
Servoing Across Object Instances: Visual Servoing for Object Category

Harit Pandya1, K. Madhava Krishna1 and C. V. Jawahar1

Abstract— Traditional visual servoing is able to navigate a
robotic system between two views of the same object. However,
it is not designed to servo between views of different objects. In
this paper, we consider a novel problem of servoing any instance
(exemplar) of an object category to a desired pose (view) and
propose a strategy to accomplish the task. We use features
that semantically encode the locations of object parts and
define the servoing error as the difference between positions of
corresponding parts in the image space. Our controller is based
on the linear combination of 3D models, such that the resulting
model interpolates between the given and desired instances. We
conducted our experiments on five different object categories
in simulation framework and show that our approach achieves
the desired pose with smooth trajectory. Furthermore, we show
the performance gain achieved by using a linear combination
of models (instances) vis a vis a controller that switches
across models during servoing in terms of trajectory’s length,
smoothness and error in camera pose and image features.

I. INTRODUCTION

Visual servoing (VS) framework guides a robot to
acquire a desired pose with respect to a target object using
vision based feedback [1]. In visual servoing, the camera
pose is represented through a set of visual features and
the objective is to minimize the servoing error, which is
defined as the difference between the current values and the
desired values of the visual features [2]. It is achieved by
controlling manipulator velocity such that the servoing error
is eventually reduced to zero. Traditional visual servoing
assumes that object instance is known apriori. This limits
the scope of visual servoing to situations where the robot
servos to the same object. However, practical scenarios
require the robot to interact with a variety of objects. Thus,
a different strategy is required which could be employed to
servo between views (poses) of different objects.

Analogous to the discussion on comparison between
traditional visual servoing and servoing across instances,
is that on comparison between object (image) instance
retrieval and category retrieval. These are considered one
of the classical problems in computer vision and both of
them pose well defined problems. Instance based retrieval
seeks a solution to the problem where a particular object
is required, for example landmark identification [3], image
or video search engine [4]. As the instance is unique,
geometrical properties could be used for its retrieval. On
the other hand, category retrieval considers the problem of
retrieving the group of objects or identifying the group-label
for objects with the same semantics, such as scene parsing
[5], which tries to understand the given environment by

1 International Institute of Information Technology, Hyderabad - 500032,
India

Desired pose

Initial pose
Initial pose

O
bject category

…
…

Desired pose

(a) Traditional VS (b) Ours

Fig. 1. Comparing Traditional visual servoing with proposed approach.
Traditional visual servoing could only servo between views of the same
object instance (same cup). On the other hand, the proposed approach is
able to servo any instance from an object category category (any cup) to a
desired pose.

classifying it into pre-trained categories. Instance based
retrieval is considered to be faster and more precise due to
the availability of fixed geometry, whereas category retrieval
is scalable i.e. it could be applied to a wide range of objects.
Scalability makes the retrieval problem even harder due to
variations in appearances and shapes of the objects in a
category. In a robotics setting, this is indeed very pertinent,
as robots are entailed to interact across widely varying
object instances. In such settings, unlike the traditional
servoing where the feature error becomes zero for the
desired pose, it is difficult to ascertain if indeed the correct
pose has been reached for category based servoing. The
problem complicates further as in category based servoing,
all visual features might not be present in a given instance.

In this paper, we introduce a novel problem of visual
servoing any instance of an object category to a desired
pose which could accomplish the task and as a result
finds more diverse applications. Our approach uses a linear
combination of 3D models to solve the task. In figure 1
we compare our approach with traditional visual servoing.
It shows that the traditional visual servoing is capable of
servoing between views of the same cup only. On the other
hand, the proposed approach could servo between views
of different cups. To remove the dependency on a specific
instance and make the approach adaptable to variations in
a category, we employ visual features which semantically
encode locations of object parts. We refer them as part-based
semantics. Such features also provide more tolerance to
image noise under the duress of illumination variations and
enhance alignment of visual features. Defining a suitable
distance between locations of corresponding parts in images
makes the comparison among instances over variation in
poses feasible. We exploit a large number of 3D models
to construct temporary models which are semantically

(a) Initial pose (b) Desired pose (c) After servoing

Fig. 2. Example of servoing using proposed approach. Our approach is
able to servo the given object from its initial pose (a) to a resulting pose (c)
which is similar to the desired pose (b) given by another instance of same
category .

most similar to both the given object instance and the
desired instance at a given point of time. We propose two
approaches to synthesize such temporary models. Our first
approach selects the most suitable model at a point of
time from the available 3D models, whereas the second
approach constructs the temporary model through a linear
combination of available 3D models. In either case, the
resulting models are used to servo till pose of the given
object matches the desired pose. Both of the approaches are
capable of servoing across instances, while the latter one
produces a smooth trajectory. Figure 2 shows an example
of result achieved by our second approach. The approach
is successfully able to attain the desired pose although the
instances are different.

