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Abstract—This paper presents a method to capture orbiting
objects using a robotic system mounted on a service satellite.
The main objective is to manipulate the robot such that no
reaction moment gets transferred to the base satellite. This will
avoid use of any attitude controller resulting in fuel savings.
Note that the constraints leading to zero reaction moment are
nonholonomic, and this makes path planning a complex problem.
In this work, first a method based on holonomic distribution of
the nonholonomic constraints is discussed. As this method exploits
constraints in terms of joint velocities, it does not always ensure
successful capture. Next, a method based on task-level constraints,
written in terms of end-effector’s velocities, has been illustrated.
It is shown that the path planned using this method has several
singular points. In order to overcome disadvantages of the above
two methods a novel approach is proposed which uses holonomic
distribution to reach closer to the target and task-level constraints
to finally capture the target. Efficacy of the method is shown using
a 3-link robot mounted on a service satellite.

I. INTRODUCTION

On-orbit servicing is going to be a major operation in the
coming years due to the increase in the number of satellites
and space debris ( [1], [2], [3]). In particular, capture and
deorbiting of space debris will be an important problem in
future’s space missions. Collision of these debris with the
operational satellites in the same orbit can cause significant
damage. This calls autonomous capture of space debris using
a robot mounted on service satellite before it collides with the
working satellite in the same orbit. A conventional approach to
control the end-effector’s position is to use Generalized Jaco-
bian Matrix(GJM) ( [4], [5]) based resolved motion rate control
of space manipulators .This however results in rotation of the
base satellite. It is desired that there is minimum disturbance
in the attitude of the base satellite during autonomous capture.
This is also referred to as reactionless manipulation which
results in fuel savings and increase in operating life of the
satellite. In this regard, several strategies have been proposed
to capture an orbiting object with minimum disturbance to the
base satellite. A method of optimization was proposed in [6]
for minimization of the base reactions, but it did not provide
a satisfactory result on reactionless manipulation. Another
attempt made in the form of disturbance map [7] lowered
the fuel consumption by minimizing the attitude disturbances,
and later led to a more effective extended disturbance map [8].
These maps reduce the attitude disturbance, but do not fully
eliminate them. A design of manipulator was provided in [9]
for reactionless manipulation where the major disadvantage

was an increase in the complexity of the robot’s architecture.

Another important strategy based on Reaction Null
Space(RNS) to achieve reactionless manipulation was intro-
duced in [10] and [11] for a robot with a flexible base. Later,
in [12] the RNS based approach was used for the control
of space robots. In [13], it was shown that zero attitude
disturbance to the base satellite can be achieved using joint
velocities obtained from RNS. An experimental validation of
RNS based method with ETS-VII space robot and its extension
to a kinematically redundant arm were presented in [13]. It
was also shown that by augmenting the joint-level constraints
with task-level, the end-effector can be constrained to move in
a reactionless manner in the task space. However, this method
can lead to several singular points, different from the dynamic
singularity [14], within the robot’s workspace. Optimal control
for capturing objects is also proposed in [15], [16] but this
may not be very helpful in real time scenarios.

It is worth noting here that the set of constraints which
govern the reactionless manipulation are nonholonomic in
nature and thus it is not possible to integrate them to get a set
of position-level constraints. A Lie algebraic formulation of
nonholonomic motion planning was presented in [17], [18].
It was shown that even though the entire set of constraints
are nonholonomic, one can obtain a subset of holonomic
constraints by restricting motion in some directions. This will
be referred to as holonomic distribution hereafter. In this
regard, a Holonomic Distribution Control (HDC) was proposed
in [19] where the robot’s joint space was decomposed into
subsets/primitives with degree of redundancy equal to one.
However, their study was limited mainly to kinematic simula-
tions. Another limitation of their method was that the path tra-
versed depends upon the initial conditions and may not always
lead to the final position. To overcome these shortcomings, we
propose a method which uses combined holonomic distribu-
tion and task-space control to achieve improved reactionless
manipulation. This forms the main contribution of this work.
Results of dynamic simulations are shown using the proposed
approach which depicts improvement over the method used in
[19].

