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Abstract— Navigating non-holonomic mobile robots in dy-
namic environments is challenging because it requires com-
puting at each instant, the space of collision free velocities,
characterized by a set of highly non-linear and non-convex
inequalities. Moreover, uncertainty in obstacle trajectories
further increases the complexity of the problem, as it now
becomes imperative to relate the space of collision free velocities
to a confidence measure. In this paper, we present a novel
perspective towards analyzing and solving probabilistic collision
avoidance constraints based on our previous works on non-
linear time scaling. In particular, we have shown earlier that a
time scaled version of collision cone constraints can be solved
in closed form and thus can be used to efficiently characterize
the space of collision free velocities.

In the current proposed work, we present a probabilistic
version of time scaled collision cone constraints obtained by
representing obstacle states through generic probability distri-
butions. We present a novel reformulation of the probabilistic
constraints into a family of deterministic algebraic constraints.
The solution space of each member of the family can be derived
in closed form and at the same time, can also be related
to the lower bound on confidence measure through Cantelli’s
inequality. Thus, the proposed work represents a significant
improvement over the current state of the art frameworks
where probabilistic collision avoidance constraints are solved
through exhaustive sampling in the state-control space. We
also present a cost metric which serves as the basis for the
construction of the various collision avoidance maneuvers based
on factors like deviation from the current path, acceleration/de-
acceleration capability of the robot, confidence of collision
avoidance etc. We very briefly explain how the current robot
state can be connected to the solution space of safe velocities
in smooth time optimal fashion. Finally, the validity of the
proposed formulation is exhibited through extensive numerical
simulation results.

I. INTRODUCTION

The problem of navigation in dynamic environments es-
sentially boils down to that of computing the space of colli-
sion free velocities, at each control and sensing cycle. This
is a challenging problem, specially for non-holonomic robots
for which the space of collision free velocities are character-
ized by set of highly non-linear and non-convex inequalities.
Moreover, in uncertain dynamic environments where obstacle
trajectories cannot be known exactly, it is imperative to
relate a particular solution space of collision free velocities
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to a confidence/risk measure. Previous approaches like [1],
[21, [3], [4], [5] which tackled both these difficult aspects
of navigation in uncertain dynamic environments, relied on
exhaustive sampling in the state-control space. For example,
[1] and [2] relied on checking a pre-defined set of velocities
for the satisfaction of avoidance constraints modeled through
velocity obstacle [6] concept. On the other hand [3] and [4]
are based on Rapidly Exploring Random Trees [7] and thus
have to perform sampling in the state space for collision
avoidance. [5] performs sampling in the combined state-
time space and thus, results in better avoidance maneuvers
although at the cost of increased computation time. In this
paper, we depart from these search based approaches and
propose a framework for obtaining an analytical and closed
form characterization of the solution space of collision free
velocities and its associated confidence measure. We believe
that the theoretical exposition presented here can serve as
the basis for development of planners which will allow for
replanning at each controller update, consequently leading to
the realization of integrated planning and control frameworks
for complex uncertain dynamic environments.

The proposed works is built on top of our recent for-
mulations [8], [9] which provided an elegant methodology
for characterizing the solution space of non-linear and non-
convex collision avoidance constraints. These cited works
introduced a concept called time scaled collision cone con-
straints which is a time scaled version of the collision
cone constraints [10], used for characterizing avoidance
maneuvers in dynamic environments. As shown in [9] fime
scaled collision cone constraints can be solved in closed
form to obtain symbolic formulae characterizing the space of
collision free velocities that the robot can attain along a given
geometric path. Thus, evaluation of these symbolic formulae
along multiple candidate paths/trajectories gives the complete
characterization of the space of collision free velocities.

In the current work, we present a probabilistic version
of the time scaled collision cone constraints, obtained by
representing obstacle states through generic probability dis-
tributions. We derive symbolic form for the expectation and
standard deviation of these probabilistic constraint functions
and then use it to reformulate them to a family of deter-
ministic algebraic constraints. The solution space of each
member of the family can be derived in closed form and at
the same time can be related to a lower bound on confidence
measure. We also present a cost metric which serves as
the basis for extracting various avoidance maneuvers from



the solution space based on factors like deviation from the
current path, acceleration/de-acceleration capability of the
robot, risk/confidence measure of collision avoidance etc.