The paper contributes in the following ways. Firstly, it
introduces a novel problem of servoing any instance of
an object category to a given desired pose. Secondly, it
proposes a servoing strategy for servoing across instances
of a given category through, a controller design that
effectively interpolates across semantic correspondences of
various instances, thereby providing continuous servoing
trajectories, even as the current and target instances widely
vary. To the best of our knowledge, there has not been such
a reporting previously in literature.

II. PRELIMINARIES

Hutchinson et al. [1] define the positioning task as rep-
resentative of feature error e = s − s∗ such that it reduces
exponentially to e = 0 at the desired pose. Where s is the
representation of current end-effector pose along with camera
parameters and s∗ represents the desired pose. For point
features, proportionate control law could be used to produce
desired end-effector velocity Vc = −λL+e. Where, λ is
the servoing gain, operator (.)+ stands for pseudo-inverse
and L is the interaction matrix or image Jacobian, which
maps feature space to camera velocity in SE(3). Interaction
matrix Ls for image based visual servoing (IBVS) using
point features [2] could be given as follows:

Ls =

[−1
z 0 x

z xy −(1 + x2) y
0 −1

z
y
z 1 + y2 −xy −x

]
(1)

Where, x, y are the image coordinates of a point feature
and z is its depth in camera’s frame. Overall interaction
matrix for multiple features could be made by vertically

stacking the individual interaction matrices for each feature
point.

Fig. 3. Part based semantic correspondences. Examples of correspon-
dences for categories cup (top) and toycar (bottom). These correspondences
match the respective parts (for example handles, wheels etc.) among object
instances.

Variation in different instances could be quantified after
evaluating one-to-one correspondences of shared part based
semantic features, followed by finding distance between them
in Euclidean space. For example, figure 3 shows a valid com-
parison between two cups after associating visible semantic
features such as handle, base etc. to their counterparts. In the
proposed work, we define distance between two instances
Oi and Oj , as the sum of individual Euclidean distances
of semantic correspondences similar to [6], D(Oi, Oj) =∑

k ‖(Oik−Ojk)‖ψ(Oik, Ojk) ∀k ∈ K. Where, K is the set
of all part based semantic features and the visibility function
ψ is defined as

ψ(xi, xj) =

0 if keypoint x is visible in either

image i or j but not in both
1 otherwise

(2)

Similarly, for visual features i.e. part based semantic fea-
tures in image space written as a column vector s, semantic
distance is indicated by, D(si, sj) = ‖si − sj‖ψ(si, sj). For
simplicity, we do not show ψ in calculations, however we
compute semantic distance only for shared features.

III. PROBLEM FORMULATION AND SOLUTION

We consider a world frame of reference with origin Fo.
We also define a keypoint in Euclidean coordinate that
semantically characterizes a part of an object instance. Then,
any object instance O could be considered as a set of 3D
keypoints P in world frame such that O = [P1 P2 ... PK]T

and Pi = [Xi Yi Zi], ∀i ∈ K. Where, K denotes set of
all keypoints for a category. Visual feature s could then be
produced by concatenating the image coordinates resulting
from projection of the object instance into a pin-hole camera,
s = [p1 p2 ... pK]T . Where, pi = [xi yi]

T = PPi and P
is the camera projection matrix. The servoing task requires
moving current camera frame attached to the manipulator,
F to a frame F∗ such that, eventually s = s∗. Since target
object and desired object are different instances, there might
not exist a transformation T such that F∗ = TF . The

