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Abstract— This paper proposes a new framework for data
association to solve the problem of SLAM. The proposed
framework has specific relevance to range scanner based EKF-
SLAM. The resulting data representation enables semantic
reasoning on a spatial level which reduces the misassociation
of closely spaced data from different spatial configurations
through the use of convex polygons to represent data from sim-
ilar spatial configurations. The data representation is especially
effective for association when revisiting previously mapped
regions efficiently. The spatial data representation also builds
an occupancy grid for the entire map.
We also provide a means of clustering range scan data using an
adaptive threshold to be able to divide data at various ranges
into clusters and dense data clustering to get more accurate
data.

I. INTRODUCTION

A robot needs knowledge about its position within an
environment to be able to navigate autonomously. A lot of
work has been channelized by researchers into solving this
problem as a result of which there exist different approaches
based on the type of the environment. However, a single
framework that can reliably function across all kinds of
environment is yet to be explored. The navigation problem
is divided into three parts by some researchers [1] : plan-
ning, localization and map building. This paper concentrates
on the latter two which together are popularly known as
Simultaneous Localization and Mapping(SLAM). The most
widely used form of SLAM is the stochastic SLAM as
introduced by Smith, Self and Cheeseman [3]. Stochastic
SLAM relates the error in measuring the environment with
the uncertainty in the robot pose which causes the landmark
estimates to be dependent mutually and on the robot pose
uncertainty. A practical implementation of the stochastic
SLAM and the one used in this work is the Extended Kalman
Filter based SLAM(EKF-SLAM) where the uncertainties and
the correlations are represented with a Gaussian Probability
Density Function.

All SLAM frameworks consist of a continuous component
and a discrete component [2]. The continuous component is
the estimation of the feature locations and the robot pose,
while the discrete component is the data association problem,
the problem of establishing whether two features observed
during different instants of time belong to a single feature in
the environment. The data association problem is preceded
by the data clustering problem which determines how the

Gururaj Kosuru is a graduate student with the Robotics Research lab,
IIIT, Hyderabad, India gururaj@research.iiit.ac.in

Satish Pedduri is a research engineer with the Robotics Research lab,
IIIT, Hyderabad, India pedduri@research.iiit.ac.in

K Madhava Krishna is a faculty with the Robotics Research lab, IIIT,
Hyderabad, India mkrishna@iiit.ac.in

features are extracted from the range scanner data. The
performance of any SLAM algorithm hugely depends on the
accurate modeling and association of features. Nunez et al
[5] discuss a segmentation algorithm for feature modeling by
extracting raw scan data into points, lines and curve segments
while Fernandez [6] proposes a convolution based clustering
algorithm and a hough transform based line tracker using a
laser scanner. Dietmayer [7] uses a segmentation technique
on a laser scan to distinguish between vehicles, persons and
small objects which relies on the resolution of the scanner
and a constant that can be set according to the estimated
noise levels. Borges et al [13] suggest a method in which
they specify the maximum distance threshold to cluster a set
of data as a function of the noise in the measurement and a
virtual line determined by an angle.
Diverse attempts have been made not only in the area
of feature segmentation and modeling but also to improve
data association. The problem of data association is usually
handled using the gated nearest neighbor algorithm. Com-
patibility between features is estimated using the normalized
innovation squared(NIS) test and the smallest Mahalanobis
distance is used to select the best match.

Newman [8] first talked about a relative map filter in which
the features were the distance between two point features in
the map and the association was performed . Tim Bailey
[9] introduced a method which takes into consideration the
relative constraints and the absolute constraints based on NIS
validation gate between features and makes a correspondence
graph in which a maximum clique search is performed to find
the largest joint compatible association set and Neira et al
[10] propose a search algorithm to traverse an interpretation
tree(JCBB) to find the largest number of pairings that are
jointly compatible. [11], [12] perform local data association
very efficiently but the revisiting problem still persists. Neira
[14] introduced a sum of gaussians representation to be able
to use raw scan data as features in EKF-SLAM. In this paper,
we propose a method that uses the mean of a convex polygo-
nal region formed by features to associate them respectively.
Moreover, the division of space into polygons also facilitates
the knowledge of occupied areas as they are not part the
semantic representative structure. As an intermediate output,
the occupancy grid of the environment with a semantic
understanding of the surroundings is generated. The low
variance of the mean of the polygon assists in improving
the feature association while also making it efficient.

