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Abstract— Classical visual servoing approaches use visual
features based on geometry of the object such as points,
lines, region, etc. to attain the desired camera pose. However,
geometrical features are not suited for visual servoing across
different object instances due to large variations in appearance
and shape. In this paper, we present a new framework for
visual servoing across object instances. Our approach is based
on a discriminative learning framework where the desired pose
is estimated using previously seen examples. Specifically, we
learn a binary classifier that separates the desired pose from
all other poses for that object category. The classification error
is then used to control the end-effector so that the desired pose is
attained. We present controllers for linear, kernel and exemplar
Support Vector Machine (SVM) and empirically discuss their
performance in the visual servoing context. To address large
intra-category variation in appearance, we propose a modified
version of Histogram of Oriented Gradients (HOG) features
for visual servoing. We show effective servoing across diverse
instances over 3 object categories with zero terminal velocity
and acceptable camera pose error at termination.

I. INTRODUCTION

Visual servoing guides the robot to attain a desired
pose with respect to the given object using image based
feedback [1]. Visual features are extracted from the acquired
image and matched against their desired configuration re-
sulting in a residual error. This error is regulated to zero by
generating appropriate control commands to the robot. Zero
residual error in visual features signifies that the desired pose
of the robot with respect to the given object is attained [1].
However, if the given object is different compared to that
captured by the desired configuration of visual features, a
large residual error may remain for any pose.

Practical scenarios require robots to servo a variety of
objects with different shapes and appearances. For example,
consider the problem of capping a soda bottle by a robotic
arm where the task is to place a cap on top of the given bottle
(desired pose). The general requirement is a robotic arm
that is able to cap any bottle irrespective of its appearance
and shape. A naive approach is to capture the desired pose
with respect to every bottle and use classical visual servoing
for capping. However, capturing the desired pose for every
bottle becomes highly expensive as the number of unique
bottles become large. Thus, classical visual servoing is not
an optimal strategy for such scenarios and a new servoing
strategy is required that could servo any given instance of an
object category to the desired pose.

The problem of servoing across object instances in a
category was initially addressed in [2] where the authors
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Fig. 1. Visual servoing using discriminative learning. From previously
seen examples of different instances of same category in the desired pose,
we learn a classifier that discriminates the desired pose from rest of the
poses. Given a new instance from the same object category, we use the
classification error to control the robot such that a resultant pose similar to
the desired pose is attained.

used keypoint features that semantically encode the location
of parts of an object (for example, location of handle of a
cup in the image) to make the approach robust to variation
in object’s appearance. They used a linear combination of
available 3D models for a servoing iteration. However, the
semantic features were computed manually that makes the
approach laborious for large number of object instances.
Moreover, the procedure requires a search over all models
in all pre-rendered poses for every visual servoing iteration,
which makes the approach computationally very expensive.

In this paper, we estimate the desired pose for a new ob-
ject instance of the specified category using a discriminative
learning framework trained on previously seen instances of
that category. Specifically, we use Support Vector Machine
(SVM) [3] that learns a hyperplane separating the desired
pose from rest of the poses with maximal margin. The
SVM classification error which is computed as the distance
from the hyperplane is used to predict the deviation between
current pose and the desired pose of the object. The goal is to
control the end-effector of the robot by iteratively minimizing
the classification error such that the desired pose is attained
starting from the initial pose of any given instance from the
same object category. As the desired pose is attained the
classification error becomes non-positive. Geometrically the
trajectory could be interpreted in the classification subspace
as a path of data sample crossing the decision boundary as
shown in figure 1.

