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Abstract— Reasoning about objects in images and videos
using 3D representations is re-emerging as a popular paradigm
in computer vision. Specifically, in the context of scene un-
derstanding for roads, 3D vehicle detection and tracking from
monocular videos still needs a lot of attention to enable practical
applications.

Current approaches leverage two kinds of information to
deal with the vehicle detection and tracking problem: (1) 3D
representations (eg. wireframe models or voxel based or CAD
models) for diverse vehicle skeletal structures learnt from data,
and (2) classifiers trained to detect vehicles or vehicle parts in
single images built on top of a basic feature extraction step.
In this paper, we propose to extend current approaches in two
ways. First, we extend detection to a multiple view setting.
We show that leveraging information given by feature or part
detectors in multiple images can lead to more accurate detection
results than single image detection. Secondly, we show that
given multiple images of a vehicle, we can also leverage 3D
information from the scene generated using a unique structure
from motion algorithm. This helps us localize the vehicle in 3D,
and constrain the parameters of optimization for fitting the 3D
model to image data. We show results on the KITTI dataset, and
demonstrate superior results compared with recent state-of-the-
art methods, with upto 14.64 % improvement in localization
error.

I. INTRODUCTION

Recent advances in Simultaneous Localization and Map-

ping (SLAM) and Structure from Motion (SfM1) have re-

sulted in mature technologies, that are beginning to appear

in commercial products, from Google Project Tango and

Microsoft Hololens to the Dyson 360 Eye and advanced

driver assistance systems. While there have been many

advances in semantic recognition [10], [14] as well, the state-

of-the-art lacks far behind the robustness needed for most

applications of robotic perception and scene understanding.

Notably though, a couple of recent works have attempted

to improve robustness of visual recognition by leveraging

known geometry [23], [21] and shown promising results.

Simultaneously, recent research [29], [17], [30], [31], [15],

[26] in computer vision has revived detailed 3D geometric

representations of object classes from decades earlier [3],

when they had not been effective due to lack of compu-

tational resources, and inference and learning algorithms.

This revival aided by modern discriminative classification,

description, and probabilistic inference techniques has shown

success albeit limited only to single image understanding.

In the present paper, we tightly integrate these deformable

3D object models with state-of-the-art multibody SfM meth-

ods, to introduce a system that can outperform the latest
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results [30], [31] in the domain of highly detailed object

modeling and tracking in video. This system allows the

recognition and the reconstruction modules to help each

other produce better overall results: SfM methods fail on

moving, specular vehicles, whereas a single view is often

not enough to disambiguate object shape from background

clutter. In addition to improving 3D location estimates,

extracting accurate 3D shape and pose open the possibility

for more sophisticated planning and control downstream in

the autonomous vehicle’s processing pipeline.

Specifically, we integrate deformable wireframe models of

object classes (here, vehicles) that represent object geometry

at a finer level than 2D bounding boxes [21] and in a

more general “intra-class invariant” manner than instance-

specific 3D CAD models [23], into a multibody SLAM

framework [18], [24]. Approximating the visible surfaces of

a vehicle by planar segments, supported by discriminative

part detectors allows us to obtain more stable and accurate

3D reconstruction of moving objects as compared to state-

of-the-art SLAM pipelines [8], [19] which are not robust in

the face of specular, moving objects. This is because the

feature tracks on segmented sequences of specular, moving

objects are very sparse and the fundamental matrices [16]

used to represent camera motion are often degenerate. By

segmenting the car into its constituent planes modeled by

homographies and filtered by RANSAC, we obtain superior

reconstruction of the camera trajectory in dynamic road

scenes. We upgrade the single-view object class formulation

of [30], [31] to multiple views. This multi-view deformable

wireframe fitting is posed as stochastic hill climbing in

the space of vehicle shape and pose parameters (in block

coordinate descent iterations) that maximizes part likelihood

averaged over multiple images. The projection onto multiple

images is enabled by the camera trajectory obtained relative

to the moving object in the multibody SLAM framework.

Thus we have a pipeline which tightly couples recognition

using a rich geometric object model with estimation of

camera trajectory for highly dynamic scenes.