The strength of the proposed work lies in the fact that
it inherits the computational simplicity of our previous
works [8], [9] and at the same time goes beyond them
by introducing critical new insights which are essential
for efficient navigation in uncertain dynamic environments.
For example, [9] handles uncertainty in very deterministic
manner. It samples obstacle trajectories from a specific
region of trajectory distribution and ensures satisfaction of
collision cone constraints with respect to each of these
sampled trajectories. Important however is the fact that the
constraints in [9] are exactly similar to what it would be in a
standard deterministic setting. The probability of an obstacle
trajectory plays no role in shaping of the constraints and
as a consequence of this conservative approach, the solution
space becomes highly restrictive as one samples from a larger
portion of the obstacle trajectory distribution. As shown later,
the current proposed work gets rid of this conservatism which
allows us to obtain good solution space of collision free
velocities even while incorporating less probable trajectories.
Moreover, explicit consideration of probability of trajectories
also forms the basis for associating each solution space
to a measure of risk/confidence; a feature not present in
[9]. At this juncture we would like to point out that the
simplified approaches like [11] is in principal very similar to
our previous work [9], in the sense that although they draw
obstacle states from a distribution, the probability of each
state plays no role in shaping of the constraints. Thus, the
proposed work can also be seen as a theoretical advancement
over existing works like [11].

The rest of this paper is organized as follows. Section
II reviews the concepts from [9], specifically the concept
of time scaled collision cone constraints and how it char-
acterizes the solution space of collision free velocities in
closed form. Section III introduces the probabilistic version
of time scaled collision cone constraints and interleaves
numerical simulation results alongside developing the the-
oretical framework for efficient solution of the probabilistic
constraints. Section IV presents additional simulation results.
The concluding remarks and a discussion on the future
extensions are provided in section V

II. PRE-REQUISITES: TIME SCALED COLLISION CONE
CONSTRAINTS

The objective of this section is to first highlight how
it is extremely challenging to solve the dynamic collision
avoidance constraints for a non-holonomic robot. We then
subsequently introduce time scaled collision cone constraints
and show that it is indeed an efficient way of characterizing
the solution space of non-linear and non-convex dynamic
collision avoidance constraints.

Let the robot trajectory be represented as X' = (af,y*)T
with superscript "t” signifying the implicit dependency on
time . Let t, denote the time when the robot encounters
collision with n obstacles. Further, let . denote the minimum

of all the time instants by which the distance between the
robot and of the obstacles becomes less than some safety
threshold. The robot seeks to compute a trajectory which
leads to a state (z'e,yle, it yte) at time ¢, which satisfies
the following dynamic collision avoidance constraints.
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Set of inequalities (1) are called the collision cone con-

straints associated with each obstacle, wherein x'*, i and
similar other terms are obstacle states at time ¢.. f; are called
the collision cone function. As can be observed, collision
cone constraints are differential constraints and thus needs
to be solved along with the evolution model of the robot.
For holonomic robots which have linear evolution models,
the collision cone constraints takes (possibly non-convex)
quadratic form. However, for non-linear evolution model
associated with non-holonomic robots, these constraints be-
come non-linear and non-convex.

As shown in [8], [9] an efficient approach to solve these
complex collision cone constraints involves first obtaining
a time scaled version of the constraints, the solution of
which characterizes the space of collision free velocities
that the robot can attain without altering the geometric
path associated with its current trajectory. The time scaled
version of the constraints can be solved in closed form
to obtain a set of formulae, which can then be evaluated
along multiple homotopic candidate trajectories to obtain
the complete closed form characterization of the space of
collision free velocities.

The time scaled version of the collision cone constraints
can be obtained by changing the current time scale, ¢ to
the new time scale, 7 in the trajectory definition X%, Such
transformations do not alter the geometric path of the current
trajectory but brings the following change in the velocity and
acceleration profile. 0 " 2t
et i et 0 ot
X' =X X =X (o) + X o ?3)

It is easy to understand from (3) that time scaling trans-
formation results in change of velocities and accelerations
through change in the temporal profile of the trajectory. In
3) j—j is called the scaling function and decides the transfor-
mation between the time scales. By denoting %(tc) = s the
set of velocities that the robot can attain at time ¢, through
scaling transformation can be denoted as (sz'c, sy'). Thus,
the time scaled version of collision cone constraints take the
following form.
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As can be deduced from (4), time scaled collision cone
constraints represents single variable quadratic inequalities
in the form a;s? + b;s + ¢; > 0. The symbolic formulae
depicting the solution space of s are presented in [9].

