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Abstract— Image based reconstruction of urban environ-
ments is a challenging problem that deals with optimization
of large number of variables, and has several sources of errors
like the presence of dynamic objects. Since most large scale
approaches make the assumption of observing static scenes,
dynamic objects are relegated to the noise modelling section
of such systems. This is an approach of convenience since the
RANSAC based framework used to compute most multiview
geometric quantities for static scenes naturally confine dynamic
objects to the class of outlier measurements. However, recon-
structing dynamic objects along with the static environment
helps us get a complete picture of an urban environment. Such
understanding can then be used for important robotic tasks like
path planning for autonomous navigation, obstacle tracking and
avoidance, and other areas.

In this paper, we propose a system for robust SLAM that
works in both static and dynamic environments. To overcome
the challenge of dynamic objects in the scene, we propose
a new model to incorporate semantic constraints into the
reconstruction algorithm. While some of these constraints are
based on multi-layered dense CRFs trained over appearance as
well as motion cues, other proposed constraints can be expressed
as additional terms in the bundle adjustment optimization
process that does iterative refinement of 3D structure and
camera / object motion trajectories. We show results on the
challenging KITTI urban dataset for accuracy of motion
segmentation and reconstruction of the trajectory and shape of
moving objects relative to ground truth. We are able to show
average relative error reduction by 41 % for moving object
trajectory reconstruction relative to state-of-the-art methods
like TriTrack[16], as well as on standard bundle adjustment
algorithms with motion segmentation.

I. INTRODUCTION
Vision based SLAM (vSLAM) is becoming an widely

researched problem, partly because of its ability to pro-
duce good quality reconstructions with affordable hardware,
and partly because of increasing computational power that
results in computational affordability of huge optimization
problems. While vSLAM systems are maturing and getting
progressively complicated, the two main components remain
camera localization (or camera pose estimation) and 3D
reconstruction. Generally, these two components precede an
optimization based joint refinement of both camera pose and
3D structure, called bundle adjustment.

In urban environments, vSLAM is challenging particularly
because of the presence of dynamic objects. Indeed, it
is difficult to capture videos of a city without observing
moving objects like cars or people. However, dynamic ob-
jects are a source of error in vSLAM systems, since the
basic components of such algorithms make the fundamental
assumption that the world being observed is static. While
optimization algorithms are designed to handle random noise
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Fig. 1: Overview of our approach: Top left A frame from
highway sequence of the KITTI dataset. Bottom left Semantic
Motion Segmentation to provide result. Right 3d reconstruction
with overlaid semantic map and trajectories of the moving objects
and camera. (Best viewed in color)

in observations, dynamic objects are a source of structured
noise since they do not conform to models of random noise
distributions (like Gaussian distributions, for example). To
overcome such difficulties, RANSAC based procedures for
camera pose estimation and 3D reconstruction have been
developed in the past, which treat dynamic objects as outliers
and remove them from the reconstruction process.

While successful attempts have been made to isolate and
discard dynamic objects from such reconstruction processes,
there are several recent applications that benefit from re-
constructions of such objects. For example, reconstructing
dynamic urban traffic scenes are useful since traffic patterns
can be studied to produce autonomous vehicles that can bet-
ter navigate such situations. Reconstructing dynamic objects
are also useful in indoor environments when robots need to
identify and avoid moving obstacles in their path [6].

Reconstructing dynamic objects in videos present several
challenges. Firstly, moving objects in images and videos
have to be segmented and isolated, before they can be
reconstructed. This in itself is a challenging problem in the
presence of image noise and scene clutter. Degeneracies in
camera motion also prevent accurate motion segmentation of
such objects. Secondly, upon isolation, a separate vSLAM
procedure must be initialized for each moving object, since
objects like cars often move independent of each other and
thus have to be treated as such. Often moving objects like
cars occupy only a small portion of the image space in a
video (Figure 1), because of which dense reconstructions are
infeasible since getting long accurate feature correspondence
tracks for such objects is difficult. Absence of large number
of feature correspondences also hinders accurate estimation
of the car’s pose with respect to a world coordinate system.
Finally, such objects cannot be reconstructed in isolation
from the static scene, since optimization algorithms like
bundle adjustment do not preserve contextual information



Fig. 2: Illustration of the proposed method. The system takes a sequence of rectified stereo images (A). Our formulation computes
the semantic motion segmentation (D) using the depth(B) and optical flow(C) information. We segment the moving objects (E) from the
stationary background (F). We compute accurate structure of the static background (J) and the moving object (H) with the help of bundle
adjustment (G). This leads to state-of-the-art 3d reconstruction of the dynamic environment(K) with the help of moving object trajectory
estimation(I). (Best viewed in color.)

like the fact that the car must move along a direction
perpendicular to the normal of the road surface.