The rest of the paper is organized as follows: Equations
of motion and constraints for reactionless manipulation are
provided in Section II. Reactionless capture of an orbiting
object with a robotic system using holonomic distribution and
task-space control and their disadvantages are presented in
Section III, while the proposed method for reactionless capture



is presented in Section IV. Finally, conclusions are given in
Section V.

II. EQUATIONS OF MOTION AND CONSTRAINTS

In this section the dynamic equations of motion for a robot
mounted on a service satellite is presented. The constraints for
reactionless manipulation in terms of joint velocities (joint-
level constraints) are also given and are later extended to
the constraints in terms of end-effector’s velocities (task-level
constraints).

A. Equations of motion

The equations of motion for an n-Degrees-Of-Freedom (n-
DOF) robot mounted on a floating-base is written as [13][

Hb Hbm

HT
bm Hm

] [
ẍb
φ̈

]
+

[
cb
cm

]
=

[
F b
τ

]
+

[
JTb
JTm

]
F h

(1)

where Hb ∈ R6×6 and Hm ∈ Rn×n are the inertia matrices
of the base and manipulator, Hbm ∈ R6×n is the coupling
inertia matrix, ẍb ∈ R6 is the vector of linear and angular
accelerations of the base, φ̈ ∈ Rn is the vector of joint
accelerations, cb ∈ R6 and cm ∈ Rn are the velocity
dependent nonlinear terms of the base and manipulator, F b
and F h ∈ R6 are the vectors of force and moment exerted
on the centroid of the base and end-effector, τ ∈ Rn is the
manipulator joint torque, Jb ∈ R6×6and Jm ∈ R6×n are the
Jacobian matrices for the base and manipulator.

B. Constraints for reactionless manipulation

The inertia matrix of the base and the coupling inertia
matrices can also be decomposed [20] as follows:

Hb =

[
wE wr̂T0g
wr̂0g Hω

]
; Hbm =

[
JT
Hωm

]
(2)

Next, the constraints for the reactionless manipulation are
derived from the conservation of the angular momentum as
[13]:

H̃bmφ̇ = 0 (3)

where H̃bm = Hωm-r̂0gJT . Note that (3) only ensures
zero attitude disturbance, the satellite is free to move along
cartesian axes. Henceforth, the reactionless manipulation will
imply motion with zero attitude distribution. These constraints
are converted into task-level constraints, i.e., in the space of
end-effector, using a Generalised Jacobian Matrix (GJM) [5]
as follows.

ẋh = Jgφ̇ (4)

where Jg is the GJM and ẋh is the velocity of the end-effector.
The GJM can be interpreted similar to the robot Jacobian
for a fixed-base manipulator system, however, here the GJM
contains several terms associated with the system’s dynamics.
Therefore by incorporating (4) into (3) we get the task-level
constraints as

H̃bhẋh = 0 (5)

where H̃bh = H̃bmJ
−1
g and the GJM is assumed to be

invertible or pseudo inverse can be used otherwise.

III. REACTIONLESS CAPTURE OF AN ORBITING OBJECT

In this section, three approaches for reactionless capture
of an orbiting object and their shortcomings are discussed in
detail.

A. Joint-space control

Solution of (3) provides joint motions which lead to
reactionless manipulation. The number of joints that can be
independently controlled is determined by the Degree-of-
Redundancy (DOR) associated with (3). In the case of planar
3-link robot mounted on a satellite, DOR is 2. This is due to
the fact that only one component of the base angular velocity
is constrained. Therefore any two joints can be controlled
independently. One way of solving (3) is to partition it in
terms of independent (φ̇

i
) and dependent (φ̇

d
) joint rates as[

H̃
d

bm H̃
i

bm

] [
φ̇
d

φ̇
i

]
= 0 (6)

Now, given the independent joint rates , the dependent joint
rates can be obtained as

φ̇
d
= −H̃

d−1

bm H̃
i

bmφ̇
i

(7)

Alternatively one may also use pseudo inverse [13]. It is worth
noting that joint-space control using co-ordinate partitioning or
pseudo inverse cannot lead to a trivial solution for desired mo-
tion of the end-effector from initial to final position. Another
approach is to use Holonomic Distribution Control (HDC) as
proposed in [19]. The HDC is described in the following
subsection.