Summarily, we list the contributions of the present paper

in the following:

1) We propose a novel piece-wise planar approximation to

vehicle surfaces and use it for robust camera trajectory

estimation. The object presents itself as a plane to

the moving camera. By segmenting the car into its

constituent planes by RANSAC with Homography as

the model we obtain superior reconstruction of the

moving object.

2) We extend the single-view deformable wireframe

model fitting [30], [31] (inference) to multiple views,

which stabilizes the estimation of object location and



Fig. 1: Our full pipeline. Input image sequence is the input to the pipeline. Part likelihoods are obtained from a Random forest classifier
as per [30]. Cars are detected using multi-view DPM which is a bank of DPM detectors(discrete viewpoint estimate and 2D bounding
box per frame) and reconstruction is performed using a novel SfM pipeline. All this information is exploited in Multi-View Stochastic
Hill Climbing algorithm to optimize for the shape of the car as described in Algorithm 1. Once the shape is optimized, using this shape
we optimize for pose, for which, we perturb the pose of 3D deformable wireframe model of car into the next image using motion model.
We use different terms like detectionfit, deepfit, photofit to optimize for pose as described in III(C).

shape.

3) We experimentally demonstrate improvements in 3D

shape estimation and localization on several sequences

in KITTI dataset [13] resulting from the the tight inte-

gration between SfM cues and object shape modeling.

II. RELATED WORK

The lack of robustness is the biggest problem facing

robotic perception today, with high-level semantic recog-

nition and geometry estimation being the most important

components of any sophisticated perception system. We

first note that geometry estimation pipelines [19], [8] have

matured over the recent years, so much so, that there are

workshops organized at prominent robotics conferences (e.g.

RSS 2015) to discuss whether SLAM is solved. On the

other hand, the last decade observed a plethora of work in

the areas of visual recognition aided by several advances at

the level of formulating novel features [7] along with more

pronounced and efficient use of classifiers [10], inference

methods [2], and more recently end-to-end methods [14].

Unfortunately, while these advances have steadily improved

performance in various computer vision tasks, they are still

far from being robust enough for robotic applications. The

use of geometry to reason about scenes while simultaneously

performing recognition in computer vision can be traced to

the works of [6], [28], [20] in recent times. These works

consistently demonstrate the superior performance of sys-

tems that combine geometric reasoning with coarse-grained

semantic recognition, as compared to isolated recognition

approaches.

Inspired by these former works, more recent approaches

have investigated fine-grained semantic modeling to output

not just bounding boxes but 2D parts, 3D shapes and poses

such as in [29], [17], [30], [31], [15], [26]. Unfortunately,

while these methods yield further improvements in per-

formance, they largely focus on the challenging problem

of single-image scene understanding, whereas in robotics

multiple views of a scene are often available. With this

in mind, some recent works have approached the problem

from a more practical, robotics perspective [11], [9], [23],

[12], [24], [21]. While [11] extracts planar regions in SfM

point cloud, which are fairly restrictive; whereas [23], [21]

combine SfM and multi-view object recognition. Unfortu-

nately, [23] is restricted to a handful of particular object

instances (five types of chairs), because one 3D CAD model

cannot represent the visual appearance of an entire object

category whereas [21] supports object class recognition but

does not allow recognition to feed back into improving

geometry estimates and has only coarse bounding box level

object representations. In comparison, we incorporate a finer-

grained deformable geometric model (similar to [30]) that

can represent entire object classes, such as the car class -

and maintain a closed-loop collaboration between SfM and

recognition.

Starting with the seminal work of [9], which coupled

coarse-grained object modeling and tracking with SfM and

ground plane estimation for road scene understanding, more

recent works [12], [24] have attempted a stronger coupling

between the semantic and geometric components of the sys-

tem. The work of [27] termed Deep-Matching and DeepFlow



extracts feature information and is aggregated from fine to

coarse using sparse convolutions and max-pooling.

This paper while retaining philosophical similarities to

[9], [12], [24] contrasts with them by not just optimizing

and localizing 3D bounding boxes but 3D shapes and parts

thereby advancing the state of the art results showcased in

[30], [31]. Thus it allows precise estimation of object shape

and pose, using a deformable 3D wireframe model for the

vehicles, which opens up the possibility for the perception

module giving a superior input to the planning and control

modules in an autonomous vehicle (which we do not cover)

- since it can allow precise prediction of the future trajectory

and fine-grained interactions of the vehicles in sight.