Semantics

Vision feedback

∑ 𝑤𝑖𝑀𝑖
 𝑤𝑖

𝑀𝑖

Current pose

Desired pose

Model bank

Visual
Servoing

𝑑∗

𝑑

𝑠

𝑠∗

Semantics

𝑑𝑖

𝑑𝑖
∗

 𝑠

 𝑠∗

Fig. 4. Overview of the proposed approach. Current pose of the given object viewed by manipulator’s camera (top-left) and desired pose provided by
the user (bottom-left). Both current pose and desired pose are transformed into their respective semantic representations s and s∗. A weight wi = di + d∗i
is given to each model Mi, such that the model most similar to both current and desired instance receives maximum weight. Here, di is semantic distance
between Mi and s, similarly d∗i is semantic distance between Mi and s∗. A model is generated from linear combination M =

∑
wiMi, which is

employed for servoing between pose ś and ś∗ such that d = min(‖s − ś‖) for all ś and d∗ = min(‖s∗ − ś∗‖) for all ś∗. Entire process is repeated
till convergence.

primary challenge is to approximate T through a series of
transformations

∏
i T̂i, i.e. F∗ ≈

∏
i T̂iF . Where, every

transformation T̂i is a result of a visual servoing step.

A. Overview of the solution

We assume that both the current1 and the desired pose of
the target object are given in the form of images. However,
both current and desired pose could represent different
instances as shown in figure 4. Since the instances are not
same, therefore geometrical features could not be used for
comparisons. Thus, we employ part based semantics. We
further assume that given an image of the object, both its
category as well as semantic features could be retrieved in
the form of keypoints. For which, we rely on state-of-the-art
computer vision algorithms like poselets [6], part based
models [7] etc. We also assume that the object category
has been previously seen by the robot and large number of
models Mi ∀i ∈ N are available in form of 3D semantic
keypoints.

As there might not exist a T , such that s∗ = TPO. To
address this issue, at every servoing step, we approximate
T̂i ≈ ∆T by constructing temporary models and proceeding
a servoing step with such models. The temporary models
approximate both, the given instance as well as the desired
instance. We present two approaches to construct such
temporary models. Our first approach selects the best
suitable model from the available models, while the second
approach constructs them through a linear combination of
available models M =

∑
i wiMi as shown in figure 4.

The primary advantages of using the latter approach are:

1Note that, throughout this paper we use current to denote the given point
of time and instance to denote an exemplar of a category.

(i) a linear combination of 3D models helps generate large
dataset of models from small number of given instances;
(ii) a smooth transition could be achieved when servoing
across instances.

The resultant model M constructed using either of
the approaches interpolates between the given instance
O and the desired instance O∗. The current pose of the
object s = PO and the desired pose s∗ could now be
approximated by our temporary model as ś = PM and
ś∗ = P∗M respectively. Where, the camera matrix P
minimizes the distance d = min(‖PM − s‖) and P∗

minimizes d∗ = min(‖P∗M − s∗‖) as shown in figure 4.
Since, s and s∗ represent same instance M , the problem
reduces to visual servoing over same instance, which could
be managed by classical IBVS iteration. The entire process
is repeated with the updated image after servoing step,
till convergence. However, computing P and P∗ at every
servoing step could be very inefficient. Hence, to improve
upon the efficiency we compute the linear combination
in image space, i.e. ś =

∑
i wisi and ś∗ =

∑
i wis

∗
i .

Where, si and s∗i minimize di = min(‖s − si‖) and
d∗i = min(‖s∗ − s∗i ‖). However, the image produced by a
simple linear combination of two images needs not be an
interpolated image, as it usually contains ghost contours.
But, if the linear combination is taken after aligning relevant
semantic features with their corresponding counterparts,
then satisfactory results could be achieved [8]. In our case,
keypoints are nothing but the semantic features. Hence, they
could be used safely for computing the linear combination.

B. Algorithm
As described in previous section, servoing is feasible from

s to s∗ by using semantics, even though they represent
different instances. However, visual servoing in its traditional
form could not be applied directly when instances are dif-
ferent. We propose two approaches to cater for this issue.
The first approach (Algorithm 1) switches between models
by selecting the most suitable model for a servoing step.
While, the second approach (Algorithm 2) generates a new
model by a linear combination of available models for each
servoing step. At every servoing step, Algorithm 1 finds the

Algorithm 1 Visual Servoing for object Category with
switching.

