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ABSTRACT
Curb detection is a critical component of driver assistance
and autonomous driving systems. In this paper, we present
a discriminative approach to the problem of curb detection
under diverse road conditions. We define curbs as the in-
tersection of drivable and non-drivable area which are clas-
sified using dense Conditional random fields(CRF). In our
method, we fuse output of a neural network used for pixel-
wise semantic segmentation with depth and color informa-
tion from stereo cameras. CRF fuses the output of a deep
model and height information available in stereo data and
provides improved segmentation. Further we introduce tem-
poral smoothness using a weighted average of Segnet output
and output from a probabilistic voxel grid as our unary po-
tential. Finally, we show improvements over the current
state of the art neural networks. Our proposed method
shows accurate results over large range of variations in curb
curvature and appearance, without the need of retraining
the model for the specific dataset.
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1. INTRODUCTION
Curb detection is a critical component for autonomous

driving and driver assistance systems. Safe navigation of
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Figure 1: Segmentation of drivable area using SegNet(top)
and proposed method(bottom)

the vehicle is the most crucial component in autonomous
driving. Majority of road accidents and fatalities are the
due to erroneous human driving. Autonomous driving can
help in reducing the accidents due to human errors. Robust
detection of curb boundaries will enable any autonomous
system to determine navigable space in the scene.

Curbs usually exhibit various heights, have different ap-
pearances and often varying curvatures that makes the task
of curb detection more challenging than lane markings de-
tection. In this paper, we propose a robust curb detection
approach that will help in estimating drivable area for in-
telligent vehicles. In our approach, we use an existing pre-
trained deep neural network for semantic segmentation of
the road-scene. Indian roads show diverse variations in road
appearance. With dirt, mud and illumination variations, it
is a tedious task to train a neural network every time au-
tonomous vehicle goes to a different environment. We use
the SEGNET architecture [1] to obtain per pixel semantic la-
belling of the scene, which provides for one of the two unary
potential terms. A temporary consistency term across im-
ages enabled by Visual Odometry [4] forms the other unary
potential. The pairwise potentials come from height, shape
and appearance features. A dense CRF is formulated and
the mean field inference provides for a highly accurate and
long range (40 meters) segmentation of drivable and non



Figure 2: This is a graphical representation of proposed pipeline. Stereo frames are used to generate disparity map. Disparity
map was computed with respect to the left frame. Left frame has been used to generate pixel-level semantic segmentation.
Height profile and Curvature are estimated using a point cloud. Height map, curvature are used as features to compute
pairwise potentials of dense CRF. Similarly, Segnet output and visual odometry are used to estimate unary potentials. The
pipeline generates a more accurate semantic segmentation for drivable and non-drivable area.

drivable portions of the road.
Our main contributions are as follows:

• We effectively combine semantic, shape, height and
temporal consistency cues through a dense CRF for-
mulation for long range curb detection

• A probabilistic framework for the task of detection of
drivable area boundaries.

• Combination of both appearance and 3D reasoning for
a more accurate segmentation even at a large distance.

• Tackle the sparsity of the point cloud by employing
novel techniques over the acquired features.

• The high fidelity segmentation consequent of the CRF
formulation precludes the need to fine tune a pre-trained
network classifier for every new set of road scenes an
autonomous vehicle or car would encounter. This claim
is vindicated as an improvement over baseline CNN
classifiers such as SEGNET [1] are presented in the re-
sults section. Specifically despite the pre-trained net-
work getting confused on Indian scenes (as pavement
labels in European conditions get confused with road
labels in Indian scenes) we are able to recover from
such erroneous semantic labelling.

• With respect to most recent curb detection methods [2]
more than 30% increased curb lengths are segmented
by the proposed method.

The paper is divided in 3 parts, in section 2 we talk about
the related work on curb detection. In section 3 we present
out approach along with its various components. Finally we
present our results in section 4, and final conclusion.

