated
by formulating an objective and choosing configurations that
best adhere to it. The objective in the case of stair climbing is
to always maintain contact with the step, wherever possible.
In this subsection, a systematic procedure is devised to derive
such configurations.

0 10 20 30 40 50 60 70 80 90

0

10

20

30

Horizontal Distance

H
ei

gh
t

 

 
Actual Staircase
Desired Locus

l + l0

Fig. 5: Demonstration of finding Wheel center of Wheel-2
when given the wheel center of Wheel-1.

Note that, sufficient ground clearance (c+ r) is provided
to ensure the links never collide with the ground [15]. Next
we draw locus of Wheel-1 center in such a way so that the
wheel always touches the ground while climbing the stairs.
Now it is straightforward to observe that Wheel-2 center will
be approximately at the intersection of the circle of radius
l+ l0 (drawn from Wheel-1 center) and the locus of Wheel-
1. An illustration of this process is shown Fig. 5. For an
n-modular robot, the slope of module i and subsequently its
absolute angle can be determined from the center points of
Wheels i and i+ 1.

The stair contour is discretized into z steps. For every point
j ∈ [1, z] that Wheel-1 center passes while stair climbing,
the corresponding absolutes angles (θ’s) for all the modules
are obtained. Furthermore, relative joint angles (φ’s) can be
obtained using φi = θi − θi+1. In this manner, the desired
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configurations of the robot for stair climbing are derived.
This procedure is simple and very effective in determining
the robot configurations on any known terrain model. In the
next section, the quasi-static analysis of the robot is carried
out and the optimal joint stiffness is estimated.

III. COMPLIANT JOINT DESIGN

It was proposed earlier, in Section II, that two springs
with complementary action are required at every joint for
successful stair climbing. However, it must be noted that the
spring-pair fitted to every joint will not act simultaneously.
The net direction of the resultant moment, generated due
to static forces, changes periodically while climbing stairs.
Accordingly, the springs are activated through compression
alternatively. Therefore, to estimate the spring stiffness of all
the springs fitted to the robot, the quasi static analysis has
to be divided into phases. In each phase, the springs that are
in action are identified and their optimal stiffness values are
calculated. It will be shown in the next subsection that three
phases are sufficient to determine the optimal stiffness values
of two pairs of springs, one fitted at Joints J1 and another at
J2. This is because, the same phases repeat when the robot
climbs more number of steps.

A. Quasi Static Analysis of the Robot

Fig. 6: Phase-1: 0 ≤ φ1 ≤ φmax
1 and φ2 = 0

In Phase-1, only spring at J1 that resists counter-clockwise
moments will act. Hence the stiffness value of k+1 is calcu-
lated from this phase. The static equilibrium equations for
Phase-1 are the same as in [15] and are not reported here
for brevity. The forces acting on the robot are depicted in
Fig. 6. Here, Fi and Ni denote traction and normal forces
at Wheel-i, respectively.

Fig. 7: Phase-2: φmin
1 ≤ φ1 ≤ φmax

1 and 0 ≤ φ2 ≤ φmax
2

In Phase-2, as shown in Fig. 7, both clockwise moments
and counter-clockwise moments need to be resisted at J1
as the Wheel-2 climbs the riser and φ1 decreases from a
positive value to a negative value. The counter-clockwise

moments are resisted at J2. The stiffness value of k−1 has
been calculated from this phase.

Fig. 8: Phase-3: 0 ≤ φ1 ≤ φmax
1 and φmin

2 ≤ φ2 ≤ φmax
2

Finally, in Phase-3 as shown in Fig. 8, counter-clockwise
moments are resisted at both J1 and J2. Additionally, clock-
wise moments are also resisted at J2 as φ2 decreases from a
positive value to a negative value. Hence the stiffness values
of k+2 and k−2 are calculated.

The static equilibrium equations for Phase-2 and Phase-
3 are shown in Appendix. In the next section estimation of
optimal spring stiffness values is showcased.

