
Autonomous Navigation of Generic Monocular Quadcopter in Natural
Environment

Kumar Bipin, Vishakh Duggal and K.Madhava Krishna

Abstract— Autonomous navigation of generic monocular
quadcopter in the natural environment requires sophisticated
mechanism for perception, planning and control. In this work,
we have described a framework which performs perception
using monocular camera and generates minimum time collision
free trajectory and control for any commercial quadcopter
flying through cluttered unknown environment. The proposed
framework first utilizes supervised learning approach to es-
timate the dense depth map for video stream obtained from
frontal monocular camera. This depth map is initially trans-
formed into Ego Dynamic Space and subsequently, is used
for computing locally traversable way-points utilizing binary
integer programming methodology. Finally, trajectory planning
and control module employs a convex programming technique
to generate collision-free trajectory which follows these way-
points and produces appropriate control inputs for the quad-
copter. These control inputs are computed from the generated
trajectory in each update. Hence, they are applicable to achieve
closed-loop control similar to model predictive controller. We
have demonstrated the applicability of our system in controlled
indoors and in unstructured natural outdoors environment.

I. INTRODUCTION

Miniature quadcopters have enormously gained in pop-
ularity over past years. Many commercial platforms like
Parrot Ardrone and Bitcraze Crazyflie, which only support
a monocular camera in terms of payload have entered the
market. These platforms are used in applications such as
visual surveillance, package delivery, filming and remote
farming.

These applications require quadcopter to navigate at low
altitude and avoid obstacle autonomously. This is generally
achieved using distance sensors such as ultrasound sensors,
laser scanners, stereo cameras, Microsoft Kinect or combi-
nations of multiple sensors. However, such sensors lead to
increased power consumption and reduced flight time making
them unsuitable for miniature quadcopters.

Our work is primarily concerned with developing a naviga-
tion framework for such commercial miniature quadcopters,
empowering them to navigate autonomously through un-
structured environment at low altitude with a monocular
camera as the primary sensing modality. The functionality
of the proposed approach could be described as a threefold
navigation framework; perception, planning and control.

First, the framework is primarily concerned with real-
time perception of depth map, using frontal monocular
vision as elementary extroperceptive sensor, based on su-
pervised learning. The perception module of the framework
appropriately selects the suitable image descriptors-color,

The authors are with Robotics Research Lab, IIIT Hyderabad-
500032,Telengana,India. mkrishna@iiit.ac.in, { kumar.bipin, vishakh.duggal
}@research.iiit.ac.in.

Fig. 1: A novel system level framework which performs perception, planning and
control and allows autonomous navigation of generic monocular quadcopter through
indoor and outdoor natural environment and avoids impact with obstacles.

texture and orientation as the feature vector and employs
SVM (support vector machine) based framework for depth
estimation, instead of commonly used graphical model like
MRF (Markov Random Field) [17]. Inferencing depth in a
multi-label MRF framework is often not suitable for real-
time applications such as quadcopter navigation, but dense
depth map obtained at 5Hz with the SVM based framework
is appropriate for obstacle avoidance and navigation task,
described in Section III-A. Similarly, using single view
formulation circumvents the need for VSLAM based systems
[19], [20] that require robust tracking of features inevitably.
Sparse reconstruction of environment obtained from VSLAM
system is often not suitable for navigation application.

Second, after constructing the depth map of the environ-
ment, we transform it to Ego-Dynamic Space [21] where
robot’s dynamic constraints are directly embedded into the
spatial representation. The motions computed over trans-
formed space comply with the motion constraints of the
robot; improving effectiveness of collision avoidance meth-
ods those do not explicitly address these constraints. The
quintessential contribution of this effort lies in dovetailing
single view reconstruction to perform real time collision
avoidance in realistic scenes. This is achieved by efficient
characterization of and reasoning about the free areas based
on the depth map. Ego Dynamic transformed depth map is
clustered based on depth values to obtain 3D contiguous
clusters. These clusters are reasoned about their appropriate-
ness for navigation through a binary integer programming
formulation where each cluster takes a binary values. The
centroid of the cluster that minimizes the cost function
subject to a set of affine equality and inequality constraints,
is chosen as the next best waypoint for the quadcopter to
reach its goal. The affine inequalities capture the kinematic
and geometric constraints of the quadcopter system. The
advantage of this novel waypoint selection method lies in
reduced entailments to replan trajectories as shown through

comparisons tabulated in Section III-C.
Third, the trajectory generation and control module uses

convex programming technique to optimize polynomial
splines. Moreover, exploiting the differential flatness of the
system, these polynomial trajectories encode the dynamics
and constraints of the vehicle and decouple them from
trajectory planning. The framework is fast enough for real
time applications and results in a solution which is close to
time optimal. The main contribution in this component is the
relaxation on the need for a time traversal estimate between
the starting point and the goal point as prior. The optimality
of the proposed framework is aptly verified by the saturation
of at-least one of the acceleration or velocity components
in Section III-E. It is also very pertinent to point out that
there is a vast body of work on sampling based planners-
RRT that provide as a robust alternative paradigm for path
and trajectory planning. Optimization based approaches on
the other hand are capable of giving one shot solution
to the goal that includes minimum time trajectories. The
experiments and results discussed in Section IV demonstrate
its practicality.