B. Holonomic distribution control

For the nonholonomic system represented by (3), space
of allowable motion is given by the directions in which it can
move freely. This space is the right null space denoted as gj(φ)
of the reactionless constraints in (3), i.e.,

H̃bmi(φ)gj(φ) = 0 (8)

where i = 1, 2, ....,m and j = 1, 2, 3...., n − m. Hence the
allowable space is given by

φ̇ = g1(φ)u1 + g2(φ)u2 + ....+ gr(φ)ur (9)

Here r = n −m is the DOR, n is the DOF of the robot and
m is the number of task constraints. Here gi are the vector
fields forming the range space of g. A vector field on Rn is
a smooth map which assigns a map from φ to tangent vector
φ̇ ∈ TφR

n [21] where TφR
n stands for tangent space. A

distribution is defined as a map from linear sub space of TφRn
to the configuration space φ [21]. An example of a distribution
is

4 = Span[g1, g2.....gr] (10)

The distribution 4φ is the subspace of 4 evaluated at config-
uration φ where 4φ ⊂ TφR

n. A distribution is regular if the
dimension of 4φ does not vary with φ and is involute if it is
closed under Lie Bracket which is defined as follows:

[g1, g2] =
∂g1
∂φ

g2 +
∂g2
∂φ

g1 (11)



Frobenious theorem states that the distribution 4 is integrable
if and only if it is involute. The concept of holonomic distri-
bution is based on achieving subset of integrable constraints
from a set of nonholonimic constraints by restricting motion in
some directions. The dimension of the distribution4 is defined
using the DOR, r. One dimensional distributions are used
because the reactionless motion evolves from a one dimen-
sional manifold or a simple curve. Using the column vectors
of H̃bm the involutivity of the one dimensional distribution
41 was established in [11]. Therefore, 41 is integrable
from the Frobenius theorem. Here, our objective is to find
one dimensional distributions 41 so that the motion can be
steered in different directions and is also unique. The concept
of primitives to define these one dimensional distributions was
proposed in [19]. A primitive consists of m+1 joints which are
actuated at a given time while the other joints are servo locked.
So for a 3-DOF planar robot there are 3 primitives defined
which are P1 (joints 1 and 2 are actuated), P2 (joints 1 and 3
are actuated) and P3 (joints 2 and 3 are actuated), respectively.
For a higher dimensional distributions, the reactionless paths
lie in higher dimensional manifolds. To choose an appropriate
direction in these higher dimensional manifolds is a difficult
problem which is avoided. Equation (3) can be rewritten in
terms of the stationary and the actuated joints as[

H̃
s

bm H̃
a

bm

] [ φ̇s
φ̇
a

]
= 0 (12)

For stationary joints φ̇
s

is zero and

φ̇
a
= (E − H̃

a+

bmH̃
a

bm)ζ̇ (13)

where (E − H̃
a+

bmH̃
a

bm) is the null space projector and
ζ̇ ∈ Rm+1 is an arbitrary column vector. For the controlled
dynamics simulation, the trajectory following proportional and
derivative control law is used as

τ i = Kp(φd − φ) +Kd(φ̇d − φ̇) (14)

Here φd and φ̇d are the desired joint angles and joint rates
obtained from (13) whereas φ and φ̇ are the actual values
of joint angles and joint rates obtained from the dynamic
simulation. Kp and Kd are proportional and derivative gains
and are taken empirically as 49 and 14, respectively.

The path planning algorithm is devised such that the end-
effector reaches a desired point using a set of primitives. For
path planning of the 3-DOF planar robot mounted on the
satellite, six different primitives are chosen as P±1, P±2, P±3

where the sign denotes whether the end-effector is moving in
the clockwise or anti clockwise direction as indicated in Fig.
1. In contrast to [19], here the algorithm iteratively chooses
the primitive which generates the closest point to the desired
target point. The algorithm is illustrated in Algorithm 1.