2. REALTED WORK
There are several approaches that address the problem of

curb detection using different sensors.[13] proposes a vision

Figure 3: Result of [8] [11] failing for sparse stereo data.

based approach for curb detection using cluster of paral-
lel lines. This approach is solely based on intensity varia-
tion and could be misleading as straight lines in an image
might be a potential candidate for lane markings rather than
curbs. [9] presents a curb detection approach using 3D data
from dense stereo. 3D data points are mapped into a digi-
tal elevation map in bird’s eye view. Canny edge detection
followed by Hough transformation is applied on the gener-
ated elevation map to get the potential candidate for the
curbs. However this approach mainly detects straight line
curbs and fails to detect curved curbs. This approach is
limited for a small distance only. [7] also extracts poten-
tial curb candidates using edge detection on DEM and fits
polynomial using RANSAC. However, these approaches fail
due to sparsity of the stereo data. The problem of sparsity
in point cloud is partially taken care in [8] where height is
propagated along the longitudinal direction, but this method
leads to generation of false curb candidates for curved roads.
There is another proposal [11] which deals with generation
of compressed version of DEM. This method divides cam-



era’s horizontal field of view into polar slices with constant
aperture (figure 3). But expansion of this compressed space
leads to erroneous curb boundaries.[10] further improves the
ideas proposed in [9] by temporal filtering of curb points to
remove the false positives. In [2], a curb detection approach
based on curvature features and CRF is proposed. Nearest
neighbouring points are used to create a weighted covariance
matrix corresponding to each pixel. Eigenvalues of these ma-
trices are used to compute curvature value at that pixel.[14]
presents an approach for curb detection based on conditional
random fields (CRF). 3D points from dense stereo are as-
signed to adjacent surfaces of curbs, mainly street and side-
walk using Conditional random fields.

Most of the current methods to detect curbs are solely
based on 3D data. Our method proposes a graph based
minimization approach that combines depth and appearance
information. Additional clue of appearance yields accurate
segmentation for longer distances where point cloud data
become less reliable due to sparsity.

3. METHODOLOGY
This section briefly walks you through the pipeline of our

proposed method (figure 2). Our method consists of follow-
ing steps:

The first step of the pipeline is to generate semantic seg-
mentation of a raw image using deep neural network. There
are two semantic labels for each image frame corresponding
to drivable and non-drivable area. The second step involves
computing disparity using semi-global block matching [5].
Disparity is further used to generate height elevation map
in camera’s frame of reference. Semantic labels and height
information computed in previous steps are then used to
estimate potentials for the cost function of Conditional ran-
dom field. CRF results in refining the segmentation results
obtained from Segnet. Further, we apply a temporal fil-
ter has been integrated in the pipeline to improve accuracy
of the prediction. Introducing temporal filter discards false
positives occurring near ambiguous regions.

3.1 Stereo Depth and pre processing
We define the world frame (Xi, Yi, Zi) centred at the op-

tical center of left camera .The XZ plane is parallel to the
road plane in such a way that X-axis points towards right
,Z-axis points towards front and Y-axis points in downwards
direction as shown in figure 4 . Given left and right im-
age corresponding to each frame , we use robust semi-global
block matching cite to calculate a disparity map where each
pixel (ui, vi) of the map represents the disparity value for
that pixel in left image. Using the disparity map , each cell
(ui, vi) in the image is then assigned an elevation value cor-
responding height Yi at that pixel. Height corresponding to
each pixel is calculated using the projection matrix as

Zi = f ·B/d (1)

Yi =
(vi − cy) · Z

fy
(2)

where fy, cy are the camera focus and center in y-axis re-
spectively. B is defined as the baseline of the stereo camera
pair with a focal length of f.

3.2 Segnet on images and label merging

Figure 4: Camera Co-ordinate System

Current advancements in deep learning have enabled re-
search community to utilize pretrained model over a large
variety of applications. With neural networks achieving
state-of-the art performance, it has been widely used for
number of computer vision applications. In our method,
we use various deep neural networks for pixel-wise semantic
segmentation. SegNet is one such segmentation engine. Seg-
net is a deep convolutional encoder-decoder architecture pri-
marily inspired to solve road-scene understanding problems.
SegNet has three essential components, encoder network,
corresponding decoder network and a classification layer for
assigning label to the pixel among a set of several classes.