II. RELATED WORK

The perception of depth map is crucial to obstacle avoid-
ance and autonomous navigation. The principal existing
techniques for depth map estimation include monocular cues,
structure-from-motion and motion parallax. Where structure-
from-motion and motion parallax approaches need stable
tracking and the depth maps often are not dense enough for
obstacle avoidance. Moreover, studies done both on human
and on animals show that monocular cues like texture, texture
gradient, color and haze provide information relevant to
estimate depth.

A significant research by Michels et al. [13] and
Lenz et al. [14] presents reactive obstacle avoidance ap-
proaches for aerial and ground vehicle which uses above
mentioned monocular cues for depth map estimation. The
action space was populated by simple reactive actions of
moving along the diagonal left, right, forward or upward.
Inspired by the above work, our proposed method uses
Support Vector Machine (SVM) based model instead of MRF
to estimate an accurate depth map in real time with relatively
low complexity. Specifically, our estimation problem is to be
formulated as a multi-class classification problem.

Most closely related to our approach in the direction of
autonomous navigation, a similar work by Alvarez et al. [15]
presents obstacle avoidance for quadcopter having monoc-
ular vision which estimates regulated depth map from set
of consecutive images and generates way-point along a
horizontal line defined in world co-ordinate in front of
current position of quadcopter. This way-point is expected
to lead to the largest forward movement without collision.
In contrast we propose a binary integer programing based
optimal framework for choosing waypoints that operates in
the frontal volumetric space of the vehicle. Furthermore,
presented work uses DTAM [20], which is susceptible to
breakage (due to insufficient feature tracks) when quadcopter

Fig. 2: The process flow chart of proposed navigation framework.

pitches or rolls significantly. Additionally, it requires GPU
for calculating dense depth of the scene in real time and
does not describe any control strategies to drive the vehicle to
output way-point. Our proposed perception module is robust
against sudden motion with moderate computation power (no
GPU) required to achieve real time dense depth of the scene.
Similarly, Ross et al. [16] presents a state-of-the-art imitation
learning techniques to train a linear controller based on visual
features. Whereas we present optimization based planning
and control mechanism that could drive the vehicle to target
state in minimum time.

Considerable number of contributions exists on modeling,
design, control [5], [6] and trajectory generation [4] for
quadcopter. Similarly, [3] [4] trajectory generation is tightly
coupled with complex vehicle dynamics and requires an a
prior selection of the time to traverse between one way-point
and the next. The control module proposed in our current
work addresses these issues of ”a prior knowledge of the
time” with help of an objective function formulated as a
convex optimization problem and provides a solution which
is close to time optimal.

Conclusively, we have achieved monocular obstacle avoid-
ance with dense depth maps and limited computational
budget ideally suited for payload constrained UAV systems.
To the best of our knowledge, such a scheme of way-
point reasoning based on an optimization formulation that
seamlessly integrates with single view dense depth maps has
not been presented in literature before.

III. NAVIGATION FRAMEWORK

This section describes an overview of the proposed frame-
work consisting of perception, planning and control modules.
First, the perception module utilizes supervised learning
approach to estimate depth map from a sequence of frames
coming from video stream of frontal monocular camera. The
learning algorithm has been trained on real camera images
labelled with ground truth distances to the closest obstacle.
The resulting algorithm learns monocular vision cues that
accurately estimate the actual depth of obstacles in the scene.
The depth map is then transformed into Ego Dynamic Space
and afterwards is processed by local planning module which
computes the optimal traversable way-point, which must
satisfy the quadcopter motion primitive and physical geom-
etry constraints. Finally, the trajectory planning and control

module generates trajectories and control commands using
class of motion primitives-B-Spline [8], [9] by maximizing
its velocity profile subject to dynamic feasibility constraints-
velocity, acceleration and jerk are met. Fig. 2, delineates
the process flow chart of closed-loop navigation framework.
At every controller update the initial state of the control
problem is updated whereas update of target state depends
upon arrival of new way-point from local planning module.

A. Perception

The perception module of the proposed navigation frame-
work follows an approach derived from impressive research
by Saxena et al. [17] which takes a supervised learning
method for depth estimation from a single monocular im-
age. For the training set, Standford University’s 3D images
(Make3d) database is used. This image database contains
400 images (which includes forest, trees, building etc.) with
a resolution of 1704×2272, and 400 corresponding ground
truth depth images (resolution of 55×305) by a laser distance
scanner having gray values ranging from 1 to 81 meters.
In addition, we collected the dataset of 200 color images
and their corresponding depth information using Microsoft
Kinect sensor which uses the infra-red light to compute the
distance from the target objects. Since the Microsoft Kinect
is originally designed for the interactive gaming purpose, its
best operating range is for objects within depth from 0.7 to
8 meters. Therefore, we have focused on indoor scenes and
shaded outdoor scenes for experiments.

