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Abstract— In this paper we present a motion planning
algorithm connecting a starting and ending goal positions of a
wheeled mobile robot (WMR) with a passive variable camber
(PVC) on a fully 3D uneven terrain without slipping. The
overall planning framework is along the lines of the RRT
(Rapidly Exploring Random Tree). The curve connecting the
adjacent nodes of the RRT is a quasi-static path which is
generated using the forward motion problem based on the
Peshkin’s minimum energy principle which combines the force
and kinematic relationships of the WMR into a nonlinear
optimization problem. The output of this optimization routine is
a set of ordinary differential equations (ODEs) representing the
non-holonomic constraints and wheel ground contact conditions
of the robot along with a set of differential algebraic equations
(DAEs) representing the geometric/holonomic constraints of the
robot. In general a complete simulation of a WMR on a fully
3D terrain has been a difficult problem to solve. Previous
methods for continuous evolution of the WMR have only
incorporated the wheel ground contact constraints within the
DAE framework. This work goes beyond the previous methods
by incorporating the quasi-static and friction cone constraints
within the DAE framework. This evolution is now extended to
a motion planning algorithm which guarantees that the vehicle
traverses along quasi-static stable paths.

I. INTRODUCTION

The objective of this work is to develop a slip free motion
planning algorithm for a wheeled mobile robot (WMR)
having a passive variable camber (PVC) traversing on a
fully 3D uneven terrain, i.e starting from a known initial
position of the robot platform w.r.t a global frame evaluate
the quasi-static stable motions enabling the robot to move to
a desired final position in the 3D terrain while minimizing
slip. The overall planning framework is based on the Rapidly
Exploring Random Tree (RRT) algorithm.

Traditional kinematic motion planning framework based
on RRT [1], Dynamic Window [2] for planar/2D terrains
compute the end-effector (platform center ) velocities given
the joint rates. A set of ODEs are then solved to find the
evolution of the platform center for the given joint rates.
However for computing a completely continuous and fully
3D /6dof (the position and orientation) evolution of the
vehicle platform on uneven/3D terrains without slipping
it is entailed to develop kinematic equations relating the
joint rates to that of the velocity of the platform and the
wheelground contact velocities. Such a formulation can be
obtained by incorporating Montana’s kinematic equations of
contact[10], which is dovetailed in the quasi-static planning
formulation of this paper.
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What is also important while evolving on uneven terrain
is the ability of the framework to provide for the satisfaction
of holonomic constraints right through the evolution, which
is not of such concern in planar terrains. As rightfully
pointed out in [3], the kinematic analysis on uneven terrain
involves solution of a mixed holonomic-nonholonomic set
of equations with the characteristics that are distinct from
mobile robots on planar/even terrain. This is also achieved
in this framework by incorporating the kinematic contact
constraints due to Montana[10] along with a set of differ-
ential algebraic equations solved simultaneously with the
ODEs. Such a framework of ODEs and DAEs have not been
part of the evolutions proposed in [11,12,13] but have been
considered in the works of Auchter [5] and Chakraborty
and Ghosal [4]. The evolution as described in [4,5] of the
WMR, assumes kinematic no slip as part of its framework by
fixing the appropriate contact velocities to be zero through
the Montana’s kinematic equations for contact. However
the vehicle can undergo dynamic slip if the friction cone
constraints get violated.

In this paper we go beyond [4,5] by depicting an evolution
of a WMR that also integrates quasi-static constraints into the
DAE-ODE framework. Thereby the evolution provides for a
complete 6dof evolution, where the 6dof pose of the vehicle
platform and its rates of changes are obtained for any instant.
Along with that, the evolution makes sure that the mixture of
holonomic and nonholonomic constraints are satisfied along
with kinematic no-slip and friction cone constraints there
by providing for a robust quasi-statically stable evolution of
the vehicle. This is the main contribution of this paper. The
extension of the quasi-static evolution into a motion planner
through the RRT paradigm is another contribution of this
work.