Encoder: Encoder network of SegNet has 13 convolutional
layers. The architecture is similar to the architecture of
VGG16 [15] network designed to classify object. Each en-
coding layer in the encoder network is responsible for gener-
ating a set of feature maps by performing convolution with
a filter bank. Subsequently, pooling and subsampling is per-
formed to achieve translation invariance and global context
for each pixel in the feature map.

Decoder: Each encoder layer has its corresponding decod-
ing layer. Hence, decoder network has 13 decoding layers.
The decoder maps low resolution encoder feature output to
dense feature maps. Internally, it uses pooling indices com-
puted in the corresponding encoder layer to perform upsam-
pling, which are convolved with trainable filters to produce
dense feature maps.

Classification layer: The high dimensional dense features
coming from final layer of the decoding network is fed to
a multi-class soft-max classifier. The output of the soft-
max classifier is class probabilities estimated for each pixel
independently. The class with highest probability value gets
assigned as a predicted class for each pixel.

In this paper, we show an improvement over the output
of the deep neural networks by fusing it with the 3D depth
information from the stereo cameras. The 3D and colour
information is used to correct the semantic labelling given
by the output of the deep neural model, hence eliminating
the need to train a network primarily for this task.

3.3 Curvature estimation from pointcloud
The proposed curb detection method is based on surface

curvature estimation presented in [12]. This feature has been
also used in [2] and [3] for free space detection. The curva-
ture describes the variation along the surface normal and it
varies between 0 and 1, where low values correspond to flat
surfaces. The curvature feature is more robust and stable



Figure 5: Curvature results using method described in Sec-
tion 3.3 compared to [3], here red are low curvature points,
yellow are points with high curvature and blue are points
with very low neighbours.

than tangent plane normal vectors. For each point p, the
nearest neighbours (NN) pi in a surrounding area defined
by a radius R are selected. These points are used to create
a covariance matrix, where k denotes the number of nearest
neighbours.

p =
1

k

k∑
1

pi (3)

C =

k∑
1

(pi − p) · (pi − p)T (4)

The eigenvector V and eigenvalues λ of C are computed as
C · V = λ· V . A curvature measure γ is defined by equation
[5], where λ0 ≤ λ1 ≤ λ2 are the eigenvalues of the covariance

matrix C. Instead of λ we use σ which is defined as σ =
√
λ.

Finally curvature is defined as

γ =
σ0

σ0 + σ1 + σ2
(5)

We found this to be more discriminative than the the fea-
tures used in [3]. We also use a dynamic radius of search
described in section 3.5.

3.4 Visual Odometry
Visual odometry is the process of determining the posi-

tion and orientation of a robot by analyzing the associated
camera images. We use method proposed by [4] to compute
the relative translation(T) and rotation(R) between images.
The computed transformation matrix is used to project the
3D points from previous frame to the current frame as fol-
lows

P ti = [RT ] · P t−1
i (6)

here P it is the point in the point cloud.
This is done enforce a temporal consistency by maintain-

ing a probability Pi with each point on the image. Pi here
is the probability that the point corresponds to the drivable
area. The probabilistic update is done as below

Pi = P (lt−1) · P (lt|lt−1) (7)

The mapping is performed using a visual slam on the input
images. The points are projected to the new camera frame
as given below.

x = P ·X (8)

here X is the 3D point in the camera frame and P is the
camera projection matrix. A bilateral filter is applied on
the resultant image to compute the missing values due to
occlusion or other reasons.

3.5 Sparsity of Point Clouds
The major issue with stereo and Lidar point clouds is, as

with distance increases the density of point cloud decreases.
[3] handles this by merging multiple scans using Iterative
Closest point algorithm. The problem with this approach is
that at large distances the noise in a single scan is high and
gets accumulate as we merge more scans, thereby corrupting
the curvature and height observations. We overcome this by
introducing two interesting techniques.