In the proposed approach the images are divided into
small patches, and a single depth value is estimated for
each patch. The features used should capture three types
of monocular cues: texture energy, texture gradients, and
haze. The texture energy is computed by applying the Laws’
mask to the image intensity channel. Similarly, haze is
captured by applying a local averaging filter to the color
channels. Lastly, to compute the estimate of the texture
gradient robust to noise six oriented edge filters are convo-
luted with the intensity channel, more detail in [17]. The
computation of the feature vector for any given patch i
in the image I(x,y) could be summarised as follows. The
output of each of the 17 (9 Laws’ mask, 2 color channels
and 6 texture gradients) filter Fn(x,y), n = 1, . . . ,17 as :
Ei(n) = ∑(x,y)∈patch(i) |I(x,y)∗Fn(x,y)|k, where k = 1,2 gives
the sum absolute energy and sum squared energy receptively,
and provides an initial feature vector of dimension 34. The
local image features centered on the patch are insufficient
to estimate the absolute depth at a patch. Therefore, global
information of the image is captured by extracting features at
three scale-image resolutions. For each patch, after including
features from itself and another two resolution scales, the
features vector for estimating depth at a particular patch has
3∗34 = 102 dimensions. Using the labelled image’s patches

TABLE I: Quantitative analysis of the depth-map estimation

Method Average Eln Average Erelative Time[sec]
SVM-Linear 0.985 0.815 0.203
SVM-RBF 0.714 0.626 480

MRF 0.605 0.593 90

Fig. 3: The image sequence shows frontal camera view of quadcopter and corre-
sponding predicted depth map of operating environment (yellow, red and blue colors
represents near, farther and farthest distance from quadcopter)(best view in color).

((number of patches in each image) × (number of images
in training set)= (55×305×(400+200) = 10,065,000) and
corresponding 102 dimensions features vector as describe
above. We address the single image depth estimation as a
multi-class classification problem, obtained results shown in
Fig. 3.

For reducing the complexity of classification, we quantize
the real-valued continuous depth values into labels Li,
i = 1, . . . ,N, where the covering range of depth values for
label Li from ”near” to ”far” is gradually increasing. This
corresponds to the fact that the depth discrimination in
human vision decreases as the object distance increases.
To achieve real-time performance the fast liblinear package
based SVM-Linear model is used. Additionally, we have
experimented with radial basic function kernel for SVM
model as multi-class classification problem. Although,
results obtained produced significant improvement over
SVM-Linear; the computation time was too high to
service the real-time problem. The estimated depth DE is
transformed into Ego Dynamic Space which is described in
subsequent section. As shown in Table I, the quality of the
estimated depth DE is measured by the following metrics,
[13] (where D is ground truth depth value.):

Depth Error Eln = |ln(D)− ln(DE)|
Relative Depth Error Erelative =

D−DE
D

B. Ego Dynamic Space Transformation

The Ego Dynamic Space builds a spatial representation
where the distances to the obstacles are transformed into
effective distances that depend on the robot dynamic con-
straints: maximum deceleration and response time of the
system. Trajectory planning without considering the dynamic
constraints of the robot is susceptible to collision. Whereas,
our proposed planning module calculations are directly
rooted to Ego-dynamic Space [21]; it implicitly takes the
quadcopter dynamics into account, assuring feasible motion
execution.

dobs = DE −avg(eEln); dobs = de f f +dbrake (1)

de f f = v.∆t and dbrake = v2/2.ab (2)

d2
e f f /(2.∆t2.ab)+de f f −dobs = 0 (3)

where DE is the distance of the obstacle from quadcopter
derived from depth map, avg(eEln) represents the average

error of the estimated depth map and dobs incorporates error
in estimated depth. de f f is the effective distance: the max-
imum distance that the quadcopter can travel at a constant
velocity v during the period ∆t and dbrake minimum distance
(applying the maximum deceleration ab) for stopping the
quadcopter safely before hitting the obstacle. We obtain de f f ,
where de f f ≤ 0 represents imminent collision thus the Ego-
Dynamic Space Transformation of dobs:

EDT{dobs} −→ de f f = ab.∆t2(

√
1+

2.dobs

ab.∆t2 −1) (4)

C. Planning

Consequently, the planning module of the proposed nav-
igation framework computes the traversable way-point from
EDT{dobs}. Each entry in EDT{dobs} represents depth of
specific patch of the current frame and it is clustered into M
segments. Any of these segments Si,∀i = 1, . . . ,M represents
probable next way-point for the quadcopter. Each segment
contains inherent properties : radius (ri), centroid (oi) and
distance of centroid along line of sight X-axis (di) which
would be used further for determining the optimum next
way-point (reference axis shown in Fig. 4)

In the following section, selecting optimum segment as
next way-point from Si,∀i = 1, . . . ,M for collision free mo-
tion is formulated as a binary integer programming problem.
Quadcopter motion kinematics and shape define the consid-
eration and applicability of various constraints which would
be discussed at various points in the text.