To discriminate pose variations robustly under varied
appearance changes, we propose visual features similar to
Histogram of Oriented Gradients (HOG) [4]. Since, HOG
features are difficult to represent analytically, we use a mod-
ified version of HOG by retaining the principal orientation
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Fig. 2. Overview of the proposed approach. Given examples of desired pose of different instance of same category (bottom-right) S∗ and some random
poses S, we learn a classifier (SVM) that separates the desired pose from other poses by a maximal margin. Once the classifier is learned, the decision
boundary w or the SVM parameters (support vectors, their coefficients and kernel function) in case of kernel SVM, are used to compute the servoing error
é for the current pose of a new object instance from the same object category. Levenberg-Marquardt gradient descent on é(s,w) is used to servo to the
desired pose of the given object instance. Note that, we assume the object is segmented and its category is known.

bin followed by glyph image construction. By using SVM
classification error as the task function and HOG type visual
features our novel controller is able to attain the desired
pose. It is known that for classification task, variant of
SVM like exemplar SVM [5] and kernel SVM perform
better that linear SVM. However, in the context of visual
servoing the performance also depends on the feasibility and
smoothness of the end-effector trajectory. In this paper, we
empirically discuss the performance of three types of SVM
namely, linear SVM, kernel SVM and exemplar SVM for
classification and control tasks. Furthermore, We report the
average residual error in camera pose under 2.5 cm and 10o

for servoing across different object instances.
Contributions: Our main contribution is a learning based

framework capable of servoing across object instances with-
out the requirement of manual correspondences unlike our
previous work [2]. This is achieved through a novel task
function based on SVM classification error, which has not
been proposed before for a servoing task. The paper also
reveals visual features that efficiently encode the shape of
the object to handle the large intra-category variations. Also,
we represent the interaction matrix relating them to camera
control analytically. Finally, the discussion at the end of this
paper regarding the choice of SVM error function from the
point of view of precision in the final pose, the convergence
basin and existence of multiple local minima articulates the
reasoning behind this effort.

II. PROBLEM FORMULATION

Assuming eye-in-hand configuration and world origin co-
inciding with given object’s center, we denote camera’s pose
in SE(3) at given time as P . Given an object O and a desired
camera pose P ∗, the goal of a visual servoing scheme is to
find a camera transformation T , such that P ∗ = T P . For
image based visual servoing (IBVS), current pose and the
desired pose are represented in form of a set of features
extracted from images s = φ(KPO) and s* = φ(KP ∗O).

Where K is the camera’s intrinsic matrix and φ(·) is the
feature selection criterion. For IBVS, the goal is modified as
finding the transformation T such that the error in features
e = s − s* is regulated to zero at desired pose. The task is
achieved by minimizing e iteratively and controlling camera
velocity, v = −λL+

s e. Where Ls is the interaction matrix
that maps the rate of change of features to velocity and (·)+
represents pseudoinverse operation as defined in [1].

For the problem of servoing across object instances, the
given object instance O is different from the desired instance
O∗. Thus, there is no pose P for which s = s*. Hence,
the transformation T between current pose and desired pose
could not be computed by IBVS. The modified objective for
visual servoing across object instances is to define an error
é(s, s*) such that:

é(s, s*) = 0⇒ P ∗ = T P. (1)

III. OVERVIEW OF THE SOLUTION

We make following assumptions: Firstly, the given ob-
ject is segmented and labeled. This assumption could be
relaxed by using sophisticated computer vision techniques
like poselets [6], part based models [7] etc. Secondly, we are
provided with a pose-bank, which contains instances of the
given category under varied viewpoints. Thirdly, the desired
pose is seen previously atleast for a few instances.

The central idea of the proposed work is to learn an
error function defined in (1) and move the end-effector
in the direction that minimizes the error. From the given
labeled dataset, all the images similar to the desired pose
are treated as negative samples and rest of the images are
treated as positive samples (Note the sign convention for
labels). We propose principle orientation glyph (POG) which
are modified from HOG as visual features and train an
SVM on the above dataset. Now, the desired pose could
be represented by SVM parameters (support vectors, their
coefficients, kernel function and classification threshold) that
would discriminate the desired pose from the rest of poses



by a large margin. Note that training a SVM is one time
procedure and until the desired pose remains unchanged, the
procedure need not be repeated. Moreover, the SVMs could
be pre-trained for numerous poses and stored. Once SVM
is trained, the desired pose could be attained by iteratively
controlling the manipulator until classification error becomes
non-positive. Figure 2 summarizes the proposed approach.