II. LITERATURE REVIEW

Wheeled mobile robots for navigation on uneven terrain
have to be equipped with the essential degrees of freedom to
negotiate the undulations on the terrain. Many such mecha-
nisms have been reported in literature. One such mechanism
was proposed by Sreenivasan and Choi [14] wherein two
wheels were connected with a variable length axle (VLA)
having a prismatic joint to overcome slip during terrain
navigation and in [3] they developed a motion planning
algorithm on uneven surface for a WMR having a variable
length axle (VLA). Chakroborty and Ghosal [4] improved on
this mechanism by using a passive variable camber (PVC). In
[8] Cherif developed a two-level motion planning algorithm
for all terrain vehicles using a physical modelling approach.



Fig. 1. WMR on uneven terrain

Amongst the previous works surveyed, to the best of our
knowledge only Chakroborty and Ghosal [4], Auchter and
Moore [5] (using the framework in [7]), have provided a
framework for developing the slip free kinematic equations
of the WMR with PVC which relate the platform velocties
and the wheel-ground contact velocities to that of the joint
rates. In [15] a framework for quasi-static simulation of
WMR on uneven terrain is provided. In [16], a near optimal
trajectory generation methodology has been proposed for
mobile robots on uneven terrain however the complete 6dof
evolution of the vehicle on uneven terrain has not been
provided.
A computational simulation of a fully 6dof pose evolution
of a vehicle platform on rough and undulating 3D terrains
has proved to be a very challenging problem. Most of the
previous methods have only computed an evolution on flat
terrains even when the terrain is not flat and is undulating.
The idea here has been to compute a kinematically consistent
path such as a CC steer assuming the terrain to be flat and
hope that a suitable control law would make sure that the
vehicles pitch and roll are somehow adjusted to attain the
yaw changes given by the CC steer curve, but are unable to
predict the 6dof pose of the vehicle ([11],[12] and [13]).
But while traversing uneven terrain, the position and the
orientation (all 6dofs) of the center of the platform of the
WMR vary with the ground profile as well as any dof
that the mechanism may have and hence a formulation that
incorporates the holonomic constraints (DAEs),as suggested
in [3], have to be used for a robust kinematic model of the
WMR. To the best of our knowledge previous work that
provides a complete kinematic model of the WMR with
a passive variable camber (PVC) that is able to predict
continuously the complete 6dof evolution of the vehicle
platform using DAEs can be found in [4] and [5] . However
these methods have not integrated the quasi static constraints
and friction cone constraints into their framework, which is
now possible through the framework described in this paper.
The formulation used in this paper results in a set of ODEs
representing the non-holonomic and holonomic constraints
of the vehicle on uneven terrain which enables us to express
the unactuated /dependent variables of the system in terms of
the actuated/free variables of the system by the methodology
provided in [17].

III. MOTION PLANNING FRAMEWORK

Let us consider a 3 wheeled mobile robot having a PVC
traversing an uneven terrain as shown in the Fig.1 . As
mentioned in [5], a WMR with PVC on uneven terrain
is analogous to a multifingured palm (WMR) grasping an
object (ground). We use this analogy in our framework to
develop the motion planning algorithm.The objective of our
work is to plan a quasi-static stable path that connects the
given the initial and final positions of the robot on the
uneven terrain. We assume that the robot has torus wheels
which contact the terrain at a single point with Coloumb
friction constraints. The overall planning framework is based
on the RRT algorithm. The curve connecting the two ad-
jacent nodes of the RRT is obtained using the forward
object motion problem proposed by Trinkle [6] in which the
kinematic constraints, the quasi-static equilibrium constraints
and friction cone constraints are combined into a nonlinear
optimization problem using the Peshkin’s minimum energy
principle which simply states that [6] ”the system at each
instant chooses the easiest motion while satisfying all the
constraints”. This principle applies to only quasi-static sys-
tems subject to forces of constraint (i.e., normal forces
arising due to contacts among rigid bodies), Coloumb friction
forces and forces independent of velocity. This optimization
represents the instantaneous forward kinematic equations of
motion of the WMR on uneven terrain whose constraiints are
the non-holonomic velocity constraints of the contact points
of the wheel w.r.t the ground, the friction cone constraints
which ensure kinematic no-slip and the static-equilibrium
constraints. The input to this optimzation routine is the vector
of joint rates of the robot, the current contact configuration
and the effective coefficient of friction between the wheels
and the ground. The solution to this optimization routine
yields the contact forces and the linear and angular velocties
of the robot platform w.r.t the ground. The Forward motion
problem for a three wheeled mobile robot on uneven terrain
can thus be stated as follows
step 1 For the given joint rates of the robot and the contact
parameters of the wheels with the ground at the current time
step determine the velocity of the platform with respect to the
ground and the corresponding contact forces which ensure
quasi-static equilibrium. This can be achieved by solving the
nonlinear optimization problem which will be explained in
later sections.
step 2 After obtaining the platform velocities from step 1
determine the wheel ground contact velocities which will be
the input to Montana’s kinematic equations of contact and
integrate numerically a set of ordinary differential equations
(ODEs) which represent the kinematics of the robot (ex-
plained in detail in later sections) to obtain the new contact
configuration.
Steps 1 and 2 are solved iteratively to obtain the forward
motion of the WMR. Now for a range of joint rates of the
robot the trees of the RRT are propagated by iteratively
solving the steps 1 and 2 for a particular joint rate and
expanding the tree which is closest to the goal point.