A dynamic simulation is carried out using the following
initial joint angles as φinitial=[−1.3, 2.9, 2.6]rad and the final
end-effector position as xdesired=[2.8,−0.5]m. The mass of
the satellite is 500 Kg while the mass of each link is taken as
10 Kg. The time step 4t is taken to be 5 seconds. The path
traced by end effector is shown in Fig. 2. The joint angles and
joint rates of the arm are provided in Fig. 3 whereas the joint

Step 1 → Initialize t0 = 0 and appropriate initial
conditions xbi and φi.
Step 2 → Using current state variables at time ti which
are xb, φ calculate the inertia matrices Hb, Hbm and
Hm along with the constraint matrix H̃bm.
Step 3 → Using the input ζ̇ calculate the values of φ̇p
for each of the six primitives P±i where i = 1, 2, 3.
Step 4 → Using different primitive values using the
torques in (14) system is dynamically evolved for
t = 4t using ReDySim [22] simulation package.
Step 5 → Calculate the time and the corresponding
distance for each of the primitives where distance
between the end-effector and the goal point is the least.
Among the six primitives choose the primitive Pi which
gives minimum distance to the goal.
Step 6 → Stop, if the end-effector reaches the goal.
Otherwise, go to Step 2 taking t = ti, xbi and φi from
the primitive Pi

Algorithm 1: Path planning using holonomic distribution

Fig. 1: Different path primitives for a 3-DOF planar robot
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Fig. 2: End-effector’s path using holonomic distribution control
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Fig. 3: Joint motions using holonomic distribution control
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Fig. 4: Joint torques using holonomic distribution control
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Fig. 5: Base angular velocity using holonomic distribution
control

torques corresponding to these joint rates are given in Fig. 4
which are derived according to the PD control law in (14)

It is worth noting that when the end-effector approaches
closer to the target point, the frequency of switching between
primitives increases. This results into sudden change in the
joint velocities as shown in Fig. 3b and lead to non-smooth
joint torques as shown in Fig. 4. This can disturb the attitude
of the base satellite when the end-effector is about to intercept
the target point. This is also evident from Fig. 5. Moreover,
path planning using joint-primitives can not always lead to the
final position. This is another limitation of this method.

C. Task-space control

In this section, the reactionless manipulation using task-
level constraints of (5) is presented. To achieve task-level re-
actionless manipulation we use co-ordinate partitioning where
the end-effector velocity space is partitioned into independent
and the depended velocity components as[

H̃
d

bh H̃
i

bh

] [
ẋdh
ẋih

]
= 0 (15)

Next, the dependent velocities are obtained in terms of inde-
pendent velocities as

ẋdh = −H̃
d−1

bh H̃
i

bhẋ
i
h (16)

In the case of planar 3-DOF space robot the independent
velocities (ẋih) of the end-effector are taken as vx,vy whereas
the dependent velocity (ẋdh) is taken as ω. The value of ẋih is
defined using an interpolating polynomial as

ẋ(t) = a+ 3b
( t
T

)2
+ 4c

( t
T

)3
+ 5d

( t
T

)4
(17)

where a = ẋI , b = 10v − (6ẋI + 4ẋF ), c = −15v +

(8ẋI + 7ẋF ), d = 6v − (3ẋI + 3ẋF ) and v = [xF−xI ]
T .

(xI and xF ) and (ẋI and ẋF ) are the initial and final
positions and velocities, respectively. Given the initial and final
configurations of the independent end-effector velocities one
can find the dependent velocities using (16). Simulation was
performed for the same initial joint angles and the final end-
effector position taken in the previous subsection. The initial
and final velocities are assumed to be zero and simulation time
is taken t=30s. The joint angles and joint rates are given in
Fig. 6 while the joint torques required are shown in Fig. 7.