1) Objective Function: Objective of defining optimum
criteria for way-point selection is to ensure collision free and
smooth motion for the quadcopter. The motion of quadcopter
along the line of sight is most disciplined, hence movement
in the field of view plane (in Y −Z plane) needs to be mini-
mized for smoother trajectories. Inspired by human intuition,
which prefers moving towards the nearest and maximum
size free space to avoid frontal obstacle, corresponding cost
function is defined as:

Ci =
ρi

ri
;∀i = 1 . . .M (5)

m
κ

in CT
κ (6)

where ρi is the distance of corresponding segment centroid
from the line of sight (in Y −Z plane), ri is its radius, and
C is the coefficient vector of the cost function meeting the
objectives of optimum way-point selection and κ is a binary
integer vector of length M with exactly one index allowed
value 1 at any given time. In order to achieve way-point
resulting in collision free and smooth trajectories, respective
objective function needs to be minimized subject to kinemat-
ics and physical geometry constraints of quadcopter.

2) Constraints: Quadcopter dynamics allow it to fly at
varying speeds and along three axis simultaneously. Thus
constraints based on these dynamic parameters need to be
taken into consideration for ensuring collision free trajectory.
These constraints mentioned above can be expressed by
affine functions of κ in the form of equality and inequality
constraints:

Fig. 4: The quadcopter (0,0,0) has local co-ordinate system (X ,Y,Z), where X points
towards line of sight of frontal camera and Y −Z plane corresponds to Field of View
which is perpendicular to line of sight.

Aeqκ = beq (7)
Ainκ ≤ bin (8)

We introduce these constraints in the following paragraph
based on threshold distance to collision, quadcopter kinemat-
ics and shape.

a) Collision threshold: Current velocity of the quadcopter
is taken into consideration for determining the minimum
threshold distance for collision avoidance. Segment Si,∀i =
1, . . . ,M whose distance from quadcopter current position
is below the threshold is considered with high collision
probability or as an obstacle. α = vt .tt , where α is the
minimum threshold distance for collision probability with vt
the current velocity, distance of centroid along line of sight di
(along X-axis), and tt is total update-cycle time of navigation
framework, which includes computation time and response
time of the system. Those segment centroids whose distances
from the current location of the quadcopter are greater than
α are preferred. These are posed as the following inequality
constraints:

1
di
≤ 1

α
;∀i = 1 . . .M (9)

b) Expanse: Quadcopter also requires minimum free space
along the field of view plane (in Y−Z plane) depending upon
its shape and motion towards next way-point. As mentioned
earlier motion along the line of sight is most disciplined;
in case motion along the field of view plane is desired
then drift and inconsistent motion needs to be taken into
consideration while determining minimum traversable space
which is shown in Fig. 5. This inequality constraint adds M
constraints to the system one for each segment.

η = δ +max(σy,σz) (10)
1
ri
≤ 1

η
;∀i = 1, . . . ,M (11)

where η is the minimum desired threshold radius of
segment Si and δ constant parameter dependent on the shape
of quadcopter. σy and σz are standard deviation of error in
state estimation along the Y axis and Z axis respectively.

TABLE II: Optimum waypoint selection and Random waypoint selection method

Method Re-palnning Required [Average]
Random 8 [times]
Optimum 3 [times]

Fig. 5: Optimum way point selection. (a1) Various candidate segments in scene
represented by unique colors and their corresponding centroids (red dots). (a2) Non-
traversable way point selected (green dot) if expanse constraint is removed from
formulation. (a3) Optimum traversable selected segment as way point (green dot)
for Spatial Windows analysis .(b) Simulated depth image. (c) Top-view of simulated
depth image, paths are verified for collision using Spatial Windows method, path 1
and 2 have possibility of collision (shown in pink cube). Path 3 shows collision free
navigation (shown in green cube).

c) Binary index: To ensure that only one segment is
selected and all other binary variables are anchored to zero
which entails the following equality constraints:

Aeqκ = beq (12)

where Aeq is a vector of length M with all elements with
value 1 and beq unit value 1. Finally, the overall optimization
problem is represented as:

m
κ

in CT
κ; sub ject to Aeqκ = beq; Ainκ ≤ bin (13)

D. Spatial Window
Once the traversable waypoint is selected, we generate

path between the current position and waypoint using Bezier
polynomial. The generation of trajectory begins with interpo-
lation of n+1 points (q0, . . . ,qn) from initial to target position
while ensuring end conditions are met.

qi(τ) =
n

∑
i=0

(
n
i

)
τ

i(1− τ)n−i pi,∀τ = 0, . . . ,1 (14)

where
(n

i

)
are binomial coefficient and

(n
i

)
τ i(1− τ)n−i are

the Bezier/Bernstein basis polynomials, and pi are scalar
coefficient called control points calculated by solving the
equation (14) with boundary conditions (i.e. current position
and waypoint).