We present an end-to-end system that takes a video,
segments the scene into static and dynamic components
and reconstructs both static and dynamic objects separately.
Additionally, while reconstructing the dynamic object, we
impose several novel constraints into the bundle adjustment
refinement that deal with noisy feature correspondences, er-
roneous object pose estimation, and contextual information.
To be precise, we propose the following contributions in this
paper

• We use a new semantic motion segmentation algorithm
using multi-layer dense CRF which provides state-of-
the-art motion segmentation and object class labelling.

• For the first time to our knowledge, we incorporate
semantic contextual information like support relations
between the road surface and object motion, which
helps better localize the moving object’s pose vis-a-
vis the world coordinate system, and also helps in
reconstructing them.

• We describe a novel random sampling strategy that
enables us to maintain the feasibility of the optimization
problem in spite of the addition of a large number of
variables. Using this approach we drastically reduce the
size of our optimization problem without compromising
on resultant accuracy.

We evaluate our system on 4 challenging KITTI Urban
tracking datasets captured using a stereo camera. we get an
improvement of 13.89 % relative to traditional bundle adjust-
ment after using our novel semantic motion segmentation.

This paper is organized as follows. We cover related work
in Section II. We describe process of motion segmentation
using object class semantic constraints in Section IV. We
track and initialize multiple moving bodies which we then
optimize using a novel bundle adjustment in Section V.
Finally we show experimental results on challenging datasets
in Section VI, and conclude in Section VII.

II. RELATED WORK
Our system involves several components like semantic

motion segmentation, dynamic body reconstruction using
multi-body vSLAM, and trajectory optimization. Table I
compares components of our approach with works in recent
literature. In recent literature, TriTrack [16] is the closest
approach to our method and we first explain it in detail as
we compare our method to it in Section VI.

TriTrack [16] is an approach for scene reconstruction,
when a moving camera is observing a dynamic scene. It
proceeds by first isolating and reconstrucing the trajectory of
the camera using an odometry algorithm called VISO2 [17],
with dense feature matching and stereo computation as key
components. The computed camera motion is then passed
over to a sparse scene flow segmentation algorithm to do
motion segmentation in 3D, followed by independent trajec-
tory optimization of the segmented moving objects VISO2.
We have extensively compared our results to TriTrack, as
its a very good baseline for moving object localization
and has been extensively tested in dynamic environments.
Our approach improves over both motion segmentation and
trajectory optimization using semantic constraints. We now
focus on each one of the components of our algorithm and
draw references to relevant works in the literature in this
section.

Semantics have been used extensively for reconstruction
[1] [5] [4] but haven’t been exploited in motion segmentation
till recently [18]. Generally, motion segmentation has been
approached using geometric constraints [9] or by using affine
trajectory clustering into subspaces [2]. In our approach we
use motion along with semantic cues to segment the scene
into static and dynamic objects, which allows us to work
with fast moving cars, occlusions and disparity failure. We
show a typical result of the motion segmentation algorithm
in (Figure 1)(bottom left) where each variable is labelled for
both multi-variate semantic class and binary motion class.

Dynamic body reconstruction is a relatively new devel-
opment in 3D reconstruction with sparse literature on it.



Method Outdoor Stereo MS SR MR SBA
Sengupta et al.[1] X X X

Hane et al.[4] X X X
Jianxiong et al.[6] X

kundu et al.[9] X X
valentin et al.[5] X X X
Vineet et al.[26] X X X X

TriTrack [16] X X X X
OURS X X X X X X

TABLE I: Comparison with related work. MS=Motion Segmen-
tation, SR=Semantic Reconstruction, MR=Motion Reconstruction,
SBA=Semantic Bundle Adjustment

The few solutions in the literature can be categorized into
decoupled and joint approaches. Joint approaches like [7]
[27] use monocular cameras to jointly estimate the depth
maps, do motion segmentation and motion estimation of
multiple bodies. Decoupled approaches like [8] [9] [28]
have a sequential pipeline where they segment motion and
independently reconstruct the moving and static scenes. Our
approach is a decoupled approach but essentially differs from
other approaches, as we use a novel algorithm for semantic
motion segmentation which is leveraged to obtain accurate
localization of the moving objects through smoothness and
planarity constraints to give an accurate dynamic semantic
map.