Firstly, the radius of search in curvature computation in
section 3.3 is formulated as a linear function of depth.

R(pi) = Rc + C · pi(Z)

where pi is the point in the point cloud and pi(Z) is the
corresponding depth. Rc is the constant starting radius ra-
dius set to 0.25m. We get best results for C = 30.As the
distance from the camera increases, the point cloud becomes
more and more sparse . To counter the effect of reduction
in cloud density , we dynamically modify the radius of the
search space to get a good density of points for curvature
estimation.

We also perform a feature warping with depth to dimin-
ish the effect of noise with depth in the features which are
calculated from depth, height and curvature. Features are
multiplied with a non-linear function in Z, where Z is the
depth associated with each pixel. This ensures that colour
and unary potentials have more effect on the energy func-
tion for point far away from the camera
Figure 5 shows the qualitative improvement in curvature es-
timation using our approach(on right).Clearly we are able
to detect curvature points for longer distancs in comparison
to earlier methods(on left).

3.6 Dense Conditional Random Field
We use a fully connected CRF that establishes pairwise

potentials on all pairs of pixels in the image. Densely con-
nected graph results in a greatly refined segmentation and
labelling, which is crucial for our task. In the fully connected
pairwise CRF model, G is the complete graph on X and C is
the set of all unary and pairwise cliques. The corresponding
Gibbs energy is

E(x) =
∑
i

ψu(xi) +
∑
i<j

ψp(xi, xj) (9)

The unary potential ψu(xi) is computed independently for
each pixel by a classifier that produces a distribution over
the label assignment xi given image features. The unary po-
tential used in our formulation incorporates shape, texture,
location, and color descriptors and is described in Section



Figure 6: We show results for various tough outdoor scenarios. The first column is the left image from stereo camera , second
column shows the SegNet results, third column is the final CRF output, forth column shows the curb boundaries by applying
canny edge detection on the CRF output

3.2. Since the output of the unary classifier for each pixel is
produced independently from the outputs of the classifiers
for other pixels, the MAP labelling produced by the unary
classifiers alone is generally noisy and inconsistent.

We also perform a temporal update of unary potentials
described as follows

ψu = (P t−1
i + P ti )/2 (10)

The pairwise potentials in our model have the form

ψp = µ(xi, xj)

K∑
m=1

w(m)k(m)(fi, fj) (11)

The vectors fi and fj are feature vectors for pixels i and
j in an arbitrary feature space, w(m) are linear combination
weights, and µ is a label compatibility function.

k(fi, fj) = w1 exp

(
−|pi − pj |

2

2θ2α
− |Ii − Ij |

2

2θ2β

)
︸ ︷︷ ︸

appearance kernel

+w2 exp

(
−|pi − pj |

2

2θ2γ
− |hi − hj |

2

2θ2δ

)
︸ ︷︷ ︸

height kernel

+w3 exp

(
−|pi − pj |

2

2θ2α
− |ci − cj |

2

2θ2β

)
︸ ︷︷ ︸

curvature kernel

+w4 exp

(
−|pi − pj |

2

2θ2α

)
︸ ︷︷ ︸
smoothness kernel

(12)

The appearance and height kernel are inspired by the ob-
servation that nearby pixels with similar color and height
are likely to be in the same class. The smoothness kernel
removes small isolated regions.

A simple label compatibility function is given by the Potts
model, µ(xi, xj) = [xi 6= xj ]. It introduces a penalty for
nearby similar pixels that are assigned different labels. While

this simple model works well in practice, it is insensitive to
compatibility between labels. Since we have only two la-
bels, drivable and non-drivable area, this does not affect our
formulation.