The paths are verified for collision with obstacles using
Spatial Window methodology. Which is defined as the set
of all possible quadcopter locations that can be attained
by motion command along the generated trajectory within
the admissible dynamic interval. The corners of the Spatial
Windows are given by:

(x,y,z)i
max = (x,y,z)i +σ(x,y,z) and (x,y,z)i

min = (x,y,z)i−σ(x,y,z)

where (x,y,z)i are possible quadcopter locations with
corresponding state estimation error σx,σy and σz which is
determined experimentally. This is necessary as binary opti-
mization based way point selection only establishes collision
free at the start and end of the trajectory. Hence Spatial
Window is created along the path and in case obstacles are
detected, corresponding path is treated with the possibility

of collision and considered as non-traversable by quadcopter
which is shown in Fig. 5. If path to selected waypoint is
determined non-traversable, corresponding segment centroid
is marked non-traversable and next best segment is selected.
The advantages of optimum waypoint selection method
over randomly selected waypoints is shown in Table II.
Over several experiments done it is seen on an average
the optimal waypoint selection requires lesser number of
replanning than the random method. Once collision free
path is found, we generate trajectory and control for the
quadcopter. In continuation, a novel method for generating
minimum time trajectory towards next way-point is described
in the following section.

E. Trajectory Planning and Control

In this section, the trajectory planning problem has been
formulated as a convex optimization problem where an
objective function which has to be minimized is defined in
parametric form, containing no time information. Polynomial
splines which are numerically stable for higher order includ-
ing large number of segments are used in our formulation.
The proposed method could be used to generate trajectory
and controls for any arbitrary type of vehicle but specifically
modified for quadcopter motion.

1) Trajectory Planning: The selected optimum colli-
sion free path in the previous section is segmented into
q0,l , . . . ,qn,l , l ∈ {x,y,z}. Trajectory conforming over points
qi,l ,∀i = 0, . . . ,n is generated, while keeping into considera-
tion the kinematics and dynamics constraints of quadcopter.
The motion of quadcopter is modeled using polynomial
based spline, B-Spline:

s(u) =
m

∑
j=0

PjB
p
j (u), umin ≤ u≤ umax (15)

where Pj are the scalar de Boor control points, Bp
j are

the B-spline basis functions of degree p. Bezier polyno-
mial with strict relation between curve degree and number
of control points made it inapt for our formulation. B-
Spline polynomial a generalization of Bezier polynomials
overcomes this limitation and with strong convex hull and
inherent continuity (Cp−1) properties, made it an optimum
choice for our formulation. To avoid high force and moments
on quadcopter during motion, jerk continuous quintic B-
spline(p = 5) is used. To generalize the analysis, a non
dimensional time variable, u, is defined as

ti = λi ·ui, ∀i = 0, . . . ,n (16)

where u = [u0, . . . ,un] and λi is a scalar time scaling
variable. The B-Spline function ”s” is then defined as:

s(ti) = s(λi ·ui), ∀i = 0, . . . ,n (17)

After, differentiating the equation (17), velocity, accelera-
tion and jerk profile of motion are obtain:

v(ti) = ṡ(ti) =
ṡ(ui)

λi
=
√

ṡx(ti)2 + ṡy(ti)2 + ṡz(ti)2 (18)

a(ti) = s̈(ti) =
s̈(ui)
λ 2

i
=
√

s̈x(ti)2 + s̈y(ti)2 + s̈z(ti)2 (19)

j(ti) =
...
s (ti) =

...s (ui)
λ 3

i
=
√...

s x(ti)2 +
...
s y(ti)2 +

...
s z(ti)2 (20)

where v(ti), a(ti) and j(ti) are the velocity, acceleration and
jerk of quadcopter at time ti. Similarly ṡx(ti), s̈x(ti),

...
s x(ti)

and others represent individual velocity, acceleration and jerk
components along each axis.

Following the approach described in [2], for calculation of
a minimum time motion profile, the proposed method must
bring velocity profile v(t) of the system as close possible to
maximum velocity limit vmax subject to maximum acceler-
ation amax and maximum jerk jmax constraints provided by
physical limit of vehicle dynamics. The resulting objective
function needs to be minimized is given by :

Ω =
n

∑
i=0

[
ṡ(ui)

λi
− vmax

]2
(21)

Furthermore, the equation (21) can be expressed as a
standard form of quadratic function:

Ω = fo(χ) = χ
T Pχ +qT

χ + r (22)

where χ =

[
1
λ0

,
1
λ1

, . . . ,
1
λn

,

]
is vector of optimization

variables.
2) Constraints: Given initial and target states introduce

constraints derived from both initial and final position, ve-
locity and acceleration. These constraints can be expressed
by affine functions of χ in the form of equality and inequality
constraints those would be discussed subsequently:

Aeqχ = beq (23)
Ainχ � bin (24)

a) Initial and Final States: As stated above, position,
velocity and acceleration are known for the initial and final
state provided by Navigation Framework, which introduces
14 equality constraints. Those are included in the matrix Aeq
and beq.