The availability of these symbolic formulae allowed us in
[9] to devise a brute force, conservative but computationally
simple methodology for navigating in uncertain dynamic en-
vironments. It involved sampling from the obstacle trajectory
distribution and enforcing collision avoidance constraints
with respect to each of these samples. Although useful,
the methodology did not explicitly exploit the information
about probability associated with obstacle trajectories, which
resulted in a conservative solution space. The next section
is motivated towards relaxing the conservatism by explic-
itly exploiting the probability information of each obstacle
trajectory.

III. PROBABILISTIC VERSION OF TIME SCALED
COLLISION CONE CONSTRAINTS

In the scope of this paper, we consider uncertainty associ-
ated with evolution of obstacle trajectories. Considering the
effect of robot uncertainty is a part of our future work and
we give a brief preview of the possible approach towards
the end of the paper. We assume that the i*” obstacle states
at time t. can be represented as a parametric probability
distribution like Gaussian, Cauchy etc. For example, we
adapt the Gaussian Process framework presented in [12],
[13] and obtain the predicted obstacle states as Normal
Distribution.
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In (6), p?, of, uf, 0% and similar others are mean and
standard deviation associated with respective component of
the predicted states of the i*" obstacle. With respect to (6),
f; now becomes a multivariate function of random variables
and thus consequently a random variable itself. Thus, (4) can
be interpreted a set of constraints on the possible outcome of
the random variables f;. Thus, satisfaction of constraints in
this probabilistic scenario can be interpreted as a problem of
maximizing (Pr(ff > 0)). If the distribution of f is known
in parametric form, then we can directly compute without
much difficulty a value of s which maximizes Pr(f > 0).
However, the complicated non-linear nature of f; prevents us
from an obtaining any parametric form and thus we adopt
an indirect approach towards our objective of maximizing
Pr(ff > 0). Before we dwell on the details of our approach,
we would like to point out that although the form of the
distribution of f; is not known, it is still possible to derive
a closed form symbolic expression for the expectation and
standard deviation of f7 in terms of variable s. As we will
show shortly, this expressions hold the key to our proposed
approach.

A. Expectation and Standard Deviation of f;

The expectation of f; is derived from the law of uncon-
scious statistician [14] which states that the expectation of

a multivariate function g in terms of variable z, 25...2, is
given by the following expression

E[g(zh Z2-~-Zn)] = @)
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Where h(.) is the joint probability distribution of random
variables. Thus, using (7), the expectation of f; can be
obtained in the following manner
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Where P;(.) is the joint probability distribution of uncer-
tain obstacles states (2c,y’, it y'<). The above integral
when computed symbolically through packages like MAHE-

MATICA [15] can be expressed in the following form
pps = A.L-SQ + B;s + C; )

Where A;(.), B;(.) and C;(.) are functions of the robot
states and obstacle distribution parameters i}, o}, p?, o?
etc.

Similarly the standard deviation of the f; when computed

symbolically can be put in the following form

s =\ El(ff = E[f?])?] = VDis* + Eis + Fis® + Gis + H;

(10)

We will now show that with the help of (9) and (10), it is

possible to reformulate probabilistic constraints into a family

of deterministic algebraic constraints. Each member of the

family and its solution space can be related to a lower bound

on Pr(f7 > 0). Thus, we can seek to compute a solution
space which empirically maximizes Pr(f > 0).

B. Reformulating Probabilistic Constraints into Family of
Algebraic Constraints

To understand the philosophy behind the reformulations
presented in this section, consider figure 1 (a). Although
the distribution of f? is not known, we can still derive an
expression for a strip of width yifs & koys with the help of
the formulae for expectation and standard deviation derived
in (9) and (10) respectively. It is straightforward to observe
that the portion of the distribution covered by the strip would
increase with the magnitude of the variable k. Now, recall
that our objective is to maximize Pr(ff > 0). Alternatively
speaking, we want to maximize the portion of the distribution
of f7 that lies above/right of the zero line. As shown in figure
1 (b), this can be achieved by computing the solution space
of the variable s with respect to the following family of
constraints, for as large as possible value of k.