Recent approaches to 3D reconstruction have either used
semantic information in a qualitative manner [1], or have
only proposed to reconstruct indoor scenes using such in-
formation [6]. Only Yuan et al. [8] propose to add semantic
constraints for reconstruction. While our approach is similar
to theirs, they use strict constraints for motion segmenta-
tion without regard to appearance information whereas our
approach works for more general scenarios as it employs a
more powerful inference engine in the CRF.

III. SYSTEM OVERVIEW

We give an illustration of our system in Figure 2. Given
rectified input images from a stereo camera, we first compute
low level features like SIFT descriptors, optical flow (using
DeepFlow [14]) and stereo [20]. These are then used to
compute semantic motion segmentation, as explained in
Section IV. Once semantic segmentation is done per image,
we isolate stationary objects from moving objects and re-
construct them independently. To do this, we connect moving
objects across frames into tracks by computing SIFT matches
on dense SIFT features [22].

Then we perform camera resectioning using EPnP [25]
for stationary and ICP for moving objects, to register their
3D points across frames. This is then followed by bundle
adjustment with semantic constraints (Section V), where we
make use of the semantic and motion labels assigned to the
segmented scene to obtain accurate 3D reconstruction. We
then fuse the stationary and moving object reconstructions
using an algorithm based on the truncated signed distance
function (TSDF) [19]. Finally, we transfer labels from 2D
images to 3D data by projecting 3D data onto the images,
and using a winner-takes-it-all approach to assign labels to
3D data from the labels of the projected points.

IV. SEMANTIC MOTION SEGMENTATION
In this section, we deal with the first module of our system.

A sample result of our segmentation algorithm is shown
in Figure 1. With input images from a stereo camera, we
give an overview on how we perform semantic segmentation
[11] to first separate dynamic objects from the static scene.
We combine classical semantic segmentation with a new set
of motion constraints proposed in [18] to perform semantic
motion segmentation, that jointly optimizes for semantic and
motion segmentation. While we give an overview of the
formulation in this section, for brevity, methodologies used
for training, testing and the rationale behind using mean field
approximations is outlined in [18].

We do joint estimation of motion and object labels by
exploiting the fact that they are interrelated. We formulate
the problem as a joint optimization problem of two parts,
object class segmentation and motion segmentation. We
define a dense CRF where the set of random variables
Z = {Z1,Z2, ....,ZN} corresponds to the set of all image pixels
i ∈ V = {1,2, ...,N}. Let Ni denote the neighbors of the
variable Zi in image space. Any possible assignment of labels
to the random variables will be called a labelling and denoted
by z. We define the energy of the joint CRF as

EJ (z) = ∑
i∈V

ψ
J
i (zi)+ ∑

i∈V , j∈Ni

ψ
J
i, j (zi,z j) (1)

where ψ
J
i is the joint unary potential and ψ

J
i, j represents

the joint pairwise potential. We describe these terms in brief
in the next two sections.

A. Joint Unary Potential:
The joint unary potential ψ

J
i is defined as an interactive

potential term which incorporates a relationship between the
object class and the corresponding motion likelihood for each
pixel. Each random variable Zi = [Xi,Yi] takes a label zi =
[xi,yi], from the product space of object class and motion
labels. The combined unary potential of the joint CRF is

ψ
J
i,l,m([xi,yi]) = ψ

O
i (xi)+ψ

M
i (yi)+ψ

OM
i,l,m (xi,yi) (2)

The object class unary potential ψO
i (xi) describes the cost

of the pixel taking the corresponding label and is com-
puted using pre-trained models of color, texture and location
features for each object as in [3]. The new motion class
unary potential ψM

i (yi) is given by the motion likelihood
of the pixel and is computed as the difference between the
predicted and the measured optical flow as proposed in [15].
The measured flow is computed using dense optical flow.
The predicted flow measures how much the object needs to
move given its depth in the current image and assuming it
is a stationary object. Objects deviating from the predicted
flow are likely to be dynamic objects. It is computed as