IV. HOG AS A VISUAL FEATURE

Classical IBVS proposes visual features based on object’s
geometry [1] such as points, lines, area, etc. These features
require a robust extraction and an efficient tracking proce-
dure, which is a non-trivial task and is considered as one of
the bottlenecks in the expansion of visual servoing [8]. To
overcome this issue, direct visual servoing was proposed in
[8] where pixel intensities were considered as visual features.
But, pixel intensities are very susceptible to illumination vari-
ations. Amaury et al. [9] used intensity histogram as visual
features to improve robustness to illumination changes. It
was reported in [10] that by using intensity histogram as
visual features, all 6 degrees-of-freedom (DOF) could not be
controlled. Thus, multiple histogram were proposed in [10],
where the image was divided into multiple non-overlapping
regions and the feature vector was composed by concatena-
tion of the histogram of individual regions. Another approach
[11] used the magnitude of intensity gradient as visual feature
to improve robustness to illumination variations. However, all
the mentioned approaches do not capture the object’s shape
efficiently.

HOG features were introduced in [4] for pedestrian de-
tection and has been extensively used by computer vision
literature for shape based object recognition. The central
idea behind HOG is that, by using local distribution of
intensity gradient local shape of the object could be captured.
The image is subdivided into small non-overlapping regions
(cells) and for each cell, histogram of gradient orientation is
computed. The resultant feature vector is further normalized
over a larger area (blocks) to ensure robustness to illumina-
tion variations. A global feature vector is then constructed
by combining the normalized histograms of individual cells,
which represents the shape of the object. Eventually, SVM
is used with HOG to learn the shape. Note that, the features
presented in [4] combined the advantage of [10] and [11],
since the histogram was computed for image gradient similar
to [11] and concatenation of local histogram was used similar
to [10].

A. Adapting HOG features for visual servoing

HOG features have complicated block normalization step
which makes it difficult to represent them analytically. Such
closed form representation is required for computing the
interaction matrix. Furthermore, using a small cell size leads
to smaller convergence basin. Since for large variations in
camera pose, features frequently cross the cell boundaries
that makes it difficult to track them.

(a) (b) (c)

Fig. 3. POG feature. (a) The given image. (b) HOG glyph of the image
(c) POG of the image. Notice how POG is able to preserve shape of the
object.

In this paper we propose features that inherit the ad-
vantages of HOG features and could be used for visual
servoing. Similar to HOG, we divide the image into small
cells (typically 16×16 pixels), compute histogram of gradient
orientations. However, we only retain the bin with maximum
votes (principal orientation). We skip the block normalization
step and construct the glyph image with only the principal
orientation which we call principle orientation glyph (POG)
image. Figure 3 shows the extracted POG image from the
given image.

B. Computation of interaction matrix

The POG image G could be represented in the form of a
feature vector by concatenating the individual rows

s(r) = (G1•, G2•, ..., GN•) (2)

where Gk• denotes the kth line of POG image. Size of the
vector s is NM × 1 where N and M are the number of
rows and columns in G. We assume that the given object is
Lambertian i.e. the reflection of the given object is isotropic.
Note that the mapping I → G is independent of the object
therefore we can safely assume POG to be Lambertian. For
a static object with Lambertian surface, temporal luminance
consistency equation similar to [8] could be written as

G(x+ dx, y + dy, t+ dt) = G(x, y, t) (3)

where (x, y) are the normalized coordinates of a point in the
scene. Linearizing (3) around the point (x, y) gives

∂G
∂x

ẋ+
∂G
∂y

ẏ + Ġ = 0. (4)

Substituting ẋ = Lxv and ẏ = Lyv in the above (4) gives
Ġ = −(∇xGTLx +∇yGTLy)v. (5)

Comparing (5) with the definition of interaction matrix Ġ =
LGv gives

LG = −(∇xGTLx +∇yGTLy) (6)

with Lx and Ly , relating the change in point (x, y) and it’s
depth Z to the camera velocity as ẋ = Lxv and ẏ = Lyv,
are given by (refer [1] for details)

Lx = [−1/Z 0 x/Z xy − (1 + x2) y]

Ly = [0 − 1/Z y/Z 1 + y2 − xy − x] (7)

Formulating POG as image allows numerical computation
of gradients ∇xG and ∇yG, without the need of their
analytic computation. We compute ∇xG and ∇yG from
POG image as

∇xG(x, y) = G(x+ 1, y)−G(x− 1, y)

∇yG(x, y) = G(x, y + 1)−G(x, y − 1). (8)
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Fig. 4. SVM based visual servoing vs direct visual servoing like [8].
The proposed task function of using SVM classification error results in
precise alignment of the desired pose while the traditional feature error
based positioning results in higher error when the instances are different
as reflected in the final error images (c-d). The error image represents the
difference in intensities between the desired and the current image with an
offset of 128 such that gray color encodes zero error.