III. OUR APPROACH

Our approach to detect the shape of a object, and track its

3D pose over several frames is formulated as a joint min-

imization over shape and pose space defined over multiple

frames. We get camera pose estimates w.r.t. object(car) using

proposed plane segmentation for initial 3-5 frames and utilize

it to optimize the shape of deformable wireframe model

of car. After we converge on a local minimum for shape

parameters, we apply our motion model to the deformable

wireframe and optimize for pose. In terms of cues, we

utilize part detection likelihoods from a multi-class Random

Forest [30], sparse 3D reconstruction estimates, as well as

deep matches [27]. In addition, we employ photometric

constraints to guide the minimization when the object is too

small for either reconstruction or deep matching to reliably

work.

A. Notation

For each image I(t) in a video sequence, let xi
t be a deep

matched feature in that frame, corresponding to the ith track.

Thus, χi = {xi
s(i), . . . , x

i
t, . . . , x

i
e(i)} represents the feature

track with index i, starting from frame s(i) and ending at

frame e(i). Similarly, let Xi
t represent the 3D point with

index i, with the subscript t indicating that the 3D point is

visible in frame t. As we will explain later, Xi
t is the output

of our SfM based reconstruction pipeline. Also, let Lk(t)
represent the detector confidences for the kth object part for

image I(t). Further we represent the (perspective) projection

function as P ,

P(Sj(α), P (t)) = K[R(t) T (t)]Sj(α) (1)

where K is the intrinsic matrix of the camera, while Sj(α)
represents the jth 3D coordinate on the object wireframe.

B. Deformable Wireframe Object Model

We utilize a deformable wireframe object class model [5],

[30] to represent object instances (vehicles). The model is

learnt (offline, once) on 3D CAD data manually annotated

with pre-defined landmarks (also called object “parts”). It

is based on a dimensionality reduction algorithm called

Principal Components Analysis (PCA), with an object shape

represented by the sum of a mean wireframe µ plus the

m principal component directions pj and corresponding

standard deviations sj , where 1 ≤ j ≤ m. Any 3D

wireframe X following a similar geometric topology as the

object class, can thus be represented up to some residual

ǫ, as a linear combination of r principal components with

geometry parameters α, where αk is the weight of the kth

principal component.

Specifically, let S(α) represent the shape and P (t) =[
R(t) T (t)

]
the pose at time t of the object, where R and T

represent rotation and translation respectively. Here, S(α) is

the list of 3D points that represent that locations of landmarks

(parts) of the deformable wireframe model, parameterized by

shape parameter vector α. Thus,

S(α) = µ+
r∑

i=1

αkskpk + ǫ (2)

In practice, object pose is represented by three translation

parameters (tx, ty, tz) and two rotation parameters (θaz, θel),
where az and el represent azimuth and elevation respectively.

The camera/object relation is assumed to be such that the in-

plane rotation is fixed and does not have to be modeled.

In order to match this geometric model to real-world

images, [30] compute synthetic renderings to generate

training data, encoded as shape context descriptors, and train

a multiclass Random Forest classifier to detect and score the

object parts which in turn goes into the objective function

described by equation 7.

C. Multi-view, Multi-cue Objective Function

As mentioned earlier, our objective function is defined

as a joint minimization over shape and pose space, defined

over multiple frames and having four different terms that

optimize different aspects of shape and pose. In this section,

we describe each individual term, and then combine them

to arrive at our objective function. Several of the terms

occurring in this section is further explained in detail with

figures in the supplementary material [4].

Minimal volume term: boxfit This function tries to fit

the reconstructed 3D points on the vehicle in such a way that

it encapsulates, in a minimum cuboidal volume, all the 3D

points Xt in each frame. Formally, we define the boxfit

function as follows:

B(π(t), Xt) =
∑

i

d⊥(π(t), X
i
t) (3)

where d⊥ is a function that calculates the perpendicular

distance of the ith 3D point from the respective planes π(t)
of the object in the tth frame. The overall purpose is to

minimize the distance of the reconstruted 3D points from

thier respective planes to fit a cuboidal volume.