initialize e =∞, δ
while e ≥ δ do

for all Mi ∈Models do
si = argminqi(‖s− qi‖) ∀qi ∈ PMi

s∗i = argminqi(‖s
∗ − qi‖) ∀qi ∈ PMi

di = ‖s− si‖
d∗i = ‖s∗ − s∗i ‖

end for
j = argmini(di + d∗i)
e = ‖s∗j − sj‖
IBV Sstep(sj , s

∗
j ,Mj)

end while

best matching poses si and s∗i for every model, to current
and desired pose s and s∗ respectively. Most suitable model
is then found which is most similar to both, the current pose
and the desired pose i.e. with minimum di + d∗i . This model
is then used for a servoing step from si towards s∗i . Note
that, visual servoing becomes feasible as the instance remains
same for the servoing step. The algorithm converges when
the residual error for the best model ‖sj − s∗j‖ is within a
certain threshold (δ). Also, si and s∗i are found by searching
for every pose given by model Mi, i.e. qi ∈ PMi. To
decrease the computations, for each model Mi various poses
qi are precomputed offline by rotating and scaling the model.
These poses are stored in a pose bank for future use, hence
finding the most suitable pose si is reduced to an efficient
searching algorithm.

Algorithm 2 assigns a weight wi to every model at a
servoing step. The weight is chosen such that, the model
nearest to both current pose and desired pose i.e. with
minimum ‖s− si‖+ ‖s∗ − s∗i ‖, receives maximum weight.
The weights are further normalized to maintain the scale.
A model M is generated through a linear combination of
the available models with the assigned weights, which is
employed for a servoing step. Algorithm 2 converges when
residual error e for the resultant model is within a certain
threshold δ. In Algorithm 2, similar to Algorithm 1 poses qi
are precomputed and stored in a pose bank.

C. Control Scheme
In the following sub-section, we derive the control law for

the the proposed approaches. Note that, the major difference

Algorithm 2 Visual Servoing for object Category with linear
combination of models.

initialize e =∞, δ
while e ≥ δ do

for all Mi ∈Models do
si = argminqi(‖s− qi‖) ∀qi ∈ PMi

s∗i = argminqi(‖s
∗ − qi‖) ∀qi ∈ PMi

wi = 1/(‖s− si‖+ ‖s∗ − s∗i ‖)
end for
for all Mi ∈Models do

wi = wi/
∑
wi

end for
M =

∑
i wiMi

ś =
∑

i wisi
ś∗ =

∑
i wis

∗
i

e = ‖ś∗ − ś‖
IBV Sstep(ś, ś∗t ,M)

end while

between the proposed approaches is how the weight wi is
selected. Selecting the best model Mi implies assigning a
weight wi = 1 to Mi and zero weights to others. Thus,
Algorithm 1 is a special case of Algorithm 2, where weights
are sparse and discrete. Discrete weights makes the design
and analysis of control law difficult. Thus, here we limit our
scope to design of control law for Algorithm 2 only.

The standard control law for visual servoing as stated in
the previous section is ė = −λLs(s− s∗) , where s and s∗

are features in current and desired pose of same instances. In
contrast to traditional visual servoing, for our case, current
object and the desired object are two different instances. As
the features are semantic keypoints so linear combination
could also be extended to s and s∗.

s ≈ ś =
∑
i

wisi

s∗ ≈ ś∗ =
∑
i

wis
∗
i (3)

Then, the servoing error function could be written as:

e =
∑
i

wisi −
∑
i

wis
∗
i (4)

Where, the weights are given by:

wi =
1

‖s− si‖+ ‖s∗ − s∗i ‖
(5)

These weights are chosen such that the model which
is most similar to current pose and desired pose i.e. with
minimum ‖s− si‖− ‖s∗− s∗i ‖ gets maximum weight. Note
that, the denominator in (5) never becomes zero as, we are
servoing across instances i.e. s 6= si. Since, the camera
velocity would remain same for all models Mi and neither
s∗, nor s∗i vary, hence without loss of generality, it can be
assumed that ṡ = LsVc, ṡ∗ = 0, ṡi = LsiVc, ṡ∗i = 0. The
derivative of the above error function would then be:

ė =
∑
i

ẇi(si − s∗i) +
∑
i

wiLsiVc (6)

Where, the derivatives of the weights are given by,

ẇi = − 1
z2
i
żi (7)

żi = −2(s− si)T (ṡ− ṡi)
= −2(s− si)T (Ls − Lsi)Vc

Furthermore, ensuring exponential decoupled decrease in
error by putting ė = −λe gives,

Vc = −λL+
e e (8)

Where,

Le =
∑
i

wiLsi−2
∑
i

w2
i (si−s∗i)(s−si)T (Ls−Lsi) (9)

The interaction matrices Lsi are similar to 10.