Classical visual servoing defines the positioning task as
regularization of the error function ‖e‖ = ‖s−s*‖. However,
for servoing across instances there does not exist any s for
which the error is regulated to zero, since the given object
instance is different from the desired instance. Thus, for
sevoing across object instances, ‖s − s*‖ does not attain
accurate positioning. In this paper, we use SVM classification
score é as the error function and the positioning task requires
é ≤ 0. Positioning based on SVM based error é leads to more
precise alignment as shown in figure 4.

C. Positioning task with linear SVM

Given a labeled dataset with data samples Xi’s and their
class labels yi’s where Xi ∈ Rd and yi ∈ {−1,+1}, for all i
in the dataset of size N , a Support Vector Machine finds the
optimal hyperplane separating the samples of one class from
another. This is achieved by solving the following primal
constraint convex optimization problem

(w, b) = argmin
w,b,ξi

1

2
‖w‖+ C

N∑
i=1

ξi

s.t. yi(wTXi + b) ≥ 1− ξi, ξi ≥ 0, ∀i ∈ 1, ..,N . (9)

Where w is the required hyperplane, ξi’s are the slack
variables representing the violations made by the training
samples and b is the threshold for classification. For testing
phase, the class of the given data sample is predicted by
finding the sign of wTX + b.

We initially train a linear SVM over POG features by
assigning previously seen desired pose of various instances
as negative samples (class label -1) i.e. yi = −1 ∀i ∈ S∗
and the remaining poses for various instances as positive
samples (class label +1) i.e. yi = +1 ∀i ∈ S. Note that,
to avoid confusion we stick to the above mentioned notation
that desired poses belong to negative class S∗ and the random
poses belong to positive class S and the size of training
dataset S∗

⋃
S is given by N . Now, the positioning task

could be simply defined by the following error function
é = wT s + b (10)

where s is the POG representing the current pose and w, b are
the parameters of the resultant hyperplane. Note that, é ≤ 0
for the desired pose and é > 0 for all other poses. Also, note
that (10) is independent of any specific object instance O∗.

D. Positioning task with kernel SVM

Pose of an object could be seen as a low dimensional
feature lying on a higher dimensional manifold of the image
which results in highly non-linear data. Linear SVM is not
able to discriminate between such variations of a complex
manifold. Kernel SVM finds an optimal hyper plane in
a higher dimension where the data samples are linearly
separable. The training step finds such an optimal hyperplane
by optimizing following dual of (9)

[α, b] = argmin
αi

N∑
i=1

αi −
1

2

N∑
i=1,j=1

αiαjyiyjK(Xi, Xj)

s.t. αiyi = 0, 0 ≤ αi ≤ C, ∀i ∈ 1, ..,N . (11)

Where the kernel function K(Xi, Xj) =
〈ψ(Xi), ψ(Xj)〉, Rd×Rd → R computes the inner product
without explicitly computing the feature in higher dimension
ψ(X). The class label of any given sample X could be
predicted by finding the sign of

∑M
i=1 αiyiK(Xi, X) + b.

M is the number of support-vectors and αi and yi are
the coefficients and labels of the support vectors and b is
the classification threshold. Hence, for kernel SVM the
positioning task could be written as:

é =

M∑
i=1

αiyiK(Xi, s) + b (12)

where s is the POG representing the current pose. Similar
to linear SVM, both position as well as classification tasks
require é ≤ 0.