Part likelihood term: detectionfit This function

measures how well the projection of the current estimate of

object and pose parameters explain the part detection likeli-

hoods as obtained from the multi-class Random Forest [30].

It is specified as

F (S(α), P (t), Lk(t)) =

−
1

∑m

i=1 oi(S(α))
oj(S(α))log(

Lk(P(S(α), P (t)))

Lb(P(S(α), P (t)))
) (4)

where Lb represents the background likelihood in the

given image. The above formulation is a direct derivative



of Zia et al. [30], with the only difference being that

the occlusion function o(·) only includes self-occlusion in

our case. A sample part likelihood (Lk) is shown in Figure 2.

Deep match term: deepfit As we will describe later,

dynamic objects like vehicles in videos are not suitable

for obtaining accurate feature tracks over long time. Thus,

traditional reconstruction methods like bundle adjustment

(BA), and even state-of-the-art methods like ORB SLAM fail

to work in such scenes (Table II). To circumvent this, we use

deep match [27] correspondences, which are accurate over

short distance, along with an optimization term that tries to

preserve the relative location of the projection of the vehicle

wireframe, w.r.t. tracked features.

We measure the shearing in 2D correspondences produced

using deep match [27], when the object undergoes motion

along a video, as described in equation 7. When the object is

close to the camera, such a function might only approximate

the motion of these correspondences in space-time. However,

in practice we found it a good approach when the object is

either moderately sized (few meters away from the camera),

or distant.

D
(

Sj(α), P (t), P (t+ 1), χi
)

=

‖|P(Sj(α), P (t))− xi
t| − |P(Sj(α), P (t+ 1))− xi

t+1|‖
2

(5)

Note that the above function only measures the magnitude

of deviation of a feature track from the projection of a

point on the wireframe model. Also note that penalizing the

magnitude is sufficient, since any deviation in feature points

is captured by increasing/decreasing magnitude w.r.t at least

one wireframe corner.

Photometric term: photofit When the object is ob-

served to be far away from the camera, even deep matches are

not abundant. In such cases, this term finds itself becoming

useful. Because of the size of the object, obtaining corre-

spondences becomes a tough job, and this reconstructing

them to produce 3D points Xi
t , becomes improbable. Instead

we leverage on the fact that distant objects more or less

undergo affine transformations of their textured surfaces, and

hence the immediate texture surrounding the corners of the

wireframe model’s projection tend to remain intact.

Φ
(

t, S(α), P (t), P (t+ 1)
)

=

‖I(t,B(P(S(α), P (t))))− I(t+ 1,B(P(S(α), P (t+ 1)))‖
(6)

where B(·) denotes the immediate neighborhood in image
space. We can now formulate our objective function, factored
into the above four terms: boxfit, detectionfit, deepfit, and
photofit as,

argmin
S(α),P (t)

∑

i

B
(

S(α), P (t), Xi
t

)

︸ ︷︷ ︸

boxfit

+
∑

k

F
(

S(α), P (t), Lk(t)
)

︸ ︷︷ ︸

detectionfit

+
∑

j

∑

i

D
(

Sj(α), P (t), P (t+ 1), χi
)

︸ ︷︷ ︸

deepfit

+Φ
(

t, S(α), P (t), P (t+ 1)
)

︸ ︷︷ ︸

photofit

(7)

Fig. 2: Output of the Random Forest (RF) part detector on an
image, for two example parts. Parts are not large enough to have
high discriminative power on their own, thus the global wireframe
model acts as a strong regularizer.

D. Optimizing the objective function

Our objective function, described in equation 7, is highly

non-linear and as such cannot be minimized easily. One

way to approach this problem, is to minimize shape and

pose separately, in an iterative EM-like procedure. However,

we see empirically, that having inaccurate estimates of pose

leads to wrong shape fitting, since the shape of the vehicle

changes to accommodate detection and other evidences, in

the absence of accurate pose. We also note, that once shape

is recovered with reasonable accuracy, pose estimation can

be done fairly independently.