prs £kogs >0 (1D

It is worth reiterating that as k increases, the width of
the strip and consequently the part of the distribution of f;
which lie above/right of the “zero line” increases. This in
turn would mean higher probability of f? > 0. In fact as
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In uncertain dynamic environments f; are functions of random variable belonging to a particular distribution. The highly non-linear nature of

f# prevents us from obtaining an analytical parametric form for its probability distribution. A strip of width 1 3 + ko 3 from the distribution of f; is
ensured to lies above zero through appropriate choice of variable s. As shown, in 13, the width of the strip as measured by the variable k has a direct

correlation with the lower bound of Pr(f; > 0)

shown in the following lemma, it is possible to derive a
lower bound on Pr(f > 0), as a function of the variable k.
The20rem 3.1: The lower bound on Pr(ff > 0) is given
by iz
Proof:
From Cantelli’s inequality we have
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Now, since Hps — kG'ff > 0 is ensured from (11), the
following inequality holds
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Based on the above discussions, it can be concluded that
the (11) represents a family of deterministic algebraic con-
straints wherein the solution space of each family is related to
a lower bound on Pr(f7 > 0) through (13). Thus, solving
(11) for a large value of k& would improve the confidence
measure or in other words reduce risk. However, as shown
later as k increases, the solution space of s and consequently
the space of velocities become highly restrictive. Thus, it is
often required to make a trade-off between confidence/risks
and ease of collision avoidance maneuvers.

We next derive the closed form characterization of the
constraints (11).

(13)
|

C. Solving Inequalities (11)

Substituting (9) and (10) in (11) results in a quartic
inequality in terms of variable s. Closed form solutions to
these inequalities can be obtained without much difficulty.
However, in this section we propose a simpler alternative
approach based on the following quadratic approximation of
the standard deviation, o fi
(s — s)?

5 (14)
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As can be observed from (14), that the quadratic approx-
imation of o¢s is obtained through Taylor series expansion
around the variable s*, which in turn is obtained by solving
the following set of inequalities.

pper 2 0= Ais™ + Bis™ +Ci 2 0 (15)

It easy to appreciate that the solution to the above set
of inequalities, s* would correspond to avoiding the mean
of the predicted obstacle states. Solving (15) is easy as
it again represent single variable quadratic inequalities and
thus, symbolic formulae depicting its solution space can be
easily obtained. From the solution space, we choose s* as
the value closest to unity. The reasoning for this is simple
and can be understood by recalling the time scaling equation
(3). A s* close to unity would imply minimum deviation
from the temporal profile of the current trajectory. In other
words, it would correspond to a collision avoiding velocity
and acceleration which is very close to the ones that the
robot would have reached while moving along the current
trajectory.

Substituting (9) and (14) in (11), we get the following set
of quadratic inequalities.

%12
A;s>+ B;s+Ci %+ k,(rrf;* + U;‘f* (s—s8")+ o;lf* M) >0
(16)

Set of inequalities (16) represent the final form of the con-
straints in terms of mean and standard deviation for dynamic
collision avoidance in uncertain dynamic environments. It is
important to note that the structure of the constraints (16) is
exactly same as that obtained in our previous works [8], [9].
Thus, as mentioned earlier, we explicitly include information
of probability distribution of obstacle trajectories without
incurring any additional computational costs. As can be seen,
(16) are a set of single variable quadratic inequalities and
thus a closed form characterization of its solution space can
be easily obtained following the approach of [9].

In the next section, we describe some implementation
examples, where among other things we also show that we
incur very minimal error when moving from the original
quartic polynomial inequalities to the quadratic approxima-
tion presented above.