E. Positioning task with exemplar SVM

The linear SVM is not able to capture the variations of
pose and kernel SVM overfits the training data especially in
our case where number of positive samples is very small.
Exemplar SVM was introduced by [5] for object classifica-
tion. Although being a simple technique, the performance is
comparable to state-of-art classification methods [7],[6]. The
central idea behind exemplar SVM is using the ensemble
of linear SVM’s, where a linear SVM is trained for every
negative sample (as per our convention). Every exemplar
SVM fires for the most similar object. Thus, given sufficient
number of negative examples even complex variations in a
category could be learned. Authors of [5] used HOG features
at multiple scale for the classification task, however for
visual servoing scale variation results in different classes.
Thus, we use our POG feature at single scale with exemplar
SVM. Moreover, by fixing the scale we can assign positive
examples explicitly thereby, waving the requirement for hard
mining positive examples. Again, since the scale is not
changed the ensemble function could be reduced to finding
the minimum SVM score instead of non-maxima separa-
tion. However, switching hyperplane while servoing leads
to jerky trajectory and stability issues (oscillation between



exemplars). A more appropriate positioning would be to use
a combination of exemplars. We use logistic regression to get
the combination. This meets two purposes. Firstly, it results
in a stable and smoother trajectory. Secondly, learning the
sigmoid parameters on validation set gives higher weights
to better performing SVMs, which in turn boosts the per-
formance of the system. Sigmoid fitting is similar to the
calibration step used by the authors in [5]. The positioning
task could be written analytically as
é = 1/(1 + exp(

∑
i

αi(wTi s + bi) + b0)), ∀i ∈ S∗ (13)

where the constant b0 and the weights αi for each exemplar
SVM are learned by fitting logistic regression to the raw
SVM scores.

F. Control law

Traditional visual servoing uses following law for control-
ling camera velocity v:

v = −λL+
s (s(r)− s*) (14)

Ls is the interaction matrix, s is current feature vector at
position r and s* is the desired feature vector. As described
in [11], this control law is equivalent to applying Gauss-
Newton optimization on a cost function:

C = (s(r)− s*)T (s(r)− s*) (15)

The above control law considers the direction of descent,
d as:

d(r) = −(LTs Ls)
−1∇C (16)

Where Ls is the image Jacobian at r. As the size of
feature vector increases, the non-linearity of the error surface
increases. Direct visual servoing and similar approaches
consider entire image as a feature vector that makes the error
surface highly non-linear. Thus, the convergence properties
becomes very sensitive to the direction of descent. Therefore,
such approaches consider Levenberg-Marquardt optimization
method, which gives the flexibility to select an optimum
direction of descent by adjusting a damping factor µ,

v = −(H + µ diag(H))−1LTs ∇C (17)

where the Hessian is approximated as H = LTs Ls. As the
cost function given by SVM based positioning task is again
highly non-linear, we also consider the servoing law similar
to (17) with interaction matrix for POG features is given as
Ls = LG and the cost function C in our case is given by (10),
(12) and (13). The gradient of the cost function required in
(17) for linear, kernel and exemplar SVM’s could be given
as

∇Clinear = w (18)

∇Ckernel =

M∑
i=1

αiyi∇K(Xi, s) (19)

∇Cexemplar = (exp(f)/(1 + exp(f))2)
∑
i

αiwTi (20)

f =
∑
i

αi(wTi s + bi) + b0 (21)

where w is the SVM hyperplane. In the proposed work, we
have used radial basis function (RBF) kernel due to its high
expressive power. The kernel function and its gradient for
RBF could be given as

K(Xi, Xj) = exp(−γ‖Xi −Xj‖) (22)
∇K(Xi, s) = −γK(Xi, s)(s−Xi) (23)

G. Stability analysis

Previous approaches considered L = 1/2‖e‖2 as a candi-
date Lyapunov function. Whose, derivative could be given as
L̇ = eT ė = −λeTLeL̂

+

e e. Where L̂e is an approximation of
the interaction matrix pertaining to modeling and calibration
errors. For global stability, LeL̂

+

e must be positive definite.
If the number of features is greater than 6, LeL̂

+

e has a
non-trivial null space. Thus, only local stability near the
equilibrium point s* could be guaranteed (refer [1] for
details).