Keeping both these aspects in mind, we split the mini-

mization process for equation 7 into two parts. In the first

part, we compute an initial estimate of the relative pose

between a few initial frames, which is a side product of

our SfM pipeline described in section IV. Thus our pose

estimation problem just reduces to finding an estimate of

just one transformation between the coordinate system of

the deformable wireframe, and that of the SfM based recon-

struction. We then resort to a stochastic hill climbing based

approach, similar to Zia et al. [30], to fit both shape and

coordinate transformation (also represented as pose) to multi-

view data. The difference with Zia et al. [30] is that we fit

one set of pose parameters to detector and other evidence

from multiple views. Specifically, we use the boxfit and

the detectionfit functions for this purpose. Our multi-

view deformable wireframe based stochastic hill climbing

approach is described in Algorithm 1 with more details in

supplementary material [4].

In the second part, we fix the shape parameters optimized

in the first part, and only optimize over pose using the same

stochastic hill climbing approach described earlier. This is

primarily because optimization algorithms like BA work best

in pose estimation scenarios only when feature correspon-

dences are dense and tractable over several frames. In our

case, as we will show later, even state-of-the-art algorithms

like LSD and ORB SLAM fail to initialize and track interest

points on objects (and dynamic objects in general). Thus we

resort to particle based approaches, that are more capable of

handling both inaccuracies in correspondences and variability

in their strength over time.

E. Motion model

With the optimization approach described above, there are

around 6 pose parameters to be estimated per frame, along

with shape parameters for each object. While relative pose

computation might reduce the search space in stochastic hill



Fig. 3: Visual comparison of our results (left column) and [31]
(right column) for a sequence. Notice how our multi-view model
produces better 2D fits. The misalignment in 2D for [31] implies a
large localization error in 3D and the pose.

climbing, lack of good long term correspondences ensure

that relative pose estimation in SfM eventually “drifts” away

from the ground truth. Thus, it is useful to enforce a motion

model to further restrict our search space, and not overly

depend on our reconstruction capabilities. In the absence of

any specific information about vehicle movement, we use a

generic motion model that defines the current pose based on

the two previously observed poses as

P (t) = P (t− 1) + (P (t− 1)− P (t− 2))
︸ ︷︷ ︸

Previous Motion

+N (0,Σ)

where N (0,Σ) represents a zero mean Gaussian with vari-

ance Σ.

IV. SHAPE RECONSTRUCTION AS INITIALIZATION

In this section, we describe our SfM based procedure to

reconstruct a few 3D points on the surface of the object, rep-

resented by the variable Xt in equation 7. We first describe

our plane-based modeling of the shape of the object, which

in our experience, leads to a very robust pose estimation

algorithm. We follow this up with our BA based formulation

for global optimization of 3D points and relative pose.

A. Vehicle Reconstruction Modeling

We leverage a piece-wise planar model for the vehicle,

which allow utilizing homographies to represent each side

of the vehicle, in turn robustifying the multi-body SfM

estimation. This together with coarse bounding box level

object detections [10] feeds into fitting a deformable wire-

frame object model [30] to multiple views of the scene.

This pipeline also outputs auxiliary relative pose information,

which is used to reduce the number of pose parameters fitted

to the data. Since this reconstruction is in different scale as

compared to deformable wireframe, this relative pose has to

be scaled.

B. Vehicle Reconstruction

1) Plane Segmentation: We model an image of a ve-

hicle as a combination of two planar regions. In Fig. 3,

for example, the side and the back of the car is visible.

Given deep matches [27], we randomly sample two feature

points. The line joining these two points acts as a prior

in the segmentation of the car region into two planes. A

homography matrix [16] is fit to each set of features from the

above two planes and the inliers are computed. We iteratively

sample the planes and move towards the region that gives the

maximum number of inliers for the set of tracked points on

the car.

2) Sparse Reconstruction and Camera Localization: The

planes detected from the above step help obtain a good

initialization of the vehicle motion. The detected planes are

tracked to consecutive planes using the optical flow based

tracking. We compute the homography matrices for each of

the planes H1 and H2, and decompose both the homography

matrices to compute the Rotation and Translation(R and

T ). These decompositions provide a total of 16 possible

combinations. We discard 12 of the candidates using standard

methods [16], and exploit the perpendicularity constraint of

the car planes for the selection of the correct R and T from

the remaining 4 candidates. This provides us with the correct

combination of R, T , which contain normals perpendicular to

each other. The reconstruction of the car is computed from

the above planes using triangulation of the tracked points.