Fig. 2. WMR joints

Fig. 3. torus wheel and ground frame assignments

IV. KINEMATICS OF THE WMR

Definitions : For any two reference frames {A} and
{B}, {RAB , PAB} ∈ SE(3) is the tranformation matrix of
{B} w.r.t {A}, where RAB ∈ SO(3) is the rotation matrix
of the frame {B} w.r.t frame {A} and PAB ∈ R3 is the
position vector of the origin of frame {B} w.r.t {A}.
The velocity vector of the frame {B} w.r.t {A}expressed
in the body frame (V BAB ∈ R6) is given by

V BAB =

 υBAB

ωBAB

 (1)

Where υBAB = RABṖAB and ωBAB = ˆRTABṘAB ,̂ operator
extracts the vector associated with the skew symmetric
matrix. For any three reference frames {A}, {B} and {C}
we have

V CAC = Ad−1
BCV

B
AB + V CBC (2)

Where the adjoint transformation matrix and its correspond-
ing inverse between frames {A} and {B} is given by

AdAB =

[
RAB RAB ˆPAB
03×3 RAB

]
Ad−1

AB =

[
RTAB −RTAB ˆPAB
03×3 RTAB

]

Frame Assignments: Figs. 1 and 3 show the details of the
frame assignments we have considered in our analysis. {G}
is the frame assigned to the ground frame, {P} is the frame
fixed at the center of mass of the platfrom. {CGi

} is the
frame fixed on the ground, at the contact point of the ith

wheel with the ground. {Wi} is the frame assigned to the
center of the ith wheel and {CWi

} is the frame fixed on the

wheel at the contact point. ψi is the angle between xCGi

and xCWi
. As can be seen from Fig.2 the front wheel (W1)

is steerable, the angle of steer is given by , φ1, and the rear
wheels (W2 and W3) have a passive variable camber joint
whose angles are given by ,δ2 and δ3 respectively.
αi,∀i = {1, 2, 3} is the angle of rotation of the wheels about
the ZW i axis.
Velocity relationships:We assume all the velocities
expressed in the body frame unless otherwise stated. For
the ith kinematic chain we have.

VPG = Ad−1
CGi

GVPCGi
(3)

also we have

VPCWi
= Ad−1

WiCWi
VPWi

(4)

Also {VPWi
} is given by

VPWi
= JPWi

(θi)θ̇i (5)

Where JPWi
is the Jacobian between the platform frame

{P} and the center wheel {Wi} and θ̇i is the corresponding
joint rate of the ith kinematic chain. Also we have

θ̇1 =
[
φ̇1 α̇1

]
, θ̇2 =

[
δ̇2 α̇2

]
, θ̇3 =

[
δ̇3 α̇3

]
For the frames {CWi

} and {CGi
} we have

Aψi
= AdCWi

CGi
(6)

Where
AdCWi

CGi
=

[
Rψi

03×3

03×3 Rψi

]
and

Rψi =

 cosψi − sinψi 0
− sinψi − cosψi 0

0 0 −1


Using equation (2) for the frames {P} , {CWi} and {CGi}

we have VPCGi
= Aψi

VPCWi
+ VCWi

CGi
and can be re-

written as

VPCGi
= AψiVPCWi

− VCGi
CWi

(7)

VCGi
CWi

represents the relative velocties of the contact
frames {CWi

} w.r.t {CGi
} in the respective body frames.