B. Optimization of Link Joint Moments

The objective function for the optimization is taken as the
maximization of the normal forces at each of the wheels. This
is justified by the fact that with increase in normal force, the
traction force increases and helps in better climbing. The
optimization is carried out for all climbing phases shown in
Figs. 6, 7 and 8. The objective function is given below:

Maximize N1,j
2 +N2,j

2 +N3,j
2 +N4,j

2 ∀ j ∈ [1, zp]

subject to

Fj ≤ min(τwmax/r, µNj)

Apxp = Bp

where, τ = [τ1 τ2]
T , F = [F1 F2 F3 F4]

T , N =
[N1 N2 N3 N4]

T , and the vector of design variable xp =
[Fj

T Nj
T τj

T ]T ∀ j ∈ [1,zp]. Moreover, Fi’s and Ni’s
denote traction and normal forces acting at wheel-pair i,
and τi’s denote the moments at the link joints as mentioned
before. τwmax denotes the saturation torque of the wheel
motors, and Apxp = Bp denotes the static equilibrium
equations for Phase-p, where xp is the design variable
and Ap is its coefficient matrix. Bp refers to the terms
of inertial moment left out in the quasi static equations
shown in the Appendix. Finally, zp denotes the number of
steps for which the optimization is carried out in Phase-p.
The above optimization process gives the optimal τ values
(solved over an unbounded region of τ ) required at the two
joints to maintain static equilibrium without slipping while
maximizing the normal reaction of each of the wheel, among
other solutions. The moment (τi) versus joint angle profiles
are shown in Fig. 9.

Note that, most of them are almost linear and the spring
constant can be estimated by a simple linear interpolation of
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Fig. 9: Moment Profile (τi) obtained at : (a) Ji=1 for
increasing profile of Joint angle φ1 for k+1 (from Phase-1)
(b) Ji=2 for increasing profile of Joint angle φ2 for k+2 (from
Phase-3) (c) Ji=1 for decreasing profile of Joint angle φ1 for
k−1 (from Phase-2) (d) Ji=2 for decreasing profile of Joint
angle φ2 for k−2 (from Phase-3)

the data, as shown below.

Minimize
k

p∑
j=1

(τ j − kφj)2 (7)

Here, k = diag(k1, k2), where k1 and k2 are stiffness
values for Joints J1 and J2, respectively, as discussed in
subsection II A and φ = [φ1 φ2]

T . Following the quasi
static analysis in the previous subsection, we obtain the
stiffness k+1 for the spring resisting counter-clockwise
moments at J1 from Phase-1. The spring stiffness value
obtained from Phase-2 is k−1 for joint J1. This is obtained
by fitting a curve (shown in red) to account for the moment
profile required for joint angles during ascent. Finally, we
obtain k+2 and k−2 values from Phase-3. From the linear
interpolation of the joint moment profiles, the following
stiffness values were obtained for springs at Joints J1 and J2:

k+1 = 0.0506 Nm/deg & k−1 = 0.0216 Nm/deg,
k+2 = 0.0161 Nm/deg & k−2 = 0.0267 Nm/deg.

IV. NUMERICAL SIMULATION OF STAIR CLIMBING

After determining the optimal stiffness values for the
springs, the compliant modular robot was numerically sim-
ulated in MD ADAMS, a multibody dynamics simulator,
to analyse robot’s stair climbing ability. Six different stair
case dimensions were chosen from a pitch angle range of
≈ 20◦ to 35◦ to demonstrate wide range of robot’s climbing
capability. The riser-to-tread ratio of ≈ 0.59 is considered
optimal which corresponds to a pitch angle of about 30◦ [17].
Figs. 11 and 12 show snapshots of numerical simulations
of the robot successfully ascending and descending stairs
whose pitch angles are 33.42◦ and 26.56◦ respectively. It
is worth noting that the robot was able to successfully
descend the stairs, despite the external deforming moments
at the joint being greater than the balancing spring moments.

Note that, the linear interpolation used for spring design
underestimated the desired joint moments in this case. This
clearly demonstrates the robustness of this design.
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Fig. 10: Graphs depicting the Normal Forces at all the wheel-
pairs for cases with spring of stiffness k−1 (dashed) and
without it (solid)

As discussed in Section II, the second spring at J1 (of k−1
stiffness) plays a key role in ascending stairs. This can be
clearly verified from the normal force plots shown in Fig. 10.
The solid line depicts the normal forces without k−1 for all the
wheels for the phases before and during the time when the
Wheel-1 is climbing the riser of the second step. Similarly,
the dashed line depicts the normal forces when k−1 is used
at J1. It can be seen that Wheel-2 has a higher normal force
value when the second spring is used. This further validates
the theoretical results showcased in Fig. 4 i.e., N

′

1 < N1 and
N2 < N

′

2.
Additionally, a reactive moment acts on Module-3 that

tends to lift Wheel-3 off the ground and redistribute the
normal force to Wheel-4 as can be noted from the Fig. 10
(c)-(d). Note that, once Wheel-3 hits the riser of the step
and starts climbing, it is Wheel-2 and Wheel-4 that need
to provide traction in the horizontal direction and move the
robot forward. The second spring clearly aids in this process.