Lsi =

[−1
zi

0 xi

zi
xiyi −(1 + x2i) yi

0 −1
zi

yi

zi
1 + y2i −xiyi −xi

]
(10)

It could be seen that at e = 0, velocity also becomes zero,
thus the approach converges at equilibrium point e∗ = 0.
As each 3D model is known apriori, depth term in the
interaction matrix could be taken as it is from the geometry.
Hence, it is possible to compute the interaction matrix at
every step of visual servoing. However, the depth term in
(10) is required in camera’s frame of reference, while the
coordinates of Models’ keypoints are known in world frame
of reference. Thus, to convert the keypoints into camera’s
frame of reference, camera’s pose is required, which could
be stored while precomputing poses for the pose bank. Then,
we have a strong assumption that the camera’s pose must lie
in pose bank. However, visual servoing is fairly tolerant to
depth errors. Thus, the pose bank should be made sufficiently
large to cover various poses in the workspace. We further
assume that target remains static throughout the servoing
process and workspace is defined such that there exists a
trajectory between current pose and desired pose without
violating joint limit constraints and singularity constraints.
Significant work has been done in visual servoing literature
on relaxing these constraints [9], [10].

IV. EXPERIMENTS AND RESULTS

A. ServoKt Dataset

Our approach requires 3D models and images represented
as part based semantics. As to our knowledge, there does
not exist any standardized dataset with semantic annotations.
Thus, we created ServoKt dataset which expresses part based
semantics for 2D images as well as for 3D models, so
that, accurate correspondences could be established among
images and models of a category. Furthermore, dataset is
able to express large variations in appearances and geometry
as shown in figure 5. The dataset comprises of 5 object cat-
egories namely Teapot, Cup, Bottle, Flashlight and Toycar.
Each category contains 100 images and 20 3D models per
category. Each image has been manually annotated with 2D
keypoints, which represent pixels coordinates. Also, every

(a) (b)
Object category # of images # of 3D models # of keypoints
Cup 100 21 19
Teapot 100 22 20
Bottle 100 20 8
Flashlight 100 22 12
Toycar 100 20 16

(c)

Fig. 5. ServoKt dataset: (a) Images of object categories with respective
keypoint annotations (b) 3D models of object categories. (c) Summary of
the dataset: number of images and 3D models per category. Number of
keypoints denote unique parts employed for representing the object. Note
the variation in appearance, pose and geometry for both (a) and (b).

model has been manually annotated with 3D keypoints,
which are mean subtracted coordinates in 3D space. Figure 5
shows a few examples of annotated images and 3D models
from ServoKt dataset. Note that, 3D coordinates are fixed
with respect to a given origin. Thus, annotations represent
mean subtracted coordinates to make the model independent
of origin and scale. However, images represent a camera
pose, thus they are not mean subtracted. We have used
images from freely available datasets, such as Caltech 256
dataset [11], LHI dataset [12], Cambridge toy cars Dataset
[13], Inria toy cars dataset [13]. We have collected 3D models
by downloading freely available CAD models from Google
3D Warehouse [14] and retaining the good quality models.
These models had different scales to transform them into
a uniform scale before beginning the annotation procedure.
An instance may not contain all keypoints of the object
category as intraclass variance is high, also in an image some
parts might not be visible. Figure 5(c) summarizes ServoKt
dataset.

B. Experiments

1) Experimental setup: All the experiments were per-
formed in simulation on a 6 DOF manipulator and eye-
in-hand camera configuration [2] was employed for visual
servoing. We selected a 3D model from ServoKt dataset
treated it as the given object, unknown to the robot. Other
3D models were assumed to be available along with their an-
notations for algorithm to find the best fit model to the given
object. To compute si and s∗i required by both algorithms,
a pose bank was generated by viewing all models from
5832 views per object. Note that, the size of the pose bank
along with the number of models is the tradeoff between
the computational expense and accuracy of the approach.
For the following set of experiments, we have restricted our

(a) Initial pose

(b) After servoing

(c) Desired pose

Fig. 6. Qualitative Results. (a) Initial pose captured by the robot with a random camera pose for provided 3D object from the dataset. (b) Servoing result
of Algorithm 2 for desired pose image. (c) The desired pose in form of image provided to the robot. Note the similarity in the resultant pose achieved
by the proposed approach compared to the desired pose provided, over wide range of desired poses. Also note that, the selected 3D model in (a) acts as
unseen target object.