We represent this velocity vector as

VCGi
CWi

=
[
vix viy viz ωix ωiy ωiz

]T

Using equations (3), (4) ,(5), (6) and (7) we have
vix
viy
viz
ωix
ωiy
ωiz

 = Ad−1
WiCWi

JPWi
(θi)θ̇i −Aψi

V iPG (8)



where V iPG = Ad−1
GCGi

VPG. The velocity vector of the frame
{P} w.r.t {G} has

VPG =

 υPG

ωPG


Where υPG and ωPG are the linear and angular velocity
components of the VPG respectively. Further simplifying (8)
we have vix

viy
viz

 = RTWiCW i
JPWiu(θi)θ̇i

−RTWiCW i
ˆPWiCW i

JPWil(θi)θ̇i

−RTGCW i
υPG +RTGCW i

ˆPGCW iωPG ωix
ωiy
ωiz

 = RTWiCW i
JPWil(θi)θ̇i −RTGCW i

ωPG (9)

Where JPWiu(θi) and JPWil(θi) are the upper and lower
partitions of the the Jacobian JPWi

(θi) respectively. For pure
rolling we have [

vix
viy

]
= 0 (10)

The constraint that ensures that the wheel does not leave the
contact with the terrain is given by

viz = 0 (11)

The constraints for pure sliding is given by ωix
ωiy
ωiz

 = 0 (12)

A. Montana’s kinematics of contact
Let [uwi

, vwi
, fw(uwi

, vwi
)]T be the parameterization of

the contact point on the torus wheel with the ground and
[ugi , vgi , fg(ugi , vgi)]

T be the parameterization of the contact
point on the ground with the wheel. Also let {Mg,Kg, Tg}
and {Mwi

,Kwi
, Twi
} be the metric, curvature and the tor-

sion forms of the ground and the ith wheel respectively. Then
the variation of the contact parameters (uwi , vwi , ugi , vgi , ψi)
w.r.t time is given by Montana’s kinematic equations of
contact [10][

˙uwi

˙vwi

]
= M−1

wi
K−1(

[
−ωiy
ωix

]
−K∗

[
vix
viy

]
)[

˙ugi
˙vgi

]
= M−1

g rψi
K−1(

[
−ωiy
ωix

]
+Kwi

[
vix
viy

]
)

ψ̇i = ωiz + Twi
Mwi

[
˙uwi

˙vwi

]
+ TgMg

[
˙ugi
˙vgi

]
0 = viz (13)

Where K = (Kwi + K∗) is the relative curvature matrix,

K∗ = rψi
Kgrψi

and rψi
=

[
cosψi − sinψi
− sinψi − cosψi

]
is the

2D representation of the frame {CWi
} w.r.t {CGi

}.

B. Kinematic Equations of the Robot
Using equation (9) as input to (13) we can form fifteen

ordinary differential equations (ODEs) ∀i = {1, 2, 3}. Also
the closed loop kinematic chains give rise to a set of
constraints know as the holonomic constraints on the robot
and ground parameters which can be written as.

{RPG, PPG}W1
− {RPG, PPG}W2

= 0

{RPG, PPG}W1
− {RPG, PPG}W3

= 0 (14)

These set of algebraic constraints of the form H(Θ) = 0
can be differentiated to a set of ODEs of the form

J(Θ)Θ̇ + σH(Θ) = 0 (15)

where J(Θ) = ∂H
∂Θ and Θ is the set of wheel ground

parameters and the robot joint angles. The instantaneous
degrees of freedom (d.o.f ) of the WMR can be found out
to be =3 ([4],[5]) and hence only 3 of the 6 joint variables
are actuated which can be chosen as φ̇1 , α̇2 and α̇3.

Hence we have
θ̇ = θ̇d (16)

Where θ =
[
φ1 α1 δ2 α2 δ3 α3

]T
and θd are

the desired joint rates of the robot.
The equations (13) ∀i = {1, 2, 3} , (15) and (16) form

a set of ODEs which represent the unified holonomic and
non-holonomic constraints of the WMR [17]. These set of
equations which represent the kinematics of the WMR can
be integrated numerically to get the configuration parameters
of the system after each time instant.