Additional simulations were carried out on stairs with
pitch angles ranging from ≈ 20◦ to 35◦, and the robot’s
climbing behaviour was analysed. The average speeds and
mean slip ratios of the robot for all stair dimensions, are
listed in Table. II. It was observed that on a flat ground, the
compliant modular robot maintains a speeds of upto 0.25 m
s−1. From the six simulations, it was recorded that the robot
maintained an average speed of 0.147 m s−1 during ascent
and 0.223 m s−1 during descent. They are within a close
range of its flat terrain speed. It is also worth noting that,
in spite of obtaining the spring stiffness from a quasi-static
analysis, the springs of these values were able to balance out
inertial forces whenever they were generated. The average
slip ratio of all the wheels was computed to be in the range
of 0.10 to 0.30 which is reasonably low for stair ascent and
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 11: Stages(a)-(h) Numerical Simulation of the robot on stair dimensions as riser length of 12cm and tread length as
18cm

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 12: Stages(a)-(h) Numerical Simulation of the robot on stair dimensions as riser length of 11cm and tread length as
22cm

descent.

V. EXPERIMENTATION
In order to validate the theoretical and numerical simu-

lation results on the effectiveness of using compliance at
Joints J1 and J2 proposed in the earlier sections, several
experiments have been carried out on a real prototype of the
robot.

The springs were fabricated as per the optimal stiffness
values determined in Section III B. Accordingly, the spring’s
inner and outer diameter were designed to be as 0.007m and
0.0086m respectively and is made of music wire with number
of coils as 3.5. The mechanical structure of the robot is same
as [15] according to the parameters mentioned in Table. I.
The spring assembly is depicted in Fig. 13. An open loop
control was implemented as the objective of the experiments
was to show the effectiveness of compliance at joints during
stair climbing.

Fig. 13: The Spring Assembly - k+ is labeled as (1) and k−

is labeled as (2) : (a) Spring loaded hinge, (b) Joint with
mounts for the robot, (c) k+ in action and (d) k− in action

As mentioned in subsection II A, our robot in [15]
equipped with one spring k+1 at Joint J1 was unable to climb
the riser of the second step with stair dimensions of riser
length as 11cm and tread length as 22cm. This has been
demonstrated both numerically and experimentally as seen
in Fig. 14.

In order to overcome this problem, springs in both clock-
wise and anti-clockwise direction at Joints J1 and J2 were
added, as discussed in subsection II A. Figs. 15 (a)-(g)
depict that the robot was able to climb stairs with the same
dimensions when springs k−1 and k+2 are added to Joints J1
and J2 respectively. This experiment validates the efficacy of
spring pair in redistributing normal forces as demonstrated
in Fig. 10.

Additionally, the robot was tested on various stair di-
mensions mentioned in Table. II with step pitch angle (α)
varying from ≈ 20◦ to 35◦. Figs. 15, 16, 17 and 18 show
the experiments conducted on various stair dimensions using
different surfaces like wood, concrete, ceramic bricks and
carpet. This proves the robustness of the proposed robot
under small variations in stair dimension and/or coefficient
of friction.

It was also observed that the same stiffness values of the
springs could help in descending stairs even though they
were not specifically optimized for descending. Figs. 17 (e)-
(f) and Figs. 18 (e)-(h) show the descending of the robot
experimentally. Note that in stair climbing, the combined
action of the springs in different configurations makes the
robot behave differently. While descending, if the counter
clockwise moment resisting spring were too stiff, the robot
would have folded on itself. There were no such cases of
toppling observed even with pitch angles as steep as ≈ 35◦.
The maximum height the robot could climb experimentally
was found to be 12cm.