We denote the Rij and Tij as the rotation and translation

matrix from the i frame to the j frame. We compute the

3D points on the car using the triangulation of Ra(a+1) and

Ta(a+1). To solve for the scale problem, we compute the ex-

trinsic matrix Ra(a+2) and Ta(a+2) using resectioning of the

earlier triangulated points. The extrinsic matrix R(a+1)(a+2),

T(a+1)(a+2) is obtained by matrix transformations and a is

updated to a+1. Here a is an observation in the SfM pipeline.

The initialization of the car motion and reconstruction is

optimized using bundle adjustment. We solve the reprojec-

tion error of each 3D reconstructed point. The objective func-

tion of the reprojection error is minimized using Levenberg-

Marquardt algorithm from Ceres solver [1].

V. EXPERIMENTAL EVALUATION

In this section, we do a thorough qualitative and quan-

titative evaluation of each block from our method on the

challenging real-world KITTI Tracking Dataset [13]. Com-

pared to the other publicly available outdoor datasets, KITTI

provides ground truth 3D location of each individual objects

providing for a good comparison platform. We evaluate the

algorithm on portions of 6 sequences (02,03,07,09,11,15) of

the KITTI tracking dataset. Each of the sequence contains

cars with multiple motion and occlusions, making it a

challenging experimental setup. We have consciously chosen

the sequences to make sure that they posses diverse attributes.

i.e. depth range of the target cars varies from 4 meter to 25

meter. Also these sequences are chosen such that they cover

different scenarios like traffic points, cars with dense trees



Algorithm-1: Multi-view Stochastic Hill-Climbing

1: procedure FIT MODEL(H,σ1, σ2,I)

2: for each iteration l ∈ L do ⊲ L = 20

3: for each particle i ∈ N do ⊲ N = 250

4: hi ∈ N (H,σ1) ⊲ H is the mean model

5: prevscore = −10000
6: for each candidate j ∈ R do ⊲ R = 400

7: h
j
i ∈ N (hi, σ2)

8: for each image k ∈ I do

9: P(S
h
j

i

(α), P (t)) =

K[R(t) T (t)]S
h
j

i

(α)
10: for each visible part p ∈ Parts do

11: score = score +
Rk(Sh

j

i

(α), P (t), Rp(t)) ⊲ part likelihood

12: if score > prevscore then

13: hi = h
j
i , prevscore = score

14: hi = hi,Mi = prevscore

15: hbest = hargmaxi(Mi)

16: return hbest

F decomposition F, H decomposition

R
M

SE

M
ea

n

M
ed

R
M

SE

M
ea

n

M
ed

S1 0.46 0.41 0.41 0.54 0.47 0.54

S2 2.36 2.03 1.96 0.54 0.48 0.48

S3 1.7 1.5 1.5 1.03 0.90 1.05

S4 0.98 1.04 1.16 0.71 0.62 0.73

S5 12.61 8.67 6.12 0.50 0.44 0.46

S6 1.07 0.85 0.85 0.11 0.1 0.1

TABLE I: Results comparing different Intialziation methods for
our SLAM system. We Intialize the SLAM with F Decomposition
based method and our novel F,H Decomposition method and show
an improvement in overall SLAM pipeline.

in background, cars moving in shadows and light, cars that

are moving and stationary, cars of different colors.

We perform two types of evaluation: (1) Sparse reconstruc-

tion and camera localization which corresponds to BOXFIT.

(2) Object/Car localization. We have compared our results

with corresponding state of the art systems like [8], [19],

[31].

A. Implementation Details

In this section, we outline critical implementation details.

Our particle generation strategy is along similar lines of Zia

et al. [30], with only our evaluation function being different.