II. MOTIVATION

The relative structure of an environment can play a key
role in improving data association. We attempt to find a



unique structure in each region of the map, the representative
of which would be able to define the whole region. Although
there has been work on the relationship between landmarks
and a simple representative for a set of scan points, the spatial
semantic information that defines the visibility of the robot
environment is yet to be explored. Considering structured and
semi-structured environments, we use the spatial structure
formed between landmarks as the main criterion towards the
association of features efficiently and to solve the revisiting
problem. A semantic division of data prevents misassociation
of features which are close metrically but separated by the
topology of the environment. A compact representation of
a set of features for the purpose of data association in
the form of a Mean of Gaussians with a relatively low
variance has been shown to perform well. Without any
additional computation, this spatial representation also builds
the occupancy grid of the map while performing SLAM thus
leading to a metric map with occupancy information.

III. METHODOLOGY

Our method is primarily for feature extraction and data
association in EKF SLAM while also maintaining multiple
visibility regions over the explored map using the point
landmarks in an indoor environment consisting of a number
of rooms. We explore each area of the map using a breadth
first landmark search thus exploring the entire room before
going to the next room and the doors between rooms are
identified using a fixed unique width for doors. The robot
has two laser range finders as its sensors allowing a complete
360◦ view. Feature extraction gathers information about
the map using the observations obtained from the sensor.
Data Association uses the information obtained from feature
extraction to associate the current observation to previously
observed features in the map.

A. Feature Extraction

The extended kalman filter relies on parametric feature
modeling. So, parametric feature extraction is essential to
extract features from observations to store in the EKF state.
Various parametric features can be extracted from the range
scanner’s observation which can be used as features in the
EKF state(points,lines,etc). However, as the complexity of
the feature parameterization increases, the amount of added
non-linearity due to erroneous jacobian approximations also
increases. We use a point feature based EKF-SLAM as it
is the simplest structure for landmarks and since locations
are best described by points. The process of extracting point
features from the scan is done in two parts. First the data
obtained from the range scanner is divided into clusters.
These clusters are then divided into lines from which point
features are extracted.

1) Data Clustering: A nearest neighbor clustering usually
is given a pre-defined threshold and whenever the distance
between two consecutive scan readings is greater than the
threshold, the current cluster is considered complete and a
new cluster is started. However, a nearest neighbor based
clustering method in an indoor environment in the presence

Fig. 1. Adaptive Clustering Threshold

Fig. 2. Raw scan data, the laser points inside the green ellipses are sparse

of close features can often lead to two point features from
different structures to be considered to be as part of the
same cluster. We propose a clustering method that clusters
data on the basis of an adaptive threshold which defines the
maximum distance between two points such that both might
lie on the same line. For every consecutive set of readings
from a single scan(say P1,P2), the closer of the two from the
robot is first selected(say P1). for the distance between P1

and P2 to be the minimum possible, 6 RMP1 needs to be a
normal angle where R is the robot position and M is the point
of intersection between the line P1P2 and the perpendicular
from the robot position to the line. In the case that 6 RMP1

is a normal angle, the distance between the two points will be
d = 2·r1·sin(θ/2) where r1 is the distance to the closer point
from the robot. If we now start increasing the length of P1P2

by moving P2 away from the robot on the line, the angle
6 RP1P2 keeps increasing from zero degrees to 90.25◦. The
angle 90.25◦ is obtained by considering the isosceles triangle
formed between the R,P1, P2 if the distance between P1P2

is minimal and the laser resolution is 0.5◦. By considering
only feasible values, we can consider the maximum possible
angle to be 85◦. By approximating the other angle to 90◦,
we can set the threshold to be a maximum of d/cos(85◦).
This is illustrated in Figure 1 where two consecutive laser
hits are shown.



Fig. 3. Raw Dense scan data, the laser points inside the green ellipses are
denser

Fig. 4. Mean of Gaussians of an MECP, the green ellipses represent the
variance of the vertices and the red point represents the MoG, and the ellipse
around it represents its variance which is as expected, smaller than the other
variances

The range scanner data represents a depth map with erro-
neous data. Instead of taking a laser scan for each iteration of
the algorithm, the laser scanner is used to take multiple scans
between two iterations. This dense depth information is used
to segment data into clusters from which point feature data is
extracted. We have observed that specially in the cases where
the visibility of a surface is very low, a continuous dense
representation improved the clustering due to the presence
of a higher density of hit points. The difference in the data
density is depicted in Figure 2 which is a normal laser scan
and Figure 3 which is a dense laser scan.

The Ramer-Douglas-Peucker algorithm is used to divide
each cluster into sets of connected line segments from which
the point features are extracted from either

• the intersection of two line segments
• or the end of a line segment followed by a new cluster

that does not occlude the earlier one.

2) Polygon Division: Point features obtained from Data
Clustering are then used to find the largest(maximum car-
dinality) empty convex region containing the robot and
bounded by the point features. We call this region the
Maximum Empty Convex Polygon(MECP).