D. Examples
The objective of this section is to validate the mathematical

formulations discussed in the previous sections with the
help of some numerical examples. The results presented in
this section are obtained for the scenario where the robot
encounters simultaneous collision with two obstacles. Due to
space constraints, only a few results are discussed below. The
readers are requested to follow the supplementary material
for additional results [16]

Consider figures 2(a), 2(c), 2(e) and 2(g), where the curves
shown in cyan corresponds to the samples of f°. These
are obtained by first drawing samples from the obstacle
state distribution and then evaluating (4) with respect to
these samples. The lines shown in blue are formed by the
inequalities (16), which as discussed in the previous section,
are a quadratic approximation of the strip pss & koys from
the distribution of f7. It can be seen from the figures that
as k increases from 1.2 to 2 , the area formed by the
inequalities (16) increases and consequently it encompasses
larger number of samples of f7. Thus, it validates our
proposition that satisfaction of (11) or equivalently (16),
while increasing k would force larger portion of the distri-
bution of f? to be above/right of the “zero line”, thereby
increasing Pr(ff > 0) and the confidence of collision
avoidance (reduction in colliding samples shown in yellow).
Alternatively, improve in confidence with increase in £ can
also be inferred from figures 2(b), 2(d), 2(f), 2(h), where we
evaluate the collision avoidance success through sampling.
The samples shown in red are avoided while the robot
collides with the samples shown in black. It is also worth
pointing out that the Pr(f > 0) estimated through sampling
is generally more than that obtained based on the Cantelli’s
inequality (13). For example, for & = 1.2, the lower bound
of Pr(ff > 0) obtained through (13) is 0.60 while that
estimated from sampling is around 0.74. Similar observations
can be made for k = 2 as well. Thus, this validates our claim
that (13) indeed provides a lower bound on Pr(f > 0).

The solution space of the variable s and consequently
collision avoiding velocities are summarized in table I. It can
be seen that the solution space shrinks with the increase in
the k. In particular, it can be seen that the higher confidence
maneuvers require robot to significantly decelerate (s <<
1). Please note that the solution space shown in table I
correspond to the velocities that the robot can attain without
altering the current path. A more complete characterization
of the solution space can be obtained by evaluating (16) over
multiple candidate paths/trajectories. This is discussed in the
next section.

E. Evaluating Solution Space of inequalities (16) along
Multiple Candidate Trajectories

The simple structure of (16) allows us to easily evaluate
it along multiple homotopic candidate trajectories and thus,
obtain a more complete characterization of the solution
space of collision avoiding velocities. Moreover, in some
scenarios, solution space along the current trajectory could
be null, in which case it becomes imperative to evaluate the

solution space along other candidate trajectories. One such
scenario is shown in figure 3. Various candidate trajectories
are generated as a perturbation of the current trajectory,
following the approach proposed in [9]. The solution space
along the candidate trajectories are summarized in table II,
table III and table IV. It can be seen that for a given k, the
solution space improves with increase in deviation from the
path associated with the current trajectory.
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Fig. 3. A scenario where the solution space of inequalities (16) is null
along the current trajectory. Thus, solution space of (16) is evaluated along
multiple candidate trajectories, obtained as perturbations of the current
trajectory. Among multiple solutions, one which minimizes the cost metric
17 is chosen

It is clear that multiple solution spaces corresponding to
various Pr(ff > 0) (as measured by k) could exist for a
given collision avoidance scenario. Thus, we propose the
following cost metric for choosing a particular candidate
trajectory and its associated solution space.

2
- 1+—k2) an

The cost metric (17) has been adapted from our previous
work [9] by adding the third term which accounts for
the risk associated with a particular solution space (refer
ineq. (13)). The remaining terms, A; and A, are the cost
associated with changing the speed i.e accelerating or de-
accelerating and changing the path respectively. w;, wo and
ws are the weights associated with the respective costs. A
particular choice of weights extracts a particular collision
avoidance maneuver from the solution space. For example,
if minimizing risk and minimizing deviation from the current
path are primary priorities, then ws and ws would be chosen
much larger than w;. For the scenario shown in figure 3, this
would lead to the choice of the solution space associated with
the candidate trajectory 2 for k = 2 (table III). Similarly, for
a robot with limited acceleration/de-acceleration capability,
wi and w3 would be chosen much higher than ws, which will
consequently lead to the choice of solution space associated
with candidate trajectory 3 for £ = 2. Thus, various collision
avoidance maneuvers can be extracted from the solution
space, depending upon a particular collision scenario and
actuation capabilities of the robot.