Here, the simulation failed to proceed beyond 25 s and joint
torque approached to infinity, as evident form Fig. 7. In order
to get further insight, the singularity index of the coefficient
matrix is calculated as

S =

√
det(H̃

d

bhH̃
dT

bh ) (18)

The singularity index is plotted in Fig. 8, which shows that
the index becomes zero after 25 s. This corresponds singular
configuration and is due to the non invertibility of the co-
efficient matrix H̃

d

bh (16). Note that (16) is highly constrained
and the path obtained using it can have several singular points
as illustrated above. Therefore task-level planning cannot al-
ways lead to a nonsingular path. Next, an alternative approach
is presented which helps in overcoming the disadvantages
associated with holonomic distribution and task-space control.
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Fig. 6: Joint motions using task-space control
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Fig. 7: Joint torques using task-space control

IV. HYBRID HOLONOMIC DISTRIBUTION AND
TASK-SPACE CONTROL

In this method, path planning is done in two stages. In the
first stage, the end-effector travels closer to the target point
using joint primitives, while in the second stage, the path is
planned using the task-level constraints. This not only ensures
smooth transition but also is able to avoid singular configura-
tion. Hence, the proposed method overcomes disadvantages
of both holonomic distribution and task-space control. The
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Fig. 8: Singularity Index
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Fig. 9: End-effector’s path using hybrid control
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Fig. 10: Joint motions using hybrid control

method is illustrated next using the problem solved in the
previous section.

A dynamic simulation is carried out using the initial
joint angles as φinitial=[−1.3, 2.9, 2.6]rad and the final end-
effector position as xdesired=[2.8,−0.5]m. For the first 10s the
method of joint-primitives is used to move the end-effector
closer to the target point and after that for another 10s the
task-level constraints are used. The path traversed by the end-
effector is shown in Fig. 9. The joint rates and joint angles
corresponding to this path can be seen in Fig. 10 which shows
that the transition in the joint velocities is much smoother
than what is obtained in Fig. 3. This is also evident from the
results for joint torques in Fig. 11. Here, the joint torques are
continuous as compared to the same obtained using only HDC
in Fig. 4. This resulted into improved reactionless manipulation
as the maximum change in the base angular velocity, as shown
in Fig. 12, is half of the same obtained using HDC. The
singularity index is also plotted in Fig. 13 which shows that
the robot stays away from singular configuration throughout
the simulation period. This proves the efficacy of the proposed
method.
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Fig. 11: Joint torques using hybrid control
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Fig. 12: Base angular velocity using hybrid control

V. CONCLUSION

A novel method has been proposed in this work to capture
an orbiting object in a reactionless manner. The method utilizes
holonomic distribution to move close to the target, and task-
space control to capture the object. It is shown that the
proposed approach is better than both holonomic distribution
which has high discontinuities in joint velocities, and task-
space control which suffers from singularities. The method is
illustrated using a 3-link robot mounted on a satellite. It has
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been shown that the joint torques required in the proposed
method are smooth in comparison to holonomic distribution.
This resulted in improved reactionless manipulation as evident
from the plot of angular velocity of the base satellite. The
method will be implemented for reactionless manipulation of
a 7-DOF redundant robotic arm in future work. Experimental
implementation of the proposed method for control of an earth-
based 3-link robot will also be carried out in future.

REFERENCES

[1] F. Sellmaier, T. Boge, J. Spurmann, S. Gully, T. Rupp and F. Huber,
”On-Orbit Servicing Missions: Challenges and Solutions for Spacecraft
Operations,” AIAA SpaceOps Conference, pp. 25-30, 2010.

[2] ”On-Orbit Satellite Servicing Study,” NASA Project Report, 2010.
[3] J. Liou, ”An Active Debris Removal Parametric Study for LEO Environ-

ment Remediation,” Advances in Space Research, 47(11), pp. 1865-1876,
2011.

[4] S. K. Saha, ”A Unified Approach to Space Robot Kinematics,” Transac-
tions on Robotics and Automation, 12(3),401-405, 1996.

[5] Y. Umetani and K. Yoshida, ”Resolved Motion Rate Control of Space
Manipulators with Generalized Jacobian Matrix,” IEEE Transactions on
Robotics and Automation, 5(3), pp. 303-314, 1989.

[6] C. L. Chung, S. Desa, and C. W. deSilva, ”Base Reaction Optimization of
Redundant Manipulators for Space Applications,” The Robotic Institute
CMU-RI-TR, pp. 88-17, 1988.

