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ABSTRACT
We present a probabilistic method of finding the next best
viewpoint that maximizes the chances of finding an object
in a known environment for an indoor mobile robot. We
make use of the information that is available to a robot in
the form of potential locations to search for an object. Ex-
traction of these potential locations and their representation
for exploration is explained. This work primarily focuses on
placing the robot at its best location in the environment
to detect, recognize an object and hence do object search.
With experiments done on the exploration, object recogni-
tion individually we show the robustness of this approach
for object search task. We analyse and compare our method
with two other strategies for localizing the object empiri-
cally and show unequivocally that the strategy based on the
probabilistic formalism in general performs better than the
other two.

Keywords
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classification, Robotics

1. INTRODUCTION
The arrival of personal robotics as a prominent research

and application domain [1] along with the advent of RGB-D
cameras like Microsoft Kinect provides for renewed interest
in object recognition based on point cloud datasets as ap-
plied to personal robotic context. For example a robot op-
erating in an indoor home or office setting is often entailed
to look for, identify, fetch and transport objects of interest.
This paper provides a formulation and an implementation
consequent of the formulation for object search in a known
indoor environment.

We consider a robotic agent equipped with depth camera
such as a Kinect, required to localize an object in a known
workspace in as fast a time as possible. The description of
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the workspace consists of both its metric (occupancy grid)
and semantic (presence of tables, cupboards) components.
The robot’s motion involves moving from one location to an-
other in search of the object as well as panning of the camera
to unambiguously localize the object. Main contributions of
this work are of two folds, one is to provide a exploration
strategy for the robot moving in indoor environments to lo-
calize objects and the second is to give a formalism to find
the best view to localize an object at the same time reducing
the effort during the search. We have not found any such
formalism or exploration strategy available for the object
localization tasks to the best of our knowledge.

The object recognition is accomplished through state of
the art modules [7] and the objects recognized include cups,
water bottles and etc. The method has been empirically ver-
ified over several runs on the modified version of Turtlebot
equipped with Kinect and baseline localization modules. A
comparative tabulation over various variants of the proposed
search method vindicates its accuracy. The variants include
search by adapted frontier based exploration [15] and view-
point only search. These variants are explained in Section
4. Some of the assumptions that are made in this work are
confined to object recognition implementation. They are:
Objects used are not reflective or transparent, are not clut-
tered, are small is size and only 3D shape context is used in
recognizing them.

Despite these assumptions, the object recognition by robot
in search, grasping and manipulating tasks prone to fail, as
not every location the robot moves into will provide a good
recognition setting. In this we try to solve this problem
of positioning the robot in an indoor environment so as to
support the 3D object segmentation and recognition tech-
niques. We chose object search to be the application where
our exploration technique can be used efficiently.

2. LITERATURE REVIEW
A paper highlighting the theme of using robots for object

localization is most vividly described in the active explo-
ration formalism proposed in [13]. The method was not so
much about object search but rather about maximizing ob-
ject detection during robot traversal between two locations.
Moreover the experimental verification of the method was
very limited. In [10] a mechanism for object search integrat-
ing semantic understanding was proposed and demonstrated
for the PR2 robot from Willow Garage. While the current
method has commonalities with [10] in terms of using the
semantic map to prune the search it differs prominently in
the way the next best view for the object is computed inte-
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Figure 1: a) Environment b) 3D Occupancy map c) Filtered semantic locations

grating the semantic understanding. Specifically the current
paper provides a formalism for deciding whether the robot
should continue to search the current semantic construct (a
table) for an object (a cup) or move to another semantic
construct (a different table) to maximize its probability of
localizing the object. This formalism is not dealt with or
finds mention in [10]. While others such as [7] and [12] have
focused on object recognition and semantic labelling from
point cloud data that can be used for an object search for-
malism. Outside of these methods there exists a plethora
of literature on object recognition based on modern ma-
chine learning techniques such as [11] [5] that are beyond
the scope of this effort. Exploration for object search is a
very new theme in the robotic community. We begin the
paper with the motivation of understanding of the environ-
ment for efficient search and then explain the formalism in
detail along with experimental results on exploration and
object recognition followed by object search task.