C. Force-Moment Analysis of the WMR
The forces acting the {CWi

} frame are fCWi
=

[fxi, fyi, fzi]
T , where fxi, fyi are the components of the

tangential forces acting at the local frame and fzi is the nor-
mal force component acting from the contact point towards
the center of the torus cross section. Hence the wrench basis
at the {CWi} frame is given by

BCWi
=


1 0 0
0 1 0
0 0 −1
0 0 0
0 0 0
0 0 0


The wrench acting at the platform frame {P} due to fCWi

is given by
FPCWi

= GrifCWi
(17)

Where

Gri =

[
RPCWi

03×3

ˆPPCWi
RPCWi

RPCWi

]
BCWi

is the grasp matrix of the ith kinematic chain. Hence the
total wrench acting on the platform frame {P} due to all
the contact points is given by

FP = Grf (18)



Fig. 4. RRT algorithm for different initial configurations

Fig. 5. Snapshots of the WMR on Uneven Terrain

where the grasp matrix Gr ∈ R6×9 is given by

Gr =
[
Gr1BCW1

Gr2BCW2
Gr3BCW3

]
and f = [fx1, fy1, fz1, fx2, fy2, fz2, fx3, fy3, fz3]T is the
vector of all the contact forces at each of the contact points.
For the vehicle to move without slip at the contact points of
the wheels with terrain the forces acting at the contact point
must satisfy the friction cone constraints which are given by

f2
xi + f2

yi ≤ µ2f2
zi (19)

Also for the wheel to maintain contact with the ground
the normal force component at the contact point should be
non-negative,i.e,

fzi ≥ 0 (20)

For the vehicle to be in quasi-static equilibrium the total
wrench on the platform FP should balance the total external
wrench. Hence the quasi-static force-moment balance equa-
tion is given by

Grf = fext (21)

where fext =
[

0 0 −mg 0 0 0
]T

, m is the mass
of the platform in kgs and g is the acceleration due to gravity.

V. MOTION PLANNING ALGORITHM

We now develop the quasi-static motion planning algo-
rithm for the WMR on uneven terrain. As mentioned in the
previous sections the planning algorithm is based on the
RRT. The adjacent nodes of the RRT are connected using
the forward motion problem. Following the methodology
proposed in [6] the forward motion problem of a wheeled
mobile robot can be formulated into a nonlinear optimization
problem subject the kinematic and the force constraints

Fig. 6. Euler Angles of the platform center

Fig. 7. Position of the platform center

mentioned in the previous sections. The cost function to be
minimized is the Peshkin’s minimum energy function which
is defined as :

Pe = −V TPG[fext +Grf
′
] (22)

Where f
′

are only the components of the tangential
forces acting at the contact points. The normal componets
of the forces are excluded. Hence the nonlinear optimization
problem can now be stated as :
Minimize (22) subject to the kinematic no-slip constraints
(10) and (11) for pure rolling and (12) and (11) for pure slid-
ing,the quasi-static equilibrium constraints (21), the friction
cone constraints and the constraint on the normal component
of the contact forces given by (19) and (20) respectively. The
inputs to the optimization routine are the current configura-
tion parameters of the robot with the ground and the wheel
ground parameters which satisfy the holonomic constraints
given by (14), the vector of joint rates and the coefficient of
the coloumb friction, µ, at the contact point of the wheels

Fig. 8. Linear Velocity of the platform



Fig. 9. Angular Velocity of the platform

with terrain. Given the set of joint rates do the following, for
each particular set of joint rates do the following:
(i) : Read the current configuration of the robot,i.e., the robot
joint variables, the contact variables of the wheels with the
ground. For the given joint rates evaluate the contact forces
and the velocity of the platform {P} w.r.t {G} VPG by
solving the nonlinear optimization routine with cost function
in (22).
(ii): Obtain the contact velocities[

vix viy viz ωix ωiy ωiz
]T
,∀i = 1, 2, 3

using equation (9). These are the velocities of the frames
{CWi

} w.r.t {CGi
} expressed in body frames ∀i = 1, 2, 3.