(a) (b) (c)

Fig. 14: Numerical Simulation and Experimentation on robot
with only one spring(k+1 ) at Joint J1
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TABLE II: Performance of the Robot during Stair Climbing

Sr.No. Step Pitch Angle (deg)
Tread length Riser length Avg. Speed(m s−1) Mean Slip Ratio

Material(mm) (mm) Ascent Descent Ascent Descent

1 23.74 180 80 0.1507 0.2194 0.1976 -0.1683 Wood
2 26.56 220 110 0.1422 0.2268 0.2428 -0.2077 Wood
3 33.42 180 120 0.1456 0.2252 0.2247 -0.1991 Wood
4 28.36 220 120 0.1387 0.2322 0.2614 -0.2364 Concrete
5 19.79 220 80 0.1608 0.2142 0.1438 -0.1406 Red Brick(smooth)
6 34.21 160 110 0.1466 0.2225 0.2194 -0.1848 Red Brick(smooth)

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Fig. 15: Stages (a)-(g)The robot is ascending on stairs with dimensions as 11cm riser height and 22cm tread width and
Stages(h)-(n) as 8cm riser height and 18cm tread width

(b) (c) (d) (e)(a) (f) (g)

Fig. 16: Stages (a)-(g)The robot is ascending on concrete stairs with dimensions as 12cm riser height and 22cm tread width

(c) (d)

(i) (j)

(a) (e) (f)(b)

(g) (h) (k) (l)

Fig. 17: Stages (a)-(f)The robot is ascending and descending on redbrick stairs with dimensions as 8cm riser height and
22cm tread width and Stages (g)-(l) with dimensions as 11cm riser height and 16cm tread width

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 18: Stages (a)-(d)The robot is ascending and in (e)-(h) descending on carpet stairs with dimensions as 12cm riser height
and 18cm tread width
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VI. CONCLUSIONS AND FUTURE WORK

In this work, we proposed that the compliant 3-module
robot was able to ascend and descend stairs of various pitch
angles by the addition of spring-pairs at link Joints J1 and J2.
The role of springs in helping the robot successfully climb
stairs has been explained in detail. Numerical simulations
have been carried out on various stair dimensions. Moreover,
experimentation was performed on the prototype to validate
the theory and simulations. The robot was able to climb stairs
with pitch angle ranging from ≈ 20◦ to 35◦. Additionally, the
robot was also tested on various surfaces and its performance
was tabulated.

Future work would focus on analysing performance of
our robot on stairs with an overhang. Furthermore, we wish
to develop joints whose stiffness can be actively varied, to
further enhance the robot’s traversing ability.
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APPENDIX

The static equilibrium equations for the remaining phases
(from subsection III A) of stair ascent are given below.

Phase− 2 Equations∑
Fx = 0 N2 − F1 − F3 − F4 = 0∑
Fy = 0 3wl + 8ww − 2F2 − 2N1 − 2N3

− 2N4 = 0∑
MJ1

= 0 − 2F1(lsinθ1 − r) + 2N1lcosθ1

− wl

(
l

2
cosθ1 − csinθ1

)
− 2wwlcosθ1 − τ1 = 0∑

MJ2 = 0 2N1(l + l0)cosθ2 − 2F1(l + l0)sinθ2−

wl

(
l

2
cosθ2 − csinθ2

)
− 2wwlcosθ2−

(wl + 2ww)(l + l0)cosθ2+

2F2(lcosθ2 + r) + 2N2lsinθ2

− τ2 + τ1 = 0∑
MW4

= 0 2F3r + 2F4r + 2N3l − 2wwl−

wl

(
l

2

)
− [2(2ww + wl)−

2F2 − 2N1](l + l0) + τ2 = 0

Phase− 3 Equations∑
Fx = 0 F1 + F2 + F4 −N3 = 0∑
Fy = 0 3wl + 8ww − 2F3 − 2N1 − 2N2

− 2N4 = 0∑
MJ1

= 0 2N1lcosθ1 − 2ww(lcosθ1)−

2F1(lsinθ1 − r)− wl

(
l

2
cosθ1 − csinθ1

)
− τ1 = 0∑

MJ2 = 0 − 2F2(lsinθ2 − r)−

2F1(l + l0)sinθ2 − wl

(
l

2
cosθ2 − csinθ2

)
− (2ww − 2N2)lcosθ2 − τ2 + τ1−
(wl + 2ww − 2N1)(l + l0)cosθ2 = 0∑

MW4
= 0 2F4r + 2F3(lcosθ3 + r)− 2wwlcosθ3

− wl

(
l

2
cosθ3 − csinθ3

)
+ 2N3lsinθ3−

(2F1 + 2F2)(l + l0)sinθ3 + τ2 − [2(2ww

+ wl)− 2N2 − 2N1](l + l0)cosθ3 = 0

3339