3. POTENTIAL MAP GENERATION
Motivation for this work comes from the fact that every

object in an indoor environment is associated with a con-
tainer or a location for which it is purposefully built for.
For example Coffee Mug is more likely to be on tables and
a Vase is more likely to be on Flower stands. In order to
make use of this object and its container association, effi-
cient mapping techniques along with semantic understand-
ing is vital. With the advent of low cost 3D sensor, 3D
mapping of the environment is possible using octomap map-
ping package [14]. In this section we explain how to create
the representations of these locations. 3D occupancy map
can be interpreted as point cloud with each 3D point repre-
senting a voxel. By filtering this point cloud based on the
knowledge of the locations like height from ground, area of
the container and other metric information, locations like
desks, table and other containers can be segmented. Fig. 1
shows how this process looks for an environment where we
filtered three object containers based on their height and
area from the 3D Occupancy map. High level understanding
of the objects and its possible potential locations in the in-
door environment is done by previously by Rusu [9]. In this
work we create a one to many mapping of the objects and
its potential semantic locations. Depending on the object

in search, the potential locations for exploration decreases
from the complete 3D map to a set of locations. This idea of
object-location association is shown in the Fig. 2. This rep-
resentation is however generated with manual intervention
and used by the robot for its search task.

Figure 2: Objects and Potential locations associa-
tion

4. SEARCH DRIVEN EXPLORATION
Once the potential locations are known based on the ob-

ject in search, exploration on these potential locations is the
primary task. For a mobile robot, a 2D map with obstacle
information in the form of occupancy cells is sufficient for
its navigation. Hence the potential locations as mentioned
in Section 3 are projected on to a 2D plane along with the
occupancy details. These maps are shown in Fig. 3. We call
this representation of potential locations and occupancy val-
ues of the environment as Potential Location Map which is
right part of Fig. 3. The grey regions are unexplored, black
regions are occupied, white regions are non-occupied and
green regions are potential locations. In order to explain
the exploration part lets assume that the object in search
is a Coffee Mug and potential locations to be explored are
Tables from here. Having known the locations to be ex-
plored, the exploration algorithm should be able to cover
the table area starting from a location in the map. State of



the art algorithm for exploration till date in robotics field is
Frontier exploration [15]. Frontier is the boundary between
the explored and unexplored region. This method looks for
frontier locations in the map and decide the closest frontier
to visit at every iteration untill all the frontiers are covered.
We adapted this method to our known environment setting
where the borders of the tables become the frontiers. Main
drawback of this method for our problem is that, the robot
location as a result of the next closest frontiers is not most
likely to have the object in view. Hence we move on to
the viewpoint based exploration. Terminology involved in
the formalism and their practical implementation issues are
explained in the following subsections one by one.

Figure 3: Occupancy Grid map and Potential Loca-
tion map for object search

4.1 Viewpoint
Viewpoint is a location in the map (x, y, z) along with

an orientation (quaternion). It can be defined differently for
various sensors. For Kinect, it is a location in the map from
which the view frustum is able to see the scene at an orienta-
tion. Best viewpoint is the location from where the view of
the potential locations of the map is maximum. Computing
the viewpoint strengths as ratio of the area of the table seen
for every (x, y) in a map at some orientation to the total
area of the table. This gives values as seen in the Fig. 4(c)
with values represented by the color intensity as mentioned
in Fig. 4(b). For example if the robot is at 0 degrees orienta-
tion then viewpoint strengths computed at all the locations
in the map having robot posed at this orientation will re-
sult like ’0 degrees’ image of Fig. 4(c). In the same way,
other images show the viewpoint strengths at their respec-
tive orientations. Fusing all these strengths to find the over
all best viewpoint results in the Fig. 4(b). These viewpoint
strengths are independent of the robot’s location at any in-
stant. When robot is searching for an object and is exploring
the potential location map, the next best viewpoint at an
instant should depend on the explored regions and location
of the robot at that instant of time. For example as shown
in the Fig. 5, though the best viewpoint as a whole from
Fig. 4(b) is at A irrespective of robot R’s starting/current
pose, the one that is nearer at C is more appropriate lo-
cation where the robot has to look for the object at next
instant. In the other way if the strength of the location B
(view covering two tables) is higher than C (view covering
single table) then robot has to choose B which is not as far as
A. This ambiguity in choosing the next best viewpoint with
respect to its location and viewpoint strengths is solved in
this work with a probabilistic formalism.