Fig. 5. MECPs extracted during the exploration of the first two rooms from
Figure 7 which give a spatial semantic overview of the rooms. Adjacent
edges representing an MECP have been labeled with the same color

For any convex polygon p with a vertex set v

visibility(P, V ) = 1 (1)

∀ points P ∈ polygon p and ∀ V belongs to vertex set v.
By choosing the MECP enclosing the robot, we attempt to
find a unique polygon which guarantees the visibility of all
its vertices as long as the robot is within the MECP. If there
is more than one convex polygon with the same cardinality
and enclosing the robot, both of them are considered.

The MECP is extracted from the current scan using a sub-
routine in Dobkin’s Algorithm [15] which is an improvement
over the method proposed by David Avis [16]. Given a point
set S of n points in the euclidean plane, the algorithm finds
the largest empty convex subset. This algorithm is based on a
result for computing the visibility of vertices of a star shaped
polygon. The basic algorithm consists of three parts which
works as follows:

1) For each point p ∈ S, all other points are sorted(in
counterclockwise order) by the angle subtended at p
which results in an ordered set Sp. From Sp, all points
to the left of p are removed and p is added instead
which results in a star-shaped polygon Pp. The kernel
of Pp is defined as the set of all points from which
every edge of Pp is visible; Obviously p belongs to
the kernel of Pp.

2) For each p ∈ S such that the kernel of Pp includes the
robot position, the visibility graph V Gp is computed
inside Pp, which includes the edges of Pp, but does
not include the visibility edges involving p.

3) For each p ∈ S, the largest convex chain in V Gp is
computed . This chain together with p gives the largest
convex polygon which has p as the left most vertex.

These three steps are explained in detail below:
The first step requires that for every point p ∈ S, all the

other points are sorted according to their angle subtended at
p which is done using standard sorting methods in O(n2).
Similarly, removing points to the left of p and constructing
the star-shaped polygon Pp is done in O(n2).

The second step involves the construction of a visibility
graph for a star-shaped polygon of which one vertex p lies
on the kernel and the robot position lies inside it. Note that
from our assumption that the points lie in a general position,
every edge of the visibility graph will either be an edge of
Pp or intersect the boundary of Pp in its two vertices with
the edge completely inside. All the other ordered vertices are
numbered as p1 . . . pn−1 where n−1 is the number of points



lying to the right of p. The visibility graph is computed as
a directed graph where every edge runs from a lower index
vertex to a higher index vertex. This directed graph helps in
later requirements. On visiting vertex pi, all incoming edges
are constructed. With each vertex pl l ≤ i, a queue Ql is
maintained which stores the starting points of some of the
incoming edges of pl in the counterclockwise order. These
are points pj such that jl is an edge of the visibility graph
and no other point pk been reached such that k > l and jk
is an edge of the visibility graph. Clearly Ql is a queue that
contains those points that are seen by pl but not visible after
that, because pl blocks their view.

For two points pi and pj , let

s(pi, pj) =
Ypj − Ypi
Xpj −Xpi

A sqeuence of points p1 . . . pm define a convex chain of
length m-1 if

s(p1, p2) ≤ s(p2, p3) ≤ s(p3, p4) ≤ . . . ≤ s(pm−1, pm)

Step 3 calculates the longest convex vertex chain in the
visibility graph V Gp.This is done by calculating the longest
convex chains that go counterclockwise for every pi where
i = 1 . . . n − 1. This process starts from pn−1 and goes
clockwise till it reaches p1, all the while maintaining the
length of the largest convex chain and the index of the vertex
where it begins. Since the visibility graph was constructed
as a directed graph, at every vertex pi, an ordered set of
incoming edges i1 . . . iimax and outgoing edges o1 . . . oomax
is maintained. A clockwise scan is started from pn−1 to p1,
and at every iteration, for every outgoing edge, the length of
the largest convex chain that starts from that edge is stored.
Every incoming edge is checked against the outgoing edges,
and the lengths of those chains where it subtends a convex
angle is increased by 1, or else a new convex chain of length
1 is started.

For further information, [15] may be referred to. The
complexity of the entire algorithm is O(n2) where n is the
number of point features extracted from the scan.

B. Data Association

For a global loop closing, we match data using the MECPs.
The MECP vertices are just links to the indices of vertices
present in the EKF framework. To match two MECPs, we
use a Mahalanobis based gated matching of their centers. As
each observed feature is stored as a gaussian in the state,
an MECP can be compactly represented as the Mean of
Gaussians(MoG) of its vertices. This representation allows a
very efficient way of associating data as the variance of the
resulting MoG is much lower than the variance of the individ-
ual vertices. For an MECP M, with vertices P̄1, P2, P3 . . . Pk
and variance σ2

P1
, σ2
P2
, σ2
P3
, . . . σ2

Pk
, the gaussian for the

Fig. 6. The Heirarchy of data association, Data within a room can only be
associated with other data from the room. Convex polygons from the same
room can share vertices and edges, but Convex polygons from different
rooms do not have any common vertices

center is defined as
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where g() defines a gaussian function and k is the number
of vertices. The mean and variance M and σ2

M are :
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where σPi
σPj

is the covariance between points features i
and j. We explore each room completely before moving to
the next room. This ensures that the whole room is divided
into MECPs, i.e. there is no region of the room that is not
occupied by atleast one polygon. During each iteration of
the EKF-SLAM algorithm, once an observation is made, the
features are extracted and the MECP found as described in
the previous subsection.