X̂ ′ = KRK′X +KT/z (3)

where K is the intrinsic camera matrix, R and T are the
translation and rotation of the camera respectively and z is
the depth. X is the location of the pixel in image coordinates
and X̂ ′ is the predicted flow vector of the pixel given from



the motion of the camera. Thus the unary potential is now
computed as

ψ
M
i (yi) = ((X̂ ′−X ′)T

Σ
−1(X̂ ′−X ′)) (4)

where Σ is the sum of the covariances of the predicted and
measured flows as proposed in [15], & X̂ ′−X ′ represents
the difference of the predicted flow and measured flow. The
object-motion unary potential ψOM

i,l,m (xi,y j) incorporates the
object-motion class compatibility and can be expressed as

ψ
OM
i,l,m (xi,y j) = λ (l,m) (5)

where λ (l,m) ∈ [−1,1] is a learnt correlation term between
the motion and object class label. ψOM

i,l,m (xi,y j) helps in
incorporating the relationship between an object class and
its motion (for example, trees and roads are stationary, but
cars move). We use a piecewise method for training the label
and motion correlation matrices using the modified Adaboost
framework as described in [18].

B. Joint Pairwise Potential:

The joint pairwise potential ψ
J
i j (zi,z j) enforces the con-

sistency of object and motion class between the neighboring
pixels. We compute the joint pairwise potential as

ψ
J
i j ([xi,yi], [x j,y j]) = ψ

O
i j (xi,x j)+ψ

M
i j (yi,y j) (6)

where we disregard the joint pairwise term over the product
space. The object class pairwise potential takes the form of
a Potts model

ψ
O
i, j(xi,x j) =

{
0 if xi = x j
p(i, j) if xi 6= x j

(7)

where p(i, j) is given as the standard pairwise potential as
given in [12].

The motion class pairwise potential ψM
i, j (yi,y j) is given as

the relationship between neighboring pixels and encourages
the adjacent pixels in the image to have similar motion label.
The cost of the function is defined as

ψ
M
i j (yi,y j) =

{
0 if yi = y j
g(i, j) if yi 6= y j

(8)

where g(i, j) is an edge feature based on the difference
between the flow of the neighboring pixels (g(i, j) = | f (yi)−
f (y j)|) & f (·) is returns the flow of the corresponding pixel.

C. Inference and Learning:

We follow Krahenbuhl et al [12] to perform inference
on the dense CRF using a mean field approximation. We
compute inference separately for both the layers i.e object
class layer and motion layer as explained in [18] . We
learn the paprameter for the label and the thier correponding
motion. We describe a piecewise method for training the
label and motion correlation matrices. This learning approach
incorporates information about the motion likelihood and
appearance relationship between motion and objects as de-
scribed in [18]

V. TRAJECTORY ESTIMATION
We isolate pixels belonging to moving objects from static

objects in the motion segmented images which are the out-
put of our semantic motion segmentation algorithm. Pixels
belonging to each type of object (static or motion) are then
used as input to localize and map each object independently.
In this section, we propose a novel framework for trajectory
computation for static or moving objects from a moving
platform. The below process is carried out for all the moving
objects and the camera mounted vehicle1. Let us introduce
some preliminary notations for trajectory computation. The
extrinsic parameters for frame k= 1,2,3,4...n are the rotation
matrix Rk and the camera center Ck relative to a world
coordinate system. Then the translation vector between the
world and the camera coordinate systems is Tk = -RkCk .

a) Trajectory Initialization: We initialize the motion
of each object separately using SIFT feature points. SIFT
feature points are tracked using dense optical flow between
consecutive pair of frames. Key points with valid depth
values are used in a 3-point-algorithm within a RANSAC
framework to find the robust relative transformation between
pairs of frames. We obtain pose estimates of the moving
object in the world frame by chaining the relative trans-
formations together in succession. For moving objects the
initial frame k where detection occurs is taken as the starting
point. Trajectory estimates are then initialized for each object
independently corresponding to the frame k assuming the
camera is static.

b) 3D Object Motion Estimation: Once 3D trajec-
tories are estimated for each object independently, we need
to map these trajectories onto the world coordinate system.
Since, we are dealing with stereo data and for every frame
we have 3D information, this mapping can be represented
as simple coordinate transformations. Also, since we are
not dealing with monocular images, the problem of relative
scaling can be avoided.