In our case there is no unique equilibrium point. All the
points satisfying é ≤ 0 are solutions. It is sufficient to
analyze the stability of points lying on the boundary of the
solution region instead of analyzing the stability for every
solution since, the servoing stops as soon as the stability
region is reached. In our case, boundary of the solution
region is the SVM hyperplane. We consider a Lyapunov
candidate function

L = 1/2é2. (24)

Note that é is scalar for linear, kernel and exmplar SVM.
The derivative of the above mentioned Lyapunov candidate
is given as

L̇ = éT ˙́e (25)

For linear SVM differentiating (10) gives
˙́e = wT ṡ = wTLsv

v =− λ(Ĥ + µ diag(Ĥ))−1L̂
T

s w

⇒ éT ˙́e =− λéwTLs(Ĥ + µ diag(Ĥ)−1)L̂
T

s w. (26)

Similarly, for kernel SVM
éT ˙́e = −λégLs(Ĥ + µ diag(Ĥ))−1L̂

T

s g
g = (

∑
i

αiyi∇K(s, Xi)). (27)

And for exemplar SVM
éT ˙́e = −λé3exp(f)∇fwiLs(Ĥ+µdiag(Ĥ))−1L̂

T

s ∇f. (28)

Where f is given by (21), ∇f =
∑
αiwi, µ > 0 and

Ĥ = L̂sL̂
T

s . Note that we are analyzing the perturbations
from SVM hyperplane boundary with é > 0, since for
é < 0 we are already in the solution region hence, the
servoing algorithm terminates. For the control to be locally
stable é ˙́e must be negative definite (the number of features is
greater than 6, thus only local stability could be achieved).
As mentioned é > 0, and by definition f > 0, µ > 0.
Thus, for é ˙́e to become negative definite equations (26 - 28)
require Ls(Ĥ +µ diag(Ĥ))−1L̂

T

s should be positive definite.
Since, H has a unique Cholesky decomposition H = L̂sL̂

T

s ,



it is by definition positive semi-definite. Further, adding
the positive diagonal elements of µ diag(Ĥ)−1 ensures that
(Ĥ + µ diag(Ĥ))−1 is positive definite and could be written
as MTM by Cholesky decomposition giving

éT ˙́e = (MLs)
T (ML̂s). (29)

Thus, éT ˙́e will be positive definite in the neighborhood of
SVM hyperplane when L̂s is a good approximation of Ls.

V. EXPERIMENTS AND RESULTS

We have performed various experiments to validate the ef-
ficacy of our approach. All the experiments reported here are
performed in simulation on computer with Intel i5 processor
and 4 GB RAM using ViSP library [12] for servoing and
OpenRAVE library [13] for rendering 3D model of object
in various viewpoints. The experimental setup consists of a
3D model that acts the given unseen object instance, a free-
flying camera and a labeled pose bank containing various
instances discriminating desired pose from other poses. We
have assumed a constant depth of the scene as 1m for all
experiments. We further assume that the object category
as well as the image representing desired pose of different
instance are known and the object is segmented. Since, the
desired instance is different from the given instance, even
at zero camera error feature will not overlap. Hence, feature
error is not the best metric to analyze performance when
servoing across different instances. The desired camera pose
is one of the metric that is invariant to geometry of the
object. However, knowledge of desired camera pose in real
world is a non-trivial task. Therefore, we use the simulation
framework that allows us to quantitatively measure the
performance of our approach since the desired camera pose
is known in the world frame.

1) Using POG as visual features: In this experiment we
validate the proposed control law for POG features. We con-
sider a 6 DoF positioning task for a non-planar object. Here,
the given object instance is same as the desired instance, thus
the positioning task is given by (1). The initial camera dis-
placement is ∆r = (5cm, 2cm, 5cm, 12.5o,−8.4o,−15.5o)
(6 DOF). Figure 6 shows that the proposed control law
converges successfully to the desired pose. It could also be
seen that the feature error tends to zero at the desired pose.
Also, it could be observed from figure 6(f) that the approach
results in zero terminal velocity. However, the velocity profile
is not smooth since POG features are discrete (POG features
remain constant within a cell) thereby giving non-smooth
decrease in velocity unlike continuous luminance features.