Point features obtained in the current observation that are
not part of the current MECP are associated or augmented
to the EKF-SLAM state by trying to find a match with
other point features in the room using a simple NIS test
to find compatibility and the best match using Mahalanobis
match, upon failing which the feature is added to the state
as a new feature. Using the doors as a means, a room data
is saved with each feature in the state. This prevents the
matching of features that might appear very close metrically,
but topologically are not the same.

1) Polygon Extraction: As each MECP’s vertices are in
the state vector,in order to find the MoGs of all the MECPs
we first extract the MECP vertices and variances. Using
the equations 2 and 3, the centers and the variances for all
the MECPs are found out using the state vector for feature
means and the covariance matrix for both the variance and
the covariance between the features.



Fig. 7. SLAM environment

2) Polygon Matching: Each MECP previously seen is
parameterized as a gaussian. Once the MoG/center of the
MECP for the current measurement is extracted, the current
MoG is tested against all other former MECP MoGs to
check if there is a match using the single gated NIS test
and Mahalanobis match criteria and the cardinality of the
MECPs. By matching the cardinality, we attempt to ensure
that the MECP match is authentic. On finding a match,
the respective vertices are further matched by matching two
consecutive vertices using the NIS test and the Mahalanobis
match, and the rest of the vertices of the polygon are matched
implicitly.

When exploring a previously unexplored region, the cur-
rent MECP does not match with any earlier MECPs from
the state if:
• new point features are observed in the current scan

although the robot is still inside one of the previous
MECPs

• the robot has moved into an unexplored region.
If there is no matching MECP found, a search using the

NIS test is performed across all features previously added
to the state in the same room to find a match for the
current observed features. The best match is found using the
Mahalanobis criteria. If a match is found, then those point
features are associated and the rest are augmented into the
state and the current MECP is added to the MECPs.

IV. SIMULATION RESULTS

We have tested our algorithm using the Player/Stage simu-
lator with a Pioneer P3-DX model robot and SICK laser with
full field of view. We have verified the performance of our
algorithm on the map in Figure 7. The results of our SLAM
algorithm with Adaptive thresholding based clustering and
MECP based data association is shown in Figure 8. In Figure

Fig. 8. EKF-SLAM results with Data association using MECPs, the lines
in grey are drawn to correlate the SLAM results with the environment, the
red plus symbols represent the mean of each feature and the blue ellipses
around them represent their variance

8, feature locations are plotted in red and the variance ellipses
are plotted in blue. To show the structure of the environment
and for the viewer to verify the results, we have drawn gray
lines across the point features. In the current implementation,
we do not consider the end points of the door as a feature.
The standard deviation of the SICK laser is assumed to be
σr = 0.05, σθ = 0.3◦ and that of the robot is σrR = 0.1
and σθR = 1.5◦. Because of the hierarchical room based
matching, it is clearly seen in the results that two very
close features separated by a wall are not mismatched to
one another. The MECPs for the first two rooms are shown
in Figure 5.

V. CONCLUSION

In this paper we have proposed a spatial representation of
a set of point landmarks by a single representative point to
increase the efficiency and the accuracy of data association
and also build occupancy information. We have also shown
a method to calculate the largest Maximum Empty Convex
Polygon(MECP). For fast data association and global loop
closing, we represent the polygon by a gaussian at the mean
of its vertices, which is found by using a scaled sum of
gaussian distribution. Using the estimated mean and variance
of the MECPs from the EKF-SLAM state and variance, the
currently observed MECP is checked for compatibility. As
the MECPs are just stored as a set of pointers to features
in the EKF-SLAM state, the MoG of all the MECPs are
calculated each iteration on the fly and the EKF-SLAM state
consists of the robot pose and the point features only like a
generic point based EKF-SLAM framework.



VI. FUTURE WORK

This work can be extended towards using a local submap-
ping algorithm for each room which would reduce the
variance of local features and aid in better data association
in case the vertices of a scan are not matched through the
MECP. The occupancy grid that is being built can be used
to explore and plan the path while performing SLAM. There
is a lot of scope for different spatial structures that can be
used in the map which need to be explored to be able to
build robust representations even in cluttered environments.
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