(a) (b)

(c)

Figure 4: a) Potential location map b) Best view-
point locations c) Viewpoint strength for 8 orienta-
tions

Figure 5: Viewpoints in a map based on robot loca-
tion

4.2 Probabilistic Framework
Given a known workspace (potential location map) W and

an existence of an object O somewhere in W , robot finds the
path that reduces the time taken to find the object O. We
assume O to be on top of tables Ti in W , which decides the
Potential Location map discussed in earlier section.

Let So be a random variable whose values are sighting or
non sighting of the object. P (So) represents the probabil-



ity that the object is sighted, while P (So) represents the
probability of not sighting it.

Let P (So, Vt) be the anticipated probability of sighting an
object in the next view Vt. Where subscript t is the time
instant. In general we want to find that view Vt for which
P (So, Vt) is maximized. In other words

Vt = argmaxV tP (So, Vt) = argmaxV tP (So/Vt)P (Vt)

= argmaxV tP (So/Vt)P (Vt/tv)P (tv)

The last part of the last term brings in tacitly the time
factor P (tv), the probability of reaching the viewpoint V to
obtain the view Vt. It simply says that the probability of
obtaining a view Vt is conditioned on reaching the viewpoint
V to obtain the view and the robot would choose to reach
a viewpoint V with a probability P (tv) that varies inversely
as the time taken to reach V . P (So/Vt) = A(Vt)/A(tables)
where A(Vt) is the area of table seen in Vt and A(tables)
is the total area of all the tables. Essentially Vt is the view
that maximizes the chance of seeing as much area as possible
while minimizing the time to reach that as we define P (tv) =
1/t since P (Vt/tv) = 1 as a view Vt is always possible from
a viewpoint V .

The general formulation would want to maximize
P (So, Vt/Vt−1, ...V1). Considering two views Vt, Vt−1, which

can eventually be generalized, the view
Vt = argmaxV tP (So, Vt/Vt, Vt−1) simplifies to after some

steps as Vt = argmaxV tP (So, Vt/Vt−1)/t.

P (So, Vt/Vt−1) = NewA/(TotalA− PrevA) (1)

where NewA is the new area in Vt, PrevA is the area seen
till Vt−1 and TotalA is the total area of the tables in the
environment. Computation of table area is explained in the
next subsection.

4.3 Area of the table
Above framework talks about the area of table seen at ev-

ery viewpoint. Here we explain on how the area of the table
is estimated from the Kinect point cloud in practical sce-
narios. At every viewpoint before the computation of table
area, the object recognition module is requested to check if
the object in search is seen or not. Table area is calculated
only when the recognition module responds negatively. We
may encounter two cases of table views in practical scenar-
ios which are 1)With objects on the table and 2)Without
objects on the table. In either case the computation of the
table is same. Extracting planes and trying to fit a con-
vex hull to calculate area of the table may not always work.
Hence we take the point cloud of the view from kinect, filter
it for the table locations and then voxelize the point cloud
to a leaf size. Now counting the voxels will directly give the
area of the table. This is not the exact area of the table
but it is the rough estimation of the area of the table which
works fine if the leaf size is same as the scale of the occu-
pancy map generated. Fig. 6 shows how the point cloud
in the current view is filtered to get the plane of the table
which is later voxelised to give the area of the table for both
the cases.

5. OBJECT RECOGNITION
Object recognition module is invoked at every viewpoint

during exploration. Various descriptors are available for the

(a) (b) (c)

(d) (e) (f)

Figure 6: Table area estimation for table views with
objects and without objects

3D recognition like PFH (Point Feature Histogram), FPFH
(Fast PFH) [6] and VFH (Viewpoint Feature Histogram)
[7]. We make use of VFH as it is fast compared to other
histogram based descriptors and gives the signature of the
whole object from a viewpoint rather than computing de-
scriptors of keypoints in a cloud and matching them at every
recognition call. Hence every sample of cloud in training is
associated with a VFH signature on basis of which the train-
ing is done. The following subsections talk about the train-
ing and testing phases of the recognition module. We make
use of the implementations available at PCL (PointCloud
Library) [8].