2) Comparison of SVM control laws: The aim of the
experiment is to validate the control laws for linear, kernel
and exemplar SVMs and to compare their performance for a
positioning task. For this experiment, we consider 21 3D
models as previously seen instances (training phase) and
one as the given object (test phase). These models are pre-
rendered into 5000 poses capturing variations in rotation and
translation.Images similar to the desired pose (see figure7(b))
are used as negative samples and rest of the data is used
as positive samples for training SVMs. Having such large
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Fig. 6. Visual servoing using POG features. (a) A non-planar target in
initial pose. (b) Desired pose of same object instance. (c) Error in POG
features (pixel intensities) between images of initial pose and the desired
pose. (d) Residual error in image between resultant and desired pose after
visual servoing. (e) Feature error (f) Camera velocity.

imbalance between negative and positive data could easily
overfit the resultant hyperplane. Thus, we perform a cross-
validation step on three 3D models which were not used
for either training or testing. After training the SVM, the
classification error is used to control the camera motion.
It could be seen from figure 7(c-e) that linear, kernel and
exemplar SVM’s are able to attain the desired pose. As
the solution is not unique it is difficult to compare the
resultant pose. It could be seen from figure 7(g), that the
classification error becomes zero for all three SVMs at the
desired pose, that validates the positioning task. Also, it could
be seen that the decrease in the error is not strict. This is
because sevoing happens in a 6 dimension embedding of
66000 dimensional POG feature manifold. Thus, a direct
trajectory decreasing error monotonically could be infeasible.
The convergence rate of the kernel SVM largely depends
upon the kernel scaling factor γ. For a small γ, the slope
is steep near a support vector and flat otherwise. Thus, for
case of overfitting, the convergence basin for kernel SVM is
very small. In terms of evolution of classification error and
velocity profile, linear SVM is slower but less susceptible
to initialization. The exemplar SVM inherits the advantages
of both linear and kernel SVM, is thus performing better in
terms of error and velocity profile.

3) Qualitative results on real images: The objective of
this experiment is to show the efficacy of the proposed
algorithm to servo to a diverse set of target instances across
various object categories. We have trained an exemplar SVM
for every desired pose given in figure 5(b) using synthetic
data. The initial pose images (real images) are shown in
figure 5(a) are servoed to the desired pose using the trained



(a) Initial pose

(b) Desired pose

(c) Resultant error
image

Fig. 5. Qualitative results. (a) Initial pose captured by the robot with a random camera pose for provided 3D object from the dataset. (b) Desired pose.
(c) Resultant positioning compared to the desired pose by applying kernel SVM based visual servoing. Note the similarity in the resultant pose achieved
by the proposed approach compared to the desired pose provided, over wide range of desired poses. Also note that, the selected 3D model in (a) acts as
unseen target object.
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Fig. 7. Comparison of SVM control laws. (a) Initial non-planar scene.
(b) Desired pose object instance different from the given object in initial
pose. (c) Error image for resultant pose using linear SVM. (d) Error image
for resultant pose using kernel SVM. (e) Error image for resultant pose
using exemplar SVM. (f) The selected exemplar with minimum regression
score. (g) SVM error comparing the SVMs. (h) Velocity profiles for SVMs.
Note that, exemplar SVM outperforms the other SVMs since it inherits
advantages of both linear as well as kernel SVM.

SVMs although neither of them is part of training data. The
large overlapping between shapes in figure 5(c) shows the
efficacy of the proposed algorithm for servoing over diverse
set of data by efficiently encoding the desired pose in form
of a classifier.