[7] S. Dubowsky, and M. A. Torres, ”Path Planning for Space Manipula-
tors to Minimize Spacecraft Attitude Disturbances,” IEEE International
Conference on Robotics and Automation, pp. 2522-2528, 1991.

[8] M. A. Torres and S. Dubowsky, ”Minimizing Spacecraft Attitude Dis-
turbances in Space Manipulator Systems,” Journal of Guidance, Control,
and Dynamics, 15(4), pp. 1010-1017, 1992.

[9] E. Papadopoulos, and A. Abu-Abed, ”Design and Motion Planning for a
Zero-reaction Manipulator,” IEEE International Conference on Robotics
and Automation, pp. 1554-1559, 1994.

[10] D. N. Nenchev, K. Yoshida, and M. Uchiyama, ”Reaction Null-space
based Control of Flexible Structure Mounted Manipulating Systems,”
IEEE CDC, pp. 4118-4123, 1996.

[11] D. N. Nenchev, and K. Yoshida, ”Reaction Null-space Control of
Flexible Structure Mounted Manipulator Systems,” IEEE Trans. on
Robot. and Automat., 15(6), pp. 1011-1023, 1999.

[12] D. N. Nenchev and K. Yoshida, ”Impact Analysis and Post-impact
Motion Control Issues of a Free-floating Space Robot Subject to a Force
Impulse,” IEEE Transactions on Robotics and Automation, 15(3), pp.
548-557, 1999.

[13] K. Yoshida, K. Hashizume and S. Abiko, ”Zero Reaction Maneuver:
Flight Validation with ETS-VII Space Robot and Extension to Kinemat-
ically Redundant Arm,” IEEE International Conference on Robotics and
Automation, pp. 441-446, 2001.

[14] E. Papadopoulos and S. Dubowsky, ”Dynamic Singularities in Free-
floating Space Manipulators,” Journal of Dynamic Systems, Measure-
ment and Control, 115(1), pp. 44-52, 1993.

[15] P. Huang, J. Yan, J. Yuan and Y. Xu, ”Robust Control of Space Robot for
Capturing Objects Using Optimal Control Method,” IEEE International
Conference on Information Acquisition, pp. 397-402, 2007.

[16] P. Huang; K. Chen; Y. Xu, ”Optimal Path Planning for Minimizing
Disturbance of Space Robot,” 9th International Conference on Control,
Automation, Robotics and Vision, pp. 1-6, 2006.

[17] Y. Nakamura, R. Mukherjee, ”Nonholonomic Path Planning of Space
Robots via a Bidirectional Approach,” IEEE Transactions on Robotics
and Automation, 7(4), pp. 500-514, 1991.

[18] R. W. Murray, and S. S. Sastry, ”Nonholonomic Motion Planning:
Steering Using Sinusoids,” IEEE Transactions on Automatic Control,
38(5), pp. 700 - 716, 1993.

[19] D. Dimitrov and K. Yoshida, ”Utilisation of Holonomic Distribution
Control for Reactionless Path Planning,” IEEE International Conference
on Intelligent Robots and Systems, pp. 3387-3392, 2006.



[20] D. Dimitrov and K. Yoshida, ” Momentum Distribution in a Space
Manipulator for Facilitating the Post-Impact Control,” IEEE International
Conference on Intelligent Robots and Systems, pp. 3345-3350, 2004.

[21] R. W. Murray, Z. Li, and S. S. Sastry ”A Mathematical Introduction to
Robotic Manipulation,” CRC Press, Boca Raton, FL, 1993.

[22] S. V. Shah, P. V. Nandhial and S. K. Saha, ”Recursive Dynamics
Simulator (ReDySim)-A Multibody Dynamics Solver,” Theoretical and
Applied Mechanics Letters, 2(6), pp. 063011(1-6), 2012.


	Introduction
	Equations of Motion and constraints 
	Equations of motion
	Constraints for reactionless manipulation

	Reactionless Capture of an Orbiting object
	Joint-space control
	Holonomic distribution control
	Task-space control

	Hybrid holonomic distribution and task-space control
	Conclusion
	References