−1

−0.8

−0.6

2.595

2.6

2.605
0.4

0.41

0.42

0.43

0.44

50 100 150 200 250 300
2

3

4

5

6

7

8

#iteration

M
e
a
n

f
e
a
t
u
r
e

e
r
r
o
r

(
p
x
)

50 100 150 200
−5

0

5

10

15
x 10

−3

#iteration

V
e
l
o
c
i
t
y

(
m
/
s
)

Vx

Vy

Vz

50 100 150 200

−0.04

−0.02

0

0.02

#iteration

A
n
g
u
l
a
r

v
e
l
o
c
i
t
y

(
r
a
d
/
s
)

ωx

ωy

ωz

(a) (b) (c) (d)

Fig. 7. Servoing with algorithm 2. (a) Camera trajectory is continuous and smooth. (b) Feature error decreases exponentially. Camera translation velocity
(c) and rotational velocity (d) becomes zero at steady state. Note that, the desired pose and initial pose are different instances hence there is residual feature
error on convergence.

pose bank to rotation only poses. The translation and scaling
are handled by aligning the mean of initial pose (s) to that of
each candidate pose (si) in the pose bank and maintaining a
reasonable scale. Similarly, the mean of the desired pose (s∗)
was also aligned to each of its respective counterpart (s∗i) in
the pose bank. Such pose bank is more biased to rotation
and results in a precise rotation compared to translation.
Also, for the following set of experiments the visual features
s and s∗ were computed by projecting of object O rather
than applying vision preprocessing, since throughout this
paper we have assumed that given an image 3D part based
semantics could be extracted in form of keypoints.

2) Qualitative results: The objective of this section is to
show the efficacy of the proposed algorithm to servo to a di-
verse set of target instances across various object categories.
The desired image for the servoing algorithm is shown in
figure 6(c). The current pose of the object as seen by the
camera is shown in 6(a). It is to be noted that these objects (in
the row of figure 6(a) are not part of the 3D models available
to the algorithm. Based on the current object pose and the
desired image a linear combination of keypoint descriptors,
st and s∗t are computed as described in Algorithm 2. The
result of the servoing based on these descriptors is depicted
in the row of figure 6(b). The similarity in the pose of figure
6(b) and figure 6(c) verifies qualitatively the efficacy of the
proposed algorithm. Note that, the algorithm is able to servo
to desired poses for diverse instances of the same object as
well as across five categories of objects is the keynote theme
of this paper.

3) Quantitative results: We have validated the perfor-
mance of our approach (Algorithm 2) on various perfor-
mance measures like trajectory smoothness, terminal veloc-
ity, camera pose error and feature error.

In the first experiment, we used the initial pose and desired
pose configuration as shown in figure 4. The approach con-
verged with a smooth trajectory and zero terminal velocity
of the end-effector as shown in figure 7. It could also be seen
that the feature error decreases exponentially.

In the second experiment, we have tested the performance

5 10 15
0.1

0.12

0.14

0.16

0.18

0.2

#models

M
e
a
n

t
r
a
n
s
l
a
t
i
o
n

e
r
r
o
r

5 10 15
0.04

0.045

0.05

#models

M
e
a
n

r
o
t
a
t
i
o
n

e
r
r
o
r

(a) (b)
Fig. 8. (a)-(b) Effect of increasing 3D models on camera pose error post
servoing. Note that, as the number of models increase, initially the pose error
increases as a linear combination does not approximate the object. However,
as the number of models become sufficient, the error starts decreasing. Note
that, we have not considered kinematic constraints of the robot, hence there
exist configurations where joint limit is reached, resulting higher error in
camera pose.

of our approach for error in camera pose. We selected a 3D
model from the ServoKt dataset which we used as the target
object. It was servoed in 20 random poses using Algorithm
2. We further computed the rotational and translation error