Given the pose of the real camera in the kth frame
((Rc

k,T
c

k )) and virtual camera (Rv
k,T

v
k ) [8] computed during

trajectory initialization described earlier, we should be able
to compute the pose of the bth object (Rb

k ,T
b

k ) relative to its
original position in the first frame in the world coordinate
system. The object rotation Rb

k and translation T b
k are given

as
Rb

k = (Rc
k)
−1Rv

k, T b
k = (Rc

k)
−1(T v

k −T c
k ) (9)

Thus we get the localization and sparse map of both the static
and moving world. We found this approach to object motion
estimation to be better on both small and long sequences
than TriTrack [16].

A. Dynamic Object Trajectory Optimization
Once 3D object motion and structure initialization has

been done, we need to refine the structure and motion using
bundle adjustment (BA). In this section, we describe our
framework for BA to refine the trajectory and sparse 3D
point reconstruction of dynamic objects along with several
novel constraints added to BA that increase the accuracy of

1Henceforth referred as camera



our trajectories and 3D points. We term these constraints
semantic or contextual constraints since they represent our
understanding of the world in a geometric language, which
we use to effectively optimize 3D points and trajectories
in the presence of noise and outliers. These semantic con-
straints are a consequence of the semantic motion labels
acquired from the semantic motion segmentation algorithm
(Section IV). The assumptions underlying these constraints
derive from commonly observed shape and motion traits of
cars in urban scenarios. For example the normal constraints
follow the logic that the motion of a dynamic object like
a vehicle is always on a plane (the road surface) and
hence constrained by its normal. Similarly, the 3D points
on a dynamic object are constrained to lie within a 3D
“box” since dynamic objects like cars cannot be infinitely
large. Finally, our trajectory constraints encode the fact that
dynamic objects have smooth trajectories, which is often
true in urban scenarios. In summary, we try to minimize
the following objective function

min∑
i

∑
p∈V (i)

BA2D+λBA3D+λTC+NC+BC (10)

where BA2D represents the 2D BA reprojection error (‖x̃i
p−

K[Ri | Ti]Xp‖2), BA3D represents the 3D registration er-
ror common in optimization over stereo images (‖X̃ i

p −
[Ri | Ti]Xp‖2) and TC, NC, BC represent various optimization
terms that can be seen as imposed constraints on the resulting
shape and trajectories as explained below. Here i indexes into
images, and ˜ represents variables in the camera coordinate
system, with other quantities being expressed in the world
coordinate system. Also, p ∈ V (i) represents pixels visible
in image i.

1) Planar Constraint: We constrain motion to be perpen-
dicular to the ground plane where the ground plane normal
is found from the initial 3D reconstruction of the ground.

NC1 : Ng · (T k
c −T k−1

c ) (11)

where Ng is the normal of the ground plane in the camera
frame, T k

c - T k−1
c is the direction of camera motion

in the local coordinate system. This local motion and
normal estimation allows us to use the same constraint even
on changing planes like up or down a slope. Since 3D
reconstruction of the ground can be noisy, estimation of Ng
is done using least squares. Alternatively, we could follow
a RANSAC based framework of selecting m top hypotheses
for the normal Ni

g (i = 1 . . .m), and allow bundle adjustment
to minimize an average error of the form

NC2 :
m

∑
i=1

Ni
g · (T k

c −T k−1
c ) (12)

2) Smooth Trajectory Constraints: We enforce smooth-
ness in trajectory, a valid assumption for urban scenes, by
constraining camera translations in consecutive frames as

TC1 : ‖(T k+1
c −T k

c )× (T k
c −T k−1

c )‖ (13)

where T k+1
c ,T k

c ,T
k−1

c are the 3d translations at frame k+1,
k and k-1. Alternatively, we could also minimize the norm

between two consecutive translations unlike TC1, which only
penalizes direction deviations in translation.

TC2 : ‖(T k+1
c −2∗T k

c +T k−1
c )‖2 (14)

3) Box Constraints: Depth estimation of objects like
cars are generally noisy because their surface is not typ-
ically Lambertian in nature, and hence violates the basic
assumptions of brightness constancy across time and view-
ing angle. Furthermore, noise in depth infuses errors into
the estimated trajectory through the trajectory initialization
component. To improve the reconstruction accuracy in such
cases, and to limit the destructive effect that noisy depth
has on object trajectories, we introduce shape priors into the
BA cost function that essentially constrains all the 3D points
belonging to a moving object to remain with a “box”.KITTI
More specifically, let Xb

i & Xb
j be two 3D points on a moving

object Ob. For every such pair of points on the object, we
define the following constraint

BC1 : ∑
∀Xb

i ,X
b
j ∈Ob

‖Xb
i −Xb

j −B(i, j)‖2 (15)

−δ ≤ B(i, j)≤ δ

where B(i, j) is a vector of bounds with individual compo-
nents (bx(i, j),by(i, j),bz(i, j)) and δ is a vector of positive
values.