We obtain predicted object bounding boxes for a few initial

frames by repeatedly applying the deformable part model

based vehicle detector [10]. We generate an initial set of

250 particles randomly sampled from a uniform distribution

for the unknown shape parameters, whereas the parameters

for pose are based on the initialization from a collection

of viewpoint-dependent part configurations. We only choose

those locations which project back to the vehicle bounding

box. Approximate depth estimate of the vehicle is also

computed using the bounding box height and real-world

average vehicle height. For each particle, we generate 400

candidates by sampling from a Gaussian distribution with

mean at the particle value. Likelihood is computed for each

candidate and the one with the highest likelihood is set as

the new particle. This process is repeated for 20 iterations.

For calculating the part likelihood, we use a viewpoint-

invariant classifier, meaning that one class label includes

views of a part over all poses in which the part is visible

[30]. This marginalization over viewpoints speeds up the part

detection. Additionally, the classifier also has a background

class, which will be used for normalizing eq. 4. We train

a single random forest classifier for each object class (here

only vehicles), distinguishing between the parts of interest

(36 for vehicles) and background.

The particle with the highest likelihood across all images

is selected as the final result. We observe that the location

of the particle is within 2m of the ground truth for most of

the cases within 6-7 iterations, but the shape and pose needs

8-10 iterations for optimization.

B. Sparse reconstruction and camera localization

Monocular SLAM systems [8], [19] are robust only for

static scenes with plenty of texture. But due to significantly

small size of cars and their motion with respect to camera,

considerable deficiency of feature tracks exists even for

a small motion, such that these systems fail to provide

tangible initial estimates of camera relative motion in a

way useful for BA based optimization. Thus many state-

of-the-art VSLAM pipelines[8], [19] are unable to handle

moving objects. To showcase the superior performance of our

method, we compare the trajectory of cars with ground truth

using Absolute Trajectory Error (ATE) as proposed in [25],

[22]. ATE directly measures the difference between points

of the ground-truth and the estimated trajectory.

Table I compares initialization of different methods for

obtaining the camera trajectory. We compare trajectory es-

timates with routine F matrix decomposition vis-a-vis the

current approach based on a combination of F and H

decompositions. As it can be observed from the table our

method performs better than the baseline approaches that

rely on F matrix decomposition. Table II demonstrates the

comparison of the proposed method with LSD-SLAM [8]

and ORB-SLAM [19]. As it can be observed from the table

that due to lack of enough number of unique features ORB-

SLAM fails to initialize on any of the sequences we tested

on. This non initialization of ORB SLAM is reported as NI

in Table II. We show a better performance compared to LSD-

SLAM due to our proposed initialization method.

After the initial 7-8 frames, we typically stop our re-

construction pipeline based on Homography combined with

BA, and only use our multi-view stochastic hill climbing

method to generate pose estimates thereafter. These results

that extend to 30 frames and more as obtained through

Hill Climbing are portrayed in Tables III and IV wherein

instead of ATE we use object pose localization (location

+ orientation) to characterize the performance. Comparison

with standard SLAM pipelines such as LSD SLAM cannot

be performed over longer sequences, for such systems break

down after initial frames.



LSD SLAM ORB-SLAM Ours

R
M

SE

M
ea

n

M
ed

R
M

SE

M
ea

n

M
ed

S1 0.80 0.69 0.79 NI 0.54 0.47 0.54

S2 1.15 0.99 0.96 NI 0.54 0.48 0.48

S3 1.17 1.47 1.71 NI 1.03 0.90 1.05

S4 1.21 1.04 1.20 NI 0.71 0.62 0.73

S5 1.27 1.09 1.23 NI 0.50 0.44 0.46

S6 0.66 0.58 0.58 NI 0.11 0.1 0.1

TABLE II: Results comparing our reconstruction approach to LSD
and ORB SLAM approaches on 6 sequences. Note that when both
the vehicle and camera move, ORB SLAM completely fails to
initialize, while LSD Slam gives inferior results in almost all cases.
For each type of metric based on trajectory error, we highlight the
best result in each row.

Method <1 m(%) <1.5 m(%) <2 m(%)

[31] 55.2 76.24 89.38

OURS 70.44 95.08 98.36

TABLE III: Results comparing our object localization estimation
w.r.t that of Zia et al. [31]. We show a clear improvement in the
localization compared to the other state-of-the-art algorithm.