4) Quantitative results: The aim of the experiment is to
ensure that, regulating the SVM classification error indeed
results in precise positioning of camera. Since, have used
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Fig. 8. Quantitative results. Initial displacement in translation and rotation
of camera is plotted against residual camera error. It could be seen the
approach converges for a high variation camera pose.

simulation environment, ground truth regarding the camera
pose could be computed efficiently. Here, considering teacup
as object category and starting from a desired pose, we
varied the initial camera displacement (both translation and
rotational) and servoed to the desired pose. The initial camera
translation was varied till the object remained in field of view
of camera. We have used the exemplar SVM trained from
the previous section to compute the residual translation and
rotation errors. It could be seen from figure 8(a) and (b)
that for a fair amount of initial displacement (until more
than half of the features remain in camera’s field of view)
the proposed approach is able to converge to the desired
camera pose accurately. The experiment was performed on
10 different desired poses and 5 instances per view, thereby
averaging the result before plotting. The average final error
in camera pose is under 2.5 cm for translation and 10o

for rotation. The translation error is comparable with [2]
but the rotational error is slightly higher. However, a direct
comparison with [2] is not fair because we do not assume
3D keypoint annotations.

VI. DISCUSSION

A. Computational complexity

SVM training complexities for linear and kernel SVM’s
vary between O(N 2) and O(N 3)depending on the complex-
ity of dataset when trained using LIBSVM library [14] with
the dataset of size N . Our implementation of exemplar SVM
learns a linear SVM for each negative example along with
a logistic regression for their ensemble hence, the combined



training complexity is O(N 2N− +N 2). Where N− is the
size of negative training data. Note that, in our case the
negative samples similar to the desired pose are very small
as compared to the size of entire dataset i.e. N− � N .
Further, the SVMs could be pre-trained and saved bypassing
the requirement for retraining before servoing. The average
training time for learning linear and kernel was around 56
to 60 sec.

At the time of servoing, the classification error is com-
puted for every iteration. For a linear SVM this can be
computed by simply a vector multiplication of constant
order O(1). Similarly, for exemplar SVM the complexity is
O(N−) and that for combining the score through trained re-
gression curve is of order O(1). However, for computing the
kernel SVM error, the kernel function needs to be evaluated
over all support vectors resulting in the complexity O(M).
Thus, learning based approach is much faster compared to
[2] which requires a search over entire dataset for linear
combination for every iteration resulting complexity of order
O(N ) per iteration. Average time for visual servoing with
proposed approach is 40 sec compared to 300 sec. Note that,
the specified computation times are benchmarked on system
described in section V.
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Fig. 9. Analysis of cost function for different SVMs. The desired
pose for which cost function was analyzed is given in figure 7(a). (a)
Using photometric visual servoing for servoing across instances results in
irregular and unsuitable error. (b) Linear SVM (c) RBF kernel SVM. (d)
Exemplar SVM with logistic regression. Note the innermost red contours,
which determine the precision of an SVM (smaller contour means more
precise). Also note the outermost contour which determines the convergence
basin (Lager contour means better convergence). Finally, note the isolated
counters that represent local-minimas.

B. Cost function analysis for SVMs

In this work, we have presented three different SVMs.
In the current section we try to address the issue is which
SVM is most suitable in visual servoing context. We have
plotted the cost function (classification/feature error) by
varying translation in x and y direction for desired pose
given by figure 7(a). The small red contour represents the
solution region (smaller means better positioning), the area

of outermost region relates the convergence basin, steepness
of curve represents rate of convergence and isolated contours
show existence of local minima. Based on the mentioned
parameters it could be observed from figure 9(a) that the
feature error function e is very irregular suffering with lots
of local minima, which makes it unsuitable for servoing
across instances. For the linear SVM 9(b), the convergence
basin is wide and however rate of convergence is slow and
positioning error is high due to its linear nature. On the other
hand, kernel SVM (using sigmoid kernel) is a very good
classifier but due to its non-linear nature the convergence
basin is steep and narrow(refer figure 9(c)). For exemplar
SVM’s, so that the control is linear and the selected SVM
fires only for the nearest exemplar. The convergence basin is
wide and the positioning is more precise are shown by the
innermost red contour in figure 9(d).

VII. CONCLUSION

In this work, we have introduced a novel positioning task
based on discriminative learning that could be used to servo
across instances for the given object category. Also, we have
introduced POG features that efficiently capture the shape
of a given object under large appearance changes. Through
simulation framework we have shown that the method can
effectively servo across object instances even under high
appearance and shape variations in the object category. The
video material for the paper is available at the project
webpage1.
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