3.7 Inference
The inference is based on a mean field approximation to

the CRF distribution as described in [6]. This approxima-
tion yields an iterative message passing algorithm for ap-
proximate inference. The key observation presented is that
message passing in the presented model can be performed
using Gaussian filtering in feature space. This enables us to
utilize highly efficient approximations for high-dimensional
filtering, which reduce the complexity of message passing
from quadratic to linear. This reduction in complexity make
this method highly suitable for real-time applications.

3.8 Implementation
We have tested our algorithm on Indian city datasets. The

data has been collected using a Point Grey Black Fly cam-
eras, which have been used as a stereo pair. The cameras
are setup on our experimental vehicle equipped with a ASUS
ROG GR8 computer. Currently all algorithms are run on a
Intel quad-core processor. The parameters were estimated
by rigorous testing on Indian roads.

4. RESULTS
We show results on dataset collected on our experimental

autonomous vehicle with two black fly cameras being used
as a stereo pair.

In the paper we show results to verify the superior per-
formance of our method when compared to other existing
frameworks. We show more accurate segmentation of the
drivable area and hence better curb detection results. Fig-
ure 6 and Figure 7 show the qualitative results for vari-
ous outdoor scenarios, eg straight road, intersection, turns
etc.Curb points are detected by the canny edge detection
over the output of CRF. We define accuracy as the number
of detected curb points that lie inside ground truth(for curb)
over the total number of curb points detected by edge detec-
tor. This evaluation criteria is best suited for our problem
as we are focused mainly in detecting the boundary between



(a) (b)
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Figure 7: This graphical representation compares our approach's output with the output of SegNet. Figure7(a) shows
robustness of our method for curb boundary detection on straight roads. Figure7(b) shows robustness of our method for curb
boundary detection on curved roads. Figure7(c) & Figure7(d) shows curb boundary detection in other different scenarios
.Spline fitting is done using the output of canny edge detector for better visualization of curb boundaries

Methods Accuracy
Segnet 71.16874 %

Segnet + CRF(Appearance) 77.80209 %
Segnet + CRF(Appearance + Height + Temporal) 81.03207 %

Table 1: Quantitative results of segnet and our proposed method



the drivable and non drivable area. Following this evalua-
tion criteria, we show the quantitative numbers in compar-
ison to SegNet in the table 1. We also show that temporal
smoothness improve the overall classification results. To the
best of our knowledge this the first approach where 3D point
cloud information has been fused with image information in
a dense CRF framework to classify the curb boundaries. We
also compare with the feature used in [3] in figure 5. We are
able to imrove the range to 40m as compared to 27m in their
case.

5. CONCLUSION
Autonomous driving requires accurate segmentation of driv-

able area. We propose a novel probabilistic framework which
fuses the output of neural network with 3D and colour infor-
mation from a stereo camera pair.With the evaluation cri-
teria mentioned earlier, we show an improvement of nearly
9.8% in curb boundaries detection. The effect of our ap-
proach in detection of accurate and smooth curb boundaries
is shown in the Figure 7.

In our proposed method, we evaluated effects of incor-
porating 3D data and temporal filter to improve semantic
segmentation results from a pre-trained neural network. It
was demonstrated that pre-trained model’s results show sig-
nificant improvement by fusing additional information of the
scene. Our probabilistic framework yields better output near
edge of the navigable area, improving accuracy of the overall
curb boundaries. Usage of dense CRF enables us to estimate
probabilities of pixel classes in a more global context of an
image. Further we observed that, integrating temporal filter
with the result of CRF discards false positives occurring.
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7. FUTURE WORK
In our future work we also like to include other labels like

pedestrian, cars, occlusions etc and jointly optimize for their
locations. Also, use the curb detection for better localizing
the vehicle, and improve the overall stereo point cloud re-
construction of the road and surroundings. Currently,while
segnet and 3d reconstruction modules of our pipeline are real
time, both curvature estimation and CRF modules together
executes in order of seconds. We will work towards real time
implementation of our pipeline.We would like to implement
this algorithm on a graphical processing unit(GPU 's) to
further accelerate the performance of our algorithms.
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