Note that the above equation is defined for every pair of
points on the object, which leads to a quadratic explosion of
terms since B(i, j) is a separate variable for each pair.

a) Alternate Formulations: One way to reduce the
explosion would be to reduce the number of variables added
because of the box constraints to BA. This could be done by
alternatively minimizing the following terms instead of the
constraint in equation (15)

BC2 : ∑
∀(Xb

i ,X
b
j )∈Ob

‖Xb
i −Xb

j −b(i, j)‖2,−δ ≤ b(i, j)≤ δ (16)

BC3 : ∑
∀(Xb

i ,X
b
j )∈Ob

‖Xb
i −Xb

j −B‖2,−δ ≤ B≤ δ (17)

BC4 : ∑
∀(Xb

i ,X
b
j )∈Ob

‖Xb
i −Xb

j −b‖2,−δ ≤ b≤ δ (18)

where b(i, j) in equation (16) is a scalar common to all 3
dimensions, B (equation (17)) is a 3×1 vector common to
all point pairs, and b (equation (18)) is a scalar common to
all pairs and dimensions.

b) Alternate Minimization Strategies: It is
now known that a lot of information in terms like
BC1,BC2,BC3,BC4 above are redundant in nature [21],
and there is essentially a small ”subset” of pairs which
is sufficient to produce optimal or near-optimal results in
such cases. However, it is not clear how to pick this small
subset. Here, we take the help of the Johnson-Lindenstrauss
theorem and its variants [23], [24], to select a random
set of pairs from the ones available, such that we closely
approximate the BC error when all the point pairs are used.
More specifically, the terms expressed in BC1,BC2,BC3,BC4



Fig. 3: Comparison of trajectory errors of our algorithm to
TriTrack [16] and standard BA after motion segmentation. The
histogram plots RMSE magnitude on the x axis, and number of
pose measurements that fall in each bin on the y axis. Note that
most of our errors are concentrated on the left (low error), while
TriTrack [16] and BA are more evenly spread. The total summed
error: 2D-BA - 1.79, TriTrack - 2.62, Ours - 1.54.

can all be expressed in the form

BCLin : ‖AX−B‖2, such that ,CB = D (19)

where X is a concatenation of all 3D points, and B is a
collection of all box bounds. The matrix A is constructed
in such a way that each row of A consists of only two
non-zero elements at the ith and jth positions with values
1 and −1 respectively, and they represent the difference
Xb

i −Xb
j . The linear constraint CB = D is useful to represent

the fact that some elements of vector B are equal to others.
While this is useful to represent BC2,BC3,BC4 (BC1 can be
exactly represnted without this constraint) we temporarily
“relax” this constraint, and enforce it post-optimization by
taking the average of duplicate variables. Note that the
dimensions of A are of the order 3nC2 × 3n, where n is
the number of 3D points. Notice that for n = 3000, nC2 is
approximately 4.5 million, and is highly slow to optimize!
To reduce this computational burden, we embed the above
optimization problem in a randomly selected subspace of
considerably lower dimension, with the guarantee that the
solution obtained in the subspace is close to the original
problem solution with high probability. To do this, we draw
upon a slightly modified version of the affine embedding
theorem presented in [24] which states

Theorem 5.1: For any minimization of the form ‖AX −
B‖, where A is of size m×n and m� n, there exists a sub-
space embedding matrix S : Rm 7→ Rt where t = poly(n/ε)
such that

‖SAX−SB‖2 = (1± ε)‖AX−B‖2 (20)

Moreover, the matrix S of size t×m is designed such that
each column of S has only 1 non-zero element at a randomly
chosen location, with value 1 or −1 with equal probability.

Note that since elements of S are randomly assigned 1 or
-1, the above transformation cannot be exactly interpreted
as a random sampling of pairs of points. However for the
sake of implementation simplicity, we “relax“ S to a random
selection matrix. As we show later, empirically we get very
satisfying results.

(a) BC terms (b) Strat strategies

Fig. 4: Synthetic results for box constraints. Note that in the two
experiments we added a large amount of noise and picked 1000
constraints from around 500000 pairs of points, which means we
use 0.2% of all available constraints. We infer that BC1 in (a) and
Strat3 in (b) are the best performers.