(iii) : Using the contact velocties as inputs to Montana’s
equations of contact intergrate the set of ODEs (13) , (15)
and (16) for a time δt = 0.5sec to evaluate the next set of
contact parameters and the configuration parameters of the
robot.
(iv): Repeat steps (i),(ii),(iii) for all the set of joint rates and
choose the configuration of the WMR closest to the goal
point.

VI. RESULTS AND DISCUSSION

We develop the plans (trees of the RRT) for the WMR
with PVC on a random uneven terrain using the forward
motion problem as discussed in the previous section. In
these simulations the mass of the platform is taken to be
3kgs,the acceleration due to gravity is considered to be
g = 9.8m/sec2,the coefficient of friction µ = 0.5. The paths
computed using the RRT framework essentially involves a
search in the joint space of the robot. For the given joint
rates the contact velocities and the platform velocities are
computed using the forward motion problem discussed in the
previous section. This optimization routine is solved using
MATLAB’s fmincon function. We numerically integrate
the ODEs connecting the two adjacent nodes of the RRT
using MATLAB’s ODE toolbox. We have performed several
evolutions of the RRT computed by the planner. One such
evolution is shown in the Fig.4. For the sake of illustration on
this figure we have superimposed several paths for different
starting configurations of the robot.

We show the complete 6dof evolution of the vehicle
for the path P1 in Fig.4 in graphs of Figs. 6-9. Fig. 5
shows the snapshots of the WMR on the terrain for path

Fig. 10. L2 norm of the slip velocities

Fig. 11. Wheel Ground traction and normal forces in Newtons

Fig. 12. Friction cone constraint satisfaction

Fig. 13. Holonomic Constraint Stabilization



Fig. 14. Peshkin’s Minimum Energy in Joules

P1 in Fig.4. Fig.6 shows the Euler angles corresponding
to the ZY Z(α, β, γ) parameterization of the center of the
platform and Fig.7 shows the corresponding position vector
[xc, yc, zc]

T of the platform center w.r.t frame G.
Figs 8 and 9 are the values of the linear and angular

velocity of the platform obtained as a solution to the op-
timization routine (the forward motion problem) discussed
in the previous section. The L2 norm of the corresponding
wheel ground contact velocities which are calculated using
equation (9) are shown in Fig.10. Fig.11 shows the values
of the norm of the traction and normal forces at the wheel
ground contact points which are obtained as a solution to
the forward motion problem. Fig.12 shows the plot of the
friction cone constraint which is re-written as√

f2
xi + f2

yi − µfzi,∀i = 1, 2, 3 (23)

The holonomic constraints are stabilized by choosing a
suitable value of σ [17] in equation (15). The L2 norm of
the holonomic constraints are shown in Fig.13. Fig.14 shows
the plot of the Peshkin’s minimum energy for the paths P1

and P2 respectively and it can be seen that the path P1 has
a lower average Pe as compared to path P2. Hence in case
of multiple paths to the same goal (intersection of paths P1

and P2) it can be concluded that P1 is more quasi-statically
stable than P2.

VII. CONCLUSIONS

The paper presented a quasi-static planner for a wheeled
mobile robot for uneven terrains ,having a framework for
predicting the 6dof evolution of the vehicle platform and
its rate of change at every instantwhile satisfying the holo-
nomic and non-holonomic constraints, the permanent contact
constraints, kinematic no slip and quasi static constraints at
every instant of the evolution. The authors believe that this is
possibly the first such effort that provides for satisfaction all
the above constraints along with an ability to characterize the
6dof evolution of the vehicle platform all within an unified
framework. Simulation results based on a RRT framework
show the satisfaction of the constraints along with the
complete characterization of the robot pose and velocities
along a path. Any two nodes of the RRT are connected by
a curve evolved by Peshkin’s minimum energy principle,
which chooses amongst the set of possibilities at a given

instant of the evolution, that evolution that has the minimum
energy or equivalently one that is most quasi-statically stable.
Thus given a set of paths connecting the same goal location
and initial configuration the planner can also evaluate, which
of the paths has the least integration of Peshkin’s minimum
energy along the path or that which is most stable.
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