5.1 Training
Supervised learning is done with well cropped point clouds

of 8 objects shown in the Fig. 7. Viewpoint feature his-
togram (VFH) is the 3D descriptor used to distinguish the
shape characteristics of these objects. For the purpose of
real time recognition we use the implementation of fast ap-
proximate K-Nearest Neighbors (K-NN) from the FLANN
library [4]. Size of the object in the viewed scene is very less
and an extra information of that lying on top of the table
is known to us a priori. Hence in the testing phase objects
are segmented out of the entire cloud and then subjected to
the testing with the trained models. Objects used in train-
ing were placed at different orientations and positions on
table from Kinect at a distance of > 0.60 m. Depending on
the geometric shape of the object, the orientations and posi-
tions were changed to capture all possible views. 3D object
recognition requires maximum training samples as the active
projection mechanism of the Kinect like sensors prune to be
noisy for smaller objects. Also number of training clouds
are different for different objects based on their geometric
symmetry. For example cap is less symmetry in shape com-
pared to water bottle and requires many training samples
as shown in Table. 1. Totally 1581 number VFH signatures
are clustered and kd-tree structure of the same is built for
easy traversal in the testing phase.

5.2 Testing
Since viewpoints are the locations where the probability

of viewing the tables is high, the viewed scene is expected
to have table in it. Plane segmentation is done using SAm-
ple Consensus model which is available in PCL [8]. Once
the plane segmentation is done we filter the planes which



Figure 7: Objects for training

Table 1: Training details
Objects No of training clouds

Water Bottle 168
Cap 230

Coffee Mug 261
Cube 168

Glue Bottle 145
Tetrapack 131

Mug 303
Soda Can 175

are not horizontal and the largest supporting plane which
is the tabletop (potential location) is extracted. Now the
entire cloud on top of the table is segmented using the fact
that they lie on top of this plane. This entire cloud will
not always be a single object. Hence the cloud is subjected
to standard Euclidean clustering algorithm to partition the
cloud into cluster representations of the individual objects.
Fig. 8 shows the pipeline of segmentation from Kinect seen
view to the individual clusters. This technique of segment-
ing the objects in point clouds is being used effectively in
3D perception area [2].

(a) (b)

(c) (d)

Figure 8: Segmentation process a) Entire scene
cloud b) Filtered cloud c) Tabletop cloud d) Clus-
tered objects cloud

Each cluster obtained from the above segmentation is tested
against the trained models based on K-Nearest Neighbour.
To decide on the K value for the K-NN classifier we have
tested the object classification performance on the real time
Kinect data for the 8 objects. This is done by plotting the
Precision and Recall curve with varying K and the highest
K that maintains high precision >0.75 for all the objects
is chosen for the object search task. Training and testing
samples are exclusive of each other as the training is done
on the dataset collected and testing is done on the real time
data with point clouds from Kinect at 30Hz.

6. EXPERIMENTATION
We have experimented on the above sections separately

and integrated them to perform the object search task. Mod-
ified Turtlebot mounted with Kinect sensor as shown in
Fig. 13 is the robotic platform used for all the experiments.

6.1 Exploration
In viewpoint based exploration we primarily focus on the

following two aspects. a) Exploration module should com-
pute the best viewpoint based on the proposed probabilistic
formalism and give it to the robot as a goal position for its
navigation. Exploration should be smooth and continuous
based on the locations with minimal effort involved. b) Ev-
ery viewpoint the robot is given, should have the view of
table (potential location) for the recognition to work.

We have tested the performance of the proposed explo-
ration strategy on both simulation and real environments.
Fig. 9 shows the potential maps of the environments in-
volved in the experimentation. Fig. 9(a) 9(b) 9(c) are real
environmental maps and Fig. 9(d) 9(e) 9(f) are simulated
maps generated using 3D simulator Gazebo [3]. Now each of
these maps are tested with three different starting locations
marked as A, B and C. Evaluation of the proposed proba-
bilistic method (Viewpoint with time) is done comparing it
with the adapted frontier based exploration and a method
that decides the next view based on maximization of view-
point alone without invoking the distance criterion (View-
point only method). Every map has three timings given
by three strategies for complete exploration of the table re-
gions (potential locations). Time taken by these strategies
to explore all tables are plotted in Fig. 9 with their corre-
sponding maps and robot locations. It can be inferred that
the proposed method clearly outperforms the viewpoint only
method in all environments. Occasionally at some environ-
ments like Fig. 9(e) frontier exploration is comparable with
the proposed method. It is to be noted that adapted frontier
based exploration looks for the unexplored table area and
its framework lags to support viewpoint based approach in
maximizing the view of the table regions. Paths traced by
the exploration methods are plotted in the Fig. 10. Adap-
tive frontier based exploration moves towards the frontier re-
gions which overlap with the tables as shown in Fig. 10(a).
Viewpoint only method swings around the map from one
viewpoint to other in the process as shown in Fig. 10(b).
Path lengths of Fig. 10(a) and Fig. 10(c) look similar. How-
ever adapted frontier based exploration spends more time to
scan the table area, whereas the proposed method has the
ability to get the complete area at single shot. Because of
its inability to maximize the viewpoint, the adapted frontier
method is not supportive to the object search applications.
From the plots on the timings and paths traversed by the