Finally, there can be several strategies to select random
pairs of points for box constraints. We experimented with
the following in this paper.
• Strat1: Randomly select pairs from the available set.
• Strat2: Randomly select one point, and create its pair

with the 3D point that is farthest from the selected point
in terms of Euclidean distance.

• Strat3: Randomly select one point, and sort other
points in descending order based on Euclidean distance
with selected point. Pick the first point from the list that
has not been part of any pair before.

Once the proper set of constraints are selected from the
above choices, the final objective function in equation 10 is
minimized with L2 norm using CERES solver. [13].

VI. EXPERIMENTAL RESULTS

In this section we provide extensive evaluation of our
algorithms on both synthetic and real data. For real datasets,
we have used the KITTI tracking dataset for evaluation of
the algorithm as the ground truth for localization of moving
objects per camera frame is available. It consists of several
sequences collected by a perspective car-mounted camera
driving in urban, residential and highway environments,
making it a varied and challenging real world dataset. We
have taken four sequences consisting of 30, 212, 30 and
100 images for evaluating our algorithm. We choose these
4 sequences as they pose serious challenges to the motion
segmentation algorithm as the moving cars lie in the same
subspace as the camera. We have extensively compared
with TriTrack as it has accurate localization of moving
objects.These sequences also have a mix of multiple cars
visible for short duration along with cars visible for the
entire sequence which allows us to test the robustness of our
localization and reconstruction algorithms on both short and
long sequences. While we show qualitative results for all the
four sequences, we show extensive quantitative evaluation for
the longest sequence of 212 frames called KITTI1 sequence.

We do extensive quantitative evaluation on synthetic
dataset as well. We generated 1000 3D points on a cube
attached to a planar ground to simulate a car and road. We



Error Type Without MS MS MS+NC1 MS+NC1 +TC1
B
A
2
D rmse 1.416246 1.001566 0.941971 0.958505

mean 1.212164 0.826189 0.764188 0.779054
median 1.088891 0.677419 0.690825 0.716546

B
A
3
D rmse 1.476649 0.959499 0.975747 0.978197

mean 1.272985 0.786729 0.822169 0.824090
median 1.279508 0.712513 0.773672 0.769680

B
A
2
3
D rmse 1.472399 0.958505 0.958541 0.958541

mean 1.269541 0.779054 0.779132 0.779132
median 1.269238 0.716546 0.716967 0.716967

TABLE II: Static scene of KITTI dataset. Note that adding
Motion Segmentation (MS) drastically improves results, while
normal constraints also help in some cases. BA23D= BA2D+BA3D

Error Type MS MS+NC1 MS+NC1 +TC1 MS+NC1+TC1+
BC1 (1000 constr)

B
A
2
D rmse 2.425649 2.362224 2.351205 2.302849

mean 1.989408 1.955466 1.969793 1.937154
median 1.669304 1.616398 1.685272 1.640389

B
A
3
D rmse 3.627977 3.587194 3.352087 3.270264

mean 2.544718 2.527314 2.398578 2.367702
median 2.000463 1.997689 1.941246 1.928450

B
A
2
3
D rmse 2.357187 2.305733 2.296139 2.254192

mean 2.035764 1.986784 1.971698 1.881728
median 1.877257 1.759010 1.760857 1.756554

TABLE III: Dynamic scene of KITTI dataset of 212 frames.
Note that adding box constraints over normal and trajectory lead
to the best results.BA23D= BA2D+BA3D

then move the car over the road, while simultaneously mov-
ing the camera to generate moving images after projection of
the 3D points. Finally we added Gaussian noise to both the
3D points on the car and the points on the road to simulate
errors in measurement. Correspondences between frames are
automatically known as a result of our dataset design.

A. Quantitative Evaluation of Object Trajectory Opti-
mization

In this section, we do an extensive evaluation of the
different terms proposed in Section V. Note that we tried all
the different terms and strategies proposed here on real data
as well, and in all cases conclusions derived from synthetic
data experiments are consistent with real data.