b) Velocity: This constraint introduce n−1 constraints and
are included in matrix Ain and bin.This condition reads as :

v(ti) =
ṡ(ui)

λi
≤ vmax, ∀ i = 0, . . . ,n. (25)

c) Acceleration: This constraint is decoupled by allocating
a constant maximum allowable acceleration magnitude to
each co-ordinate separately (amax,x, amax,y, amax,z), [1]. These
maximum accelerations are selected such that they fulfil the
following constraints:√

(amax,x)2 +(amax,y)2 +(amax,z)2 ≤ amax (26)

g+amax,z ≥ amin (27)

These are compliant to the affine formulation presented
above in equation (24) and contributes (3×n−1) additional
inequality constraint to matrix Ain and bin. These inequalities
are represented as:

s̈l(ti) =
s̈l(ui)

λ 2
i

≤ amax,l l ∈ {x,y,z},∀ i = 0, . . . ,n. (28)

Fig. 6: The simulation result of minimum time trajectory with velocity and acceleration
profile is obtained by solving (32). It can be seen that the velocity and acceleration level
constrained (vmax = 1.30m/s and amax,l = 0.5m/s2, l ∈ {x,y,z}) are perfectly satisfied
whereas jerk profile remains bounded (jmax,l = 0.5m/s3, l ∈ {x,y,z}). Similar to the
usual time optimal planning with acceleration input, at least one of the acceleration
component is near saturation, when the velocity profile is not the limit curve. The
acceleration profile is zero when the velocity profile is at the limit curve. The simulation
result is obtained on Gazebo simulator for the Parrot AR.Drone

d) Jerk: In addition, bounded jerk implies continuity in
the acceleration. This contributes another (3× n−1) which
are included in matrix Ain and bin. These inequalities are
represented as:

...
s l(ti) =

...
s l(ui)

λ 3
i
≤ jmax,l l ∈ {x,y,z},∀i = 0, . . . ,n (29)

where jmax,l =
1√
3

fminωmax, l ∈ {x,y,z} which is upper
bound on the allowable jerk per axis, fmin the minimum
collective thrust of quadcopter and maximum angular rate of
rotation ωmax as described in [6]. The overall optimization
problem is represented as :

m
χ

in Ω; sub ject to Aeqχ = beq; Ainχ � bin (30)

3) Minimum Time Trajectory: Optimization problem (21)
with equality and inequality constraints (23), (24) is
quadratic and convex hence it converges to global optima ex-
tremely fast, which results in a vector of optimal time scaling

parameters χ =

[
1
λ0

,
1
λ1

, . . . ,
1
λn

,

]
. These are substituted in

equation (16) to obtain the minimum scaled time t0, . . . , tn
for the planned trajectory. Thus, total time of trajectory:

T =
n

∑
i=0

αi (31)

where αi = ti+1− ti and T is feasible [12] minimum tra-
jectory time, calculated from trajectory optimization whereas
similar work [3], [4] require estimate of T as priori for
trajectory generation. There is no inherent relation between
1
λi
,

1
λ j

;∀i 6= j, hence may cause uneven stretching of time

interval αi. Therefore dynamic time scaling may cause ve-
locity, acceleration or jerk discontinuity at joints of B-Spline
segments [10], [11]. To remove such incidentally introduced
discontinuities, B-spline trajectory parameters have to be
recomputed (i.e. de Boor control points with time parameters

Fig. 7: A set of 25 experimental flights in outdoor natural environment. Trajectories in
blue and green colors represent with and without Ego Dynamic Space Transformation
of estimated depth respectively (red dot represents collision and cylinder corresponds
to tree obstacle).

TABLE III: Error Analysis of Ardrone’s State Estimation

Trajectory σx[cm] σy[cm] σz[cm]

Short[≤ 15m] 11.71 10.32 5.72
Long [> 15m] 41.60 26.7 10.38

t0, . . . , tn). The proposed framework solved this by using
Squared Distance Minimization approach where
• The end points are exactly interpolated i.e. q0 = s(t0)

and qn = s(tn).
• The internal points qi, ∀i = 1, . . . ,n− 1 as calculated

previously by (14), are approximate in the least square
sense, by minimizing the optimization:

Q =
n

∑
i=0

[qi− s(ti)]
2 (32)

Q = f0(ξ) = ξ
T Pξ +qT

ξ + r (33)

The equation (33) is standard form of quadratic function
representation of optimization function (32). Where ξ =
[p0, p1, . . . , pm,] is vector of optimization variables corre-
sponding to de Boor control points. The constraints described
in previous sections (vmax, amax and jmax) can be expressed
as affine function of ξ in form of equality and inequality
constraints as:

Aeqξ = beq and Ainξ � bin (34)

Time optimal motions are characterized by saturation of
either the velocity or acceleration components at any given
instant. As can be seen from the Fig. 6, that the acceleration
components are saturated for significant amount of time. The
performance can be improved by increasing the resolution
of discretization of the optimization problem, although at
the cost of increased computation time. Thus, a trade-off
needs to be achieved between real time performance and
time optimality.