5 10 15 20

20

30

40

50

#model

M
e
a
n

f
e
a
t
u
r
e

e
r
r
o
r

(
p
x
)

5 10 15
25

30

35

40

45

50

55

#model

M
e
a
n

f
e
a
t
u
r
e

e
r
r
o
r

(
p
x
)

(a) Flashlight (b) Teapot

5 10 15
32

34

36

38

40

42

44

#model

M
e
a
n

f
e
a
t
u
r
e

e
r
r
o
r

(
p
x
)

5 10 15
17

18

19

20

21

22

23

#model

M
e
a
n

f
e
a
t
u
r
e

e
r
r
o
r

(
p
x
)

(c) Bottle (d) Toycar

Fig. 9. Extending to other categories. We also test our approach on
four other categories: (a) flashlight (b) teapot (c) bottle (d) toycar. The
feature error initially increases and gradually decreases thereafter as the
number models are increased. Note that, for flashlight, performance is higher
compared to other categories due to lower variation in geometry.

between final pose attained by the camera and the desired
pose (both in Euclidean world). Six keypoints were used to
match the pose, however all annotated keypoints were used
for visual servoing. We then varied the numbers of models
available to the algorithm for computing the best-fit model
to the given object from one to eighteen. Whole process has
been repeated five times with different model being selected
as target object for statistical averaging. The translation
and rotational errors between camera pose were defined as
etranslational = ‖Xdesired − Xattained‖/‖Xdesired‖ and
erotational = ‖Qdesired − Qattained‖/‖Qdesired‖, where,
X denoted the Euclidean coordinates and Q denoted the
quaternions. Motivation for the experiment was to validate
the premise that as the models available to the algorithm
increase there is a higher probability to find the models
similar to the given object. Hence, as the number of models
increase the total error should decrease and given infinite
models, there exist a model for which eventually error in
camera pose becomes zero. The results are plotted in figure 8.
As it could be seen in the figure 8, initially the error increases
as irrelevant models are also given weights, but as the number
of models increase more of the relevant models are selected
with higher weights, the error decreases in accordance with
our premise. Note that, there exists a higher residual error
in translation compared to that in rotation. The reason for
such observation is that the pose bank is biased for rotation
variations compared to scale variations.

We also implemented our approach on four other cate-
gories from ServoKt dataset. We randomly selected 10 image
pairs and servoed over them by varying the number of models
available to the robot. We repeated the experiment five
times for statistical averaging. The residual feature error has
been plotted in figure 9 against number of models. It could
be observed that the error initially increases till sufficient

number of models have been found. Then, it gradually
decreases. This trend shows that given a sufficient number
of models, a new model could be linearly interpolated.
The number of models required to produce good results
depends upon both, the category itself as well as the variation
among the 3D models. For the above experiment, it could
be observed from figure 9, that 12 models are sufficient
to achieve satisfactory results. Note that, we have servoed
between different instances hence there exists a residual
feature error.

−0.9
−0.85

−0.8
−0.75

−0.7
−0.65

2.56

2.58

2.6

2.62
0.38

0.4

0.42

0.44

Algorithm1

Algorithm2

(a)

(b)

Fig. 10. Comparing Algorithm 1 and 2. (a) Algorithm 2 converges to a
stable solution with smooth trajectory while Algorithm 1 oscillates between
two models. (b) The feature error at the time of convergence for the linear
combination approach of Algorithm 2 is significantly less than the switching
models approach of Algorithm 1.

4) Comparison between switching and linear combination
based approaches: As mentioned in the previous section,
both Algorithm 1 and 2 minimize semantic distance on
desired pose by employing suitable model at every servoing
step. Algorithm 2 is a more generalized version of Algorithm
1, finding a single suitable model could be considered
solving the optimized weight assignment problem constraints
that weights being non-negative integers and summation of
weights being one. As there are no integral constraints for
Algorithm 2, it is supposed to find a better optimized solution
i.e. a more suitable model. Another advantage of using
Algorithm 2 is a smoother transition across models which
in turn results in a smooth trajectory. Since the models are
not being switched at every instance, it gives a continuity in
the trajectory, which is desirable for the robotic manipulator.
An extreme case could be when the desired instance O is
exactly in middle of two 3D models O = 1

2M1 + 1
2M2.