C. Vehicle Localization and Pose Detection

While in the previous section, we presented results for

camera localization and sparse reconstruction, in this section

we focus on the localization and pose estimation of the

vehicle w.r.t the camea. We do 3D localization comparison

of each detected vehicle with respect to the ground-truth.

We measure the 3D localization by the fraction of detected

object centroids that are correctly localized up to deviations

of 1, 1.5 and 2 meter. The pose accuracy evaluation for each

individual vehicle is computed by measuring the percentage

of vehicles localized with pose error less than 5o and 10o. We

have compared the localization accuracy with respect to the

3D localization of Zia et al. [31]. The comparative study of

the 3D object localization is depicted in Table III and that of

orientation is depicted in Table IV. We show a significant

improvement in localization and orientation estimation of

vehicles, when compared to [30]. A noteable and expected

observation here is that, accuracy of localization within 1

meter is better when the vehicle is within range of 15 meter

from camera. Nonetheless, even till 25 meters of depth, our

localization within 2 meter is as high as 98.36%. Also, there

is remarkable improvement in pose detection shown in Table

IV. This might lead to better input for planning and control

as pose of the vehicle provides crucial information about

direction of motion. the efficacy of the algorithm.

The Need for photofit: In this subsection we illustrate

the need for our photofit term in equation 7. Figure 4

shows the number of deep matches obtained on average in

the KITTI [13] dataset as a function of the height of the

vehicle in pixels. Since we model vehicles using multiple

homographies for reconstruction purposes, small vehicles are

difficult to reconstruct accurately. Even the deepfit term

allows for large variation of pose in such cases. Hence we

resort to the photofit term for accurate localization and

pose estimation.

Method <5 deg

(%)

<10 deg

(%)

Average

VP er-

ror(deg)

Median

VP er-

ror(deg)

[31] 51.26 65.72 19.34 5.5

OURS 88.86 96.73 2.33 1.87

TABLE IV: Results comparing our object orientation with respect
to the object orientation of the Zia et al. [31].We show a clear
improvement in the pose compared to the other state-of-the-art
algorithm.

Fig. 4: Plot of the number of deep matches found per vehicle, as a
function of the height of the vehicle, averaged over several vehicles
in the KITTI [13] dataset. Notice how small vehicles are tracked
sparsely.

The Role of deepfit: In this subsection we portray

the advantages of using RF based part model projections

to enhance object localization. Figure 5(a) depicts a sit-

uation where particles are sampled without considering

the detectionfit while computing their weights. The

3D pose of the vehicle and consequently its projection

onto the image are erroneous as the parts have drifted

from their actual locations. However by incorporating the

detectionfit term along with other cost terms tangibly

improves the localization and pose of the vehicle in 3D

and consequently in the image as well as shown in Figure

5(b). The projected vehicle parts overlap the true parts in

5b. Figure 5(c) shows over 26 frames that detectionfit

prevents 3D model from drifting away.

Fig. 5: Comparison for with and without detectionfit. (a)Selected
particle from deepfit alone(without detectionfit). (b)Selected particle
from deepfit + detectionfit which fits the model better. (c) Graphical
representation demonstrates that detectionfit prevents drifting of 3D
model



TABLE V: Visual results comparing Zia et al. [31](Middle row) with multi-view(ours)(third row) fitting for 4 input sequences (First
Row) of the KITTI sequence. The multi-view deformable object model provides better shape estimates of the object model in most of
the scenarios.

VI. DISCUSSION AND CONCLUSION

We have approached the problem of multi-view object

detection from a novel SfM based deformable wireframe

alignment perspective. We have proposed a unique object

reconstruction pipeline, which outperforms state-of-the-art

algorithms. Through the proposed method we show signifi-

cant improvement over current state-of-the-art object local-

ization methods by almost 15 %. We also show qualitatively

superior object shape estimation, when projected onto the

images. Moreover we have proposed plane segmentation

based initialization of camera poses that outputs superior

trajectories relative to moving cars when compared with cur-

rent monocular SLAM pipelines. More information including

supplementary material can be found here [4]. We plan to

work on making the pipeline work in realtime for our future

work.
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