1) Evaluating Terms and Strategies: In the following
section we present the results for evaluation of various terms
and strategies.

a) Normal Constraint: This constraint is a contextual
constraint in the sense that it enforces the fact that the
moving object is usually attached to a planar ground in
urban settings, and so any deviation of the object trajectory
along the direction of the normal of the ground plane should
be penalized. While NC1 computes a least-squares estimate
for the normal which is optimal under Gaussian noise,
NC2 computes several normal hypotheses using a RANSAC
framework. Figure (6a) shows the results comparing the two
terms. We find that NC1 normally performs better.

b) Trajectory Constraint: The trajectory constraint
enforces smoothness in moving object trajectories, by either
enforcing that the direction of motion should not change
significantly between consecutive frames (TC1) or enforcing
that both direction and magnitude must be constrained (TC2).
Figure (6b) plots comparative results, and we infer that TC1
performs better.

c) Box Constraint: Box constraints enforce that the
3D reconstruction of the moving object in consideration
must be compact. This is a useful constraint since gross
errors in the depth of the object as estimated by the stereo
algorithm [20] normally are not corrected by BA since it
settles into a local minima. Thus, to “focus” the BA towards
better optimizing the 3D structure, we add these constraints.

d) Box Sampling Strategies: Since box constraints
lead to an explosion of terms added to BA, we experiment
with 4 strategies to reduce this computational burden by
random sampling [24]. Figure (4) show results for various

Fig. 5: Reconstruction result for KITTI 4 sequence. Note the
accurate reconstruction of trajectories and of the car and the camera,
in spite of curvilinear motion. Please see supplementary video for
further details.

(a) (b)

Fig. 6: Synthetic results for Normal and trajectory constraints.

terms of box constraints, and various strategies to optimize.
Normally we find that BC1 along with Strat3 performs best.

B. Trajectory Evaluation

We compare the estimated trajectories of the moving
objects and the camera to the TriTrack (Stereo) [16] for
camera and TriTrack for the moving object trajectories.
VISO2 S(Stereo) [17] has reported error of 2.44 % on the
KITTI odometry dataset, making it a good baseline algorithm
to compare with. As proposed by Sturm et al. [10], the
comparison methodology is based on ATE for root mean
square error (RMSE), mean, median. We use their evaluation
algorithm which aligns the 2 trajectories using SVD. We
show all the three statistics, as mean and median are robust
to outliers, while RMSE shows the exact deviation from the
ground truth.

Table (II) shows results for trajectory error estimation for
the static part of the KITTI1 sequence, with dynamic objects
removed. As can be seen, we get significant improvement in
camera trajectory estimation after motion segmentation. This
reinforces our claim that motion segmentation is essential for
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Fig. 7: We show the (INPUT) image sequences for which we compute the semantic motion segmentation (SMS). We have depicted
the reconstruction of moving objects with their trajectories (3D-REC). Blue trajectories represent the camera capturing the scene. All
segmentation color labels are consistent with Figure 1. (best viewed in color)

trajectory estimation in dynamic scenes. Since semantic con-
straints are tailored to dynamic bodies the best improvement
using them are seen (across all rows) in table III. Table (III)
depicts the trajectory error for the moving object visible in
all the 212 images of the sequence. We progressively show
how each constraint on the motion of the moving object
complements its trajectory computation and reconstruction in
successive columns. This further enhances our claim that our
semantic constraint on dynamic bodies allows us to localize
and reconstruct them more accurately. We have further evalu-
ated the error accuracy with increasing number of frames for
the KITTI1 sequence. The error of our algorithm was lesser
compared to TriTrack with increasing distance. We are not
able to showcase the results because of space constraints.

For quantitative evaluation of our method on the KITTI1
sequence, we have computed the trajectories of all the
moving objects. These trajectories are compared to their
respective ground truth and the absolute position error of
each pose is computed. We have done a histogram based
evaluation of all the position error as depicted in Fig(3),
where we compare the trajectories of our algorithm with
TriTrack. We have evaluated the algorithm for a complete
of 297 poses of moving objects and found that our approach
outperforms TriTrack and standard 2D bundle adjustment.
Qualitative results of the trajectories and reconstruction of
some of the moving objects is depicted in the Fig(7, 5).

VII. CONCLUSION
In this paper, we have proposed a joint labelling frame-

work for semantic motion segmentation and reconstruction
in dynamic urban environments. We modelled the problem of
creating a semantic dense map of moving objects in a urban
environment using trajectory optimization. The experiments
suggest that semantic segmentation provide good initial esti-
mates to aid generalized bundle adjustment based approach.
This helps in improving the localization of the moving
objects and creates an accurate semantic map. We hope that
the localization of the moving objects research is fueled by
the release of the Dataset and evaluation methodology.
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