Here Algorithm 1 will not able to decide between the two
models and would keep oscillating between them. To validate
these claims we compared the trajectory of Algorithm 1
with Algorithm 2 as shown in figure 10(a). It could be seen

that Algorithm 2 converges to a stable solution following a
smooth path while Algorithm 1 keeps on oscillating between
two models. We also compare these approaches on the
residual feature error after large number (1000) iterations,
assuming that the algorithm is not able to converge. As
shown in figure 10(b), that Algorithm 2 results in a lower
residual error.

5) Failure cases: The primary assumption made for pro-
posed approach is that instances similar to the given object
are previously seen. For example, if the robot has seen
only cups with handles but the given instance does not
have a handle, proposed approach won’t be able to find
a suitable cup. Another failure situation arises in the case
of extrapolation, where linear combination does not give
optimal solution. For example the given object is smaller
than all seen models then ideally the smallest model would
perform better.

V. CONCLUSION AND DISCUSSIONS

In this work, we have introduced a novel problem of
visual servoing across instances of an object category and
we have also provided an approach to accomplish the task
employing a dataset of 3D models. We have also designed
the closed form control law for the approach and empirically
shown the convergence of the proposed approach. With this
strategy visual servoing could be applied to variety of objects
without modeling every instance. We have demonstrated
our work on five different object categories with moderate
intraclass variance and intend to make the dataset used
publicly available for further research.

The primary motive as discussed in section I has been
to empower the robots to interact with a wide variety of
objects, including the unseen one. A critical component
that enables this possibility is the framework that matches
semantic parts across object instances. In this paper we
have used state of the art algorithm in computer vision
that compute semantic part based correspondences between
images. The reliability of the system to an extent hinges
on the ability of the current state of the art approaches
to compute such correspondences. In our early stages of
work we also identified the need for preventing exaggerated
model switching to guarantee a pleasing and acceptable
servoing performance. To this end, we identified a method
that interpolates between semantic correspondences over
a diverse set of instances. As mentioned earlier while a
routine indiscriminate linear combination between images
would produce ghost images and degrade performance, a
linear combination across aligned semantic correspondences
could still be suitable. This was exploited to obtain stable,
converging and pleasing camera trajectories for a variety of
instances and objects. Furthermore, the premise that indeed
the desired pose has been reached at the convergence (ś =
ś∗) employing linear combination has been shown through
empirical results.

In future we plan to expand the proposed approach to a
wider variety of objects and also contribute to the state-of-
the-art in finding pose of the object based on part based

semantics.

VI. ACKNOWLEDGEMENT

We thank TCS research fellowship for financial support.

REFERENCES

[1] S. Hutchinson, G. Hager, and P. Corke, “A tutorial on visual servo
control,” in ICRA, 1996.

[2] F. Chaumette and S. Hutchinson, “Visual servo control. i. basic
approaches,” in MRA, 2006.

[3] R. Arandjelovic and A. Zisserman, “Name that sculpture,” in ICMR,
2012.

[4] J. Sivic and A. Zisserman, “Video google: A text retrieval approach
to object matching in videos,” in ICCV, 2003.

[5] C. Liu, J. Yuen, and A. Torralba, “Nonparametric scene parsing via
label transfer,” in PAMI, 2011.

[6] L. Bourdev and J. Malik, “Poselets: Body part detectors trained using
3d human pose annotations,” in ICCV, 2009.

[7] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part based models,” in
PAMI, 2010.

[8] B. Schölkopf, F. Steinke, and V. Blanz, “Object correspondence as a
machine learning problem,” in ICML, 2005.

[9] É. Marchand and F. Chaumette, “Feature tracking for visual servoing
purposes,” in RAS, 2005.

[10] E. Marchand, F. Chaumette, and A. Rizzo, “Using the task function
approach to avoid robot joint limits and kinematic singularities in
visual servoing,” in IROS, 1996.

[11] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category
dataset,” California Institute of Technology, Tech. Rep. 7694, 2007.

[12] B. Yao, X. Yang, and S.-C. Zhu, “Introduction to a large-scale general
purpose ground truth database: methodology, annotation tool and
benchmarks,” in EMMCVPR, 2007.

[13] P. Bendale, W. Triggs, N. Kingsbury, et al., “Multiscale keypoint
analysis based on complex wavelets,” in BMVC, 2010.

[14] Google, “3d warehouse.” http://sketchup.google.com/3dwarehouse/.