F. Quadcopter Dynamics and Control

Quadcopter such as ParrotT M Ardrone 2.0, [7] used in
experiment is described by six degree of freedom of the
rigid body as q = [x,y,z,θ ,φ ,ψ]T , where the triple (x,y,z)
represents the position of the center of mass of quadcopter
and ”roll-pitch-yaw” (θ ,φ ,ψ), set of Euler angles which
represents the orientation in the same reference frame.
The trajectory generation and planning is carried out using
generic parameters-acceleration (ẍ, ÿ and z̈) which may

Fig. 8: A set of 15 experimental flights in indoor environment. Trajectories in blue
and green colors represent with and without Ego Dynamic Space Transformation
of estimated depth respectively (red dot represents collision and box corresponds to
obstacle).

not be the actual control commands (φ and θ) for the
quadcopter. Therefore, specific control inputs complaint with
the quadcopter under consideration must be derived from the
generic control parameters. Trajectory planning procedure
described above is fast enough to be performed for every
control update. Therefore a feedback loop is closed by re-
planning the entire trajectory on each control update after
dispatching the control commands of previous control inter-
val to the quadcopter which is shown in Fig. 2. Since control
commands to the underlying inner controller are generated in
discrete time intervals, a numerical average of the (ẍ, ÿ and
z̈) over a typically small interval (determined experimentally)
is computed and are tranformed into control commands
using (35) and (36). After simplification of dynamic model
[5] control commands for system describe above could be
derived as follows:

φ =
arctan(ẍcosψ + ÿsinψ)

z̈+g
< 90◦ (35)

θ =
arctan(ẍsinψ− ÿcosψ)

z̈+g
cosφ < 90◦ (36)

where φ and θ are motion command along y and x axis
respectively along with z̈ which is another control command
for height. The proposed Navigation Framework works with
the assumption of fixed heading angle (ψ = 0). Moreover,
singularities in this model only appear at g = −z̈, which is
associated with the situation where the quadcopter is in free
fall or executing extreme acrobatic manoeuver that can never
be approached in normal flight conditions. Conclusively this
method is similar to model predictive control where an
optimum trajectory is generated at each time step.

IV. EXPERIMENTS

We have evaluated the proposed framework on a low cost
commercial quadcopter ParrotT M Ardrone 2.0, [7] which is
equipped with frontal monocular camera (93◦ Field of View,
640x360 pixels), ultrasound altimeter and onboard IMU.
Moreover, we followed the approach suggested by Grabe
et al. [18] for reliable state estimation. Table III presents error
analysis of Ardrone 2.0’s state estimation. In particular, our

TABLE IV: Performance analysis of Navigation Framework for 40 experiments

Method Indoor Outdoor Success RateSuccess Failure Success Failure
Without EDT 4 2 6 4 62.5%

With EDT 7 2 12 3 79.16%

Fig. 9: Quadcopter avoiding obstacles based on obstacle detection using depth map

solution is based on the fusion of the scaled visual velocity
obtained from optical flow (downward facing camera of
Ardrone 2.0) with high frequency reading of an onboard
IMU, using classical EKF method. For all experiments,
state estimation and purposed framework computations were
carried out on a conventional desktop computer running ROS
(Robot Operating System) as middle-ware with Ubuntu 12.04
LTS which is equipped with an Intel Core i3 processor @
3.2 GHz and 8GB of RAM. Real time sequence of control
commands are dispatched at 1.5Hz, with average duration of
control updates at 448ms (computation times for perception,
planning and control modules- 0.203s, 0.224s and 0.021s)
respectively. The computation cycle time was approximately
equal to system response time (' 400ms) of Ardrone 2.0
justifying its practicality. We conducted several successful
flights with a set of feasible velocity vmax, acceleration amax
and jerk jmax in indoor and outdoor natural environment to
validate the applicability of our navigation framework. As
shown in the video, a experiment starts with quadcopter at
hover state and starts moving towards goal position, Fig. 9.
Once the obstacles are detected (using depth map) along
the path of quadcopter, intermediate traversable waypoint
which avoids obstacles is computed. Thereafter, collision
free trajectory is generated over this waypoint towards the
goal as shown in Fig. 7,8. Table IV shows our experimental
results of 40 runs with 74 avoided obstacles and overall
success ratio of 79.16%. Experiments showed 16.66% im-
proved obstacle avoidance efficiency using EDT transformed
approach. Where, the narrow Field of View was the largest
contributor to failure. Furthermore, highly inaccurate depth
estimation has been alleviated by conducting the experiments
in environment similar to training data set. In addition,
dynamics, stability and robustness of flight against external
disturbances, rely upon internal controller of commercial
quadcopter which is abstracted from trajectory planning.

V. CONCLUSION AND FUTURE WORKS

We have presented in this paper a novel navigation frame-
work consisting of perception, planning and control modules
applicable for obstacle avoidance in an natural environment
which can be easily adapted for various commercial minia-
ture quadcopters. Our navigation framework being a local
planner, impending integration with global path planner is
actively persuaded.