robot, it can be concluded that the proposed method per-
forms exploration quickly, also considering the view of the
table for object search task.

6.2 Object Recognition
3D object recognition is dependent on the performance of

the segmentation of the object from the entire scene cloud.
Having evaluated the exploration strategy where the table
top is always available to segment out object, we can con-
sider that the segmentation performance is favoured at all
locations. In the testing phase of the object recognition we
have analysed the performance of the various objects based
on their precision values to choose a threshold K that can
be used in the search task. K computed out of the analysis
is 12. Fig. 11 has the precision and recall curve for all the
8 objects tested. Though the contribution of the paper lies
in the exploration for object search, we are evaluating the
performance of the object recognition with VFH descriptor
for our objects mentioned above. We notice that not all
the frames from the Kinect sensor gives the complete shape
description of an object due to the noise in the IR pattern
reception. It is not certain to use just a single frame of the
cloud for real time recognition. We add multiple frames and
then sample it to remove this uncertainty.

6.3 Object Search

Figure 12: System Architecture

Object search task is performed by integrating the ex-
ploration and object recognition modules. Modules have to
communicated with each other with messages, requests and
responses. High level structure of this integration is shown
in a system architecture Fig. 12. Exploration module re-
quires the Potential Location map as an input. It gets the
next best viewpoints based on the map and current location
of the robot from the probability module. ROS navigation
stack navigates the robot to move towards this viewpoint.
Once goal is reached the navigation stack requests the recog-
nition module to check if the object is found. Recognition
module performs the required segmentation to get the ob-
jects in the scene and check if the object in search is found.

If the recognition module responds positively, then the ex-
ploration stops, else the area of the table in view is computed
and given to probability module to get the next viewpoint
for the search. This is continued till all the potential loca-
tions are explored. Images of the robot at some viewpoints
with objects in view while performing object search based
exploration is shown in the Fig. 13.

7. CONCLUSION AND FUTURE WORK
We proposed a probabilistic method of exploration for ob-

ject search based on viewpoint, that eventually maximizes
the chances of finding the object. This is first such work
where autonomous exploration driven object search is solved
by a formal procedure. We demonstrated that the proposed
method took least time to explore potential location where
object recognition is favoured. We evaluated the exploration
and recognition thoroughly considering the practical issues
and presented the statistics substantiating our claims. We
have integrated the modules and solved the object search
problem. Future work aims at improving the object recog-
nition and exploration based on the image cues in addition
to the 3D cues to work on real cluttered environments.

8. ACKNOWLEDGMENTS
We would like to thank the Dept of Information Tech-

nology to have funded this work through the grants made
available by the National Program on Perception Engineer-
ing - Phase 2

9. REFERENCES
[1] J. Bohren, R. Rusu, E. Gil Jones, E. Marder-Eppstein,

C. Pantofaru, M. Wise, L. Mosenlechner,
W. Meeussen, and S. Holzer. Towards autonomous
robotic butlers: Lessons learned with the pr2. In
Robotics and Automation (ICRA), 2011 IEEE
International Conference on, pages 5568–5575. IEEE,
2011.

[2] M. Gupta and G. S. Sukhatme. Interactive perception
in clutter. In Robotics: Science and Systems, Jul 2012.

[3] N. Koenig and A. Howard. Design and use paradigms
for gazebo, an open-source multi-robot simulator. In
Intelligent Robots and Systems, 2004.(IROS 2004).
Proceedings. 2004 IEEE/RSJ International Conference
on, volume 3, pages 2149–2154. IEEE, 2004.

[4] M. Muja and D. Lowe. Fast approximate nearest
neighbors with automatic algorithm configuration. In
International Conference on Computer Vision Theory
and Applications (VISSAPPâĂŹ09), pages 331–340,
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