REFERENCES

[1] Federico Augugliaro, Angela P Schoellig, and Raffaello D’Andrea.
Generation of collision-free trajectories for a quadrocopter fleet: A
sequential convex programming approach. In Intelligent Robots and

Systems (IROS), 2012 IEEE/RSJ International Conference on, pages
1917–1922. IEEE, 2012.

[2] Arthur Richards and Jonathan P How. Aircraft trajectory planning
with collision avoidance using mixed integer linear programming.
In American Control Conference, 2002. Proceedings of the 2002,
volume 3, pages 1936–1941. IEEE, 2002.

[3] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory genera-
tion and control for quadrotors. In Robotics and Automation (ICRA),
2011 IEEE International Conference on, pages 2520–2525. IEEE,
2011.

[4] Charles Richter, Adam Bry, and Nicholas Roy. Polynomial trajectory
planning for quadrotor flight. In International Conference on Robotics
and Automation, 2013.

[5] Simone Formentin and Marco Lovera. Flatness-based control of a
quadrotor helicopter via feedforward linearization. In CDC-ECE,
pages 6171–6176, 2011.

[6] Mark W Mueller and Raffaello D’Andrea. A model predictive
controller for quadrocopter state interception. In Control Conference
(ECC), 2013 European, pages 1383–1389. IEEE, 2013.

[7] Pierre-Jean Bristeau, François Callou, David Vissière, Nicolas Petit,
et al. The navigation and control technology inside the ar. drone micro
uav. In 18th IFAC World Congress, volume 18, pages 1477–1484,
2011.

[8] Walter Hoffmann and T Sauer. A spline optimization problem from
robotics. Rediconti di Mathematica, 26:221–230, 2006.

[9] Hyungjun Park. Choosing nodes and knots in closed b-spline curve
interpolation to point data. Computer-Aided Design, 33(13):967–974,
2001.

[10] Huaiping Yang, Wenping Wang, and Jiaguang Sun. Control point
adjustment for b-spline curve approximation. Computer-Aided Design,
36(7):639–652, 2004.

[11] Wolfgang Rackl, Roberto Lampariello, and Gerd Hirzinger. Robot
excitation trajectories for dynamic parameter estimation using opti-
mized b-splines. In Robotics and Automation (ICRA), 2012 IEEE
International Conference on, pages 2042–2047. IEEE, 2012.

[12] Luigi Biagiotti and Claudio Melchiorri. Trajectory planning for
automatic machines and robots. pages 188–194, 2008.

[13] Jeff Michels, Ashutosh Saxena, and Andrew Y Ng. High speed
obstacle avoidance using monocular vision and reinforcement learning.
In Proceedings of the 22nd international conference on Machine
learning, pages 593–600. ACM, 2005.

[14] Ian Lenz, Mevlana Gemici, and Ashutosh Saxena. Low-power par-
allel algorithms for single image based obstacle avoidance in aerial
robots. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on, pages 772–779. IEEE, 2012.

[15] H. Alvarez, L.M. Paz, J. Sturm, and D. Cremers. Collision avoidance
for quadrotors with a monocular camera. In Proc. of The 12th
International Symposium on Experimental Robotics (ISER), 2014.

[16] Stéphane Ross, Narek Melik-Barkhudarov, Kumar Shaurya Shankar,
Andreas Wendel, Debadeepta Dey, J Andrew Bagnell, and Martial
Hebert. Learning monocular reactive uav control in cluttered natural
environments. In Robotics and Automation (ICRA), 2013 IEEE
International Conference on, pages 1765–1772. IEEE, 2013.

[17] Ashutosh Saxena, Sung H Chung, and Andrew Y Ng. Learning depth
from single monocular images. In Advances in Neural Information
Processing Systems, pages 1161–1168, 2005.

[18] Volker Grabe, Heinrich H Bulthoff, and Paolo Robuffo Giordano. A
comparison of scale estimation schemes for a quadrotor uav based
on optical flow and imu measurements. In Intelligent Robots and
Systems (IROS), 2013 IEEE/RSJ International Conference on, pages
5193–5200. IEEE, 2013.

[19] Georg Klein and David Murray. Parallel tracking and mapping for
small ar workspaces. In Mixed and Augmented Reality, 2007. ISMAR
2007. 6th IEEE and ACM International Symposium on, pages 225–
234. IEEE, 2007.

[20] Richard A Newcombe, Steven J Lovegrove, and Andrew J Davison.
Dtam: Dense tracking and mapping in real-time. In Computer Vision
(ICCV), 2011 IEEE International Conference on, pages 2320–2327.
IEEE, 2011.

[21] Javier Minguez, Luis Montano, and Oussama Khatib. Reactive colli-
sion avoidance for navigation with dynamic constraints. In Intelligent
Robots and Systems, 2002. IEEE/RSJ International Conference on,
volume 1, pages 588–594. IEEE, 2002.