Jeost = 'LUlAt + 1U2Ap + ’lU,j(l

F. Connecting the Current State to the Solution Space in
Smooth Time Optimal Fashion

The last two sections have shown how a collision avoid-
ance maneuver can be characterized by choice of a candidate
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Fig. 2. Figures (a), (c), (¢) and (g) provides validation of the mathematical formulation presented in section III. The plot lines shown in cyan denote the
samples of f7. The strip formed by the blue lines correspond to the sets of inequalities (16 and are a quadratic approximation of the strip pys ko ys from
the distribution of f7. It can be seen that the area formed by the inequalities (16 increases in direct proportion to & and consequently it encf)mpassezs more
number of samples of f;’. Thus, enforcing (16) with increasing k leads to reduction in the number of colliding samples shown in yellow and improvement
in Pr(f$ > 0). It has also been shown in section III that (13) provides a lower bound on Pr(f7 > 0) as a function of the variable k. We validate this
claim through figures (b), (d), (f) and (h) where we empirically evaluate Pr(f; > 0) through sampling and show that it is always more than that obtained
through (13). For example, consider figures (f) and (h) where for k = 2, we obtain Pr( > 0) as 0.90 through sampling, while that obtained from (13)

is around 0.8

TABLE

I

SOLUTION SPACE OF (16) FOR VARIOUS VALUES OF k

Obst. No Sol.Space k = 1 Sol.Space k = 1.2 Sol.Space k = 1.5  Sol.Space k = 1.7  Sol.Space k =2
Obst.1 [0 1.38] J[18.45 o) [01.3] [0 1.18] [0 1.11] [0 0.9]
Obst.2 [0 0.8] [0 0.69] [0 0.53] [0 0.43] [0 0.33]
Resultant [0 0.8] [0 0.69] [0 0.53] [0 0.43] [0 0.33]
Lin. error in sol. space 0.003 0.007 0.01 0.03 0.06
TABLE II

SOLUTION SPACE OF (16) ALONG THE CANDIDATE TRAJECTORY 1 FOR THE SCENARIO SHOWN IN FIGURE 3

Obst. No  Sol.Space k =1  Sol.Space k = 1.2 Sol.Space k = 1.5 Sol.Space k = 1.7  Sol.Space k =2
Obst.1 [0 0.82] [0 0.73] [0 0.61] [0 0.52] [0 0.39]
Obst.2 [0 0.26] [00.2] [0 0.13] [0 0.0.07] null

Resultant [0 0.26] [00.2] [0 0.13] [0 0.07] null

TABLE IIT

SOLUTION SPACE OF (16) ALONG THE CANDIDATE TRAJECTORY 2 FOR THE SCENARIO SHOWN IN FIGURE 3

Obst. No  Sol.Space k =1  Sol.Space k = 1.2 Sol.Space k = 1.5 Sol.Space k = 1.7  Sol.Space k =2
Obst.1 [0 1.0] [0 0.91] [0 0.8] [0 0.71] [0 0.59]
Obst.2 [0 0.42] [0 0.36] [0 0.26] [0 0.20] [0 0.11]

Resultant [0 0.42] [0 0.36] [0 0.26] [0 0.20] [0 0.11]




TABLE IV
SOLUTION SPACE OF (16) ALONG THE CANDIDATE TRAJECTORY 3 FOR THE SCENARIO SHOWN IN FIGURE 3

Obst. No  Sol.Space k =1  Sol.Space k = 1.2  Sol.Space k = 1.5 Sol.Space k = 1.7  Sol.Space k =2
Obst. 1 [0 1.29] [0 1.19] [0 1.06] [0 0.98] [0 0.85]
Obst.2 [0 0.8] [0 0.69] [0 0.54] [0 0.45] [0 0.33]

Resultant [0 0.8] [0 0.69] [0 0.54] [0 0.45] [0 0.33]

trajectory X' and the solution space of the variable s. To
connect the current state to the solution space one needs
to compute a scaling function % (refer 3) such that the
following constraints are satisfied.

(18)

s, and s defines the boundary of the solution space
of s. The profile of the scaling function before and after
time t. is free and hence we can utilize this redundancy
to create a time optimal scaling function, subject to robot’s
velocity and acceleration bounds. In our earlier work [9], we
have presented a sparse convex optimization based approach
towards this objective. Here, we would like to point the
readers towards our latest work [17] which can be easily
adapted to reproduce the time optimal framework of [9],
but with additional feature of acceleration continuity in
the motion profile. This feature leads to smoother velocity
profiles which can be tracked better.

IV. ADDITIONAL RESULTS AND DISCUSSIONS
In this section, we provide some additional implementation
results and comparisons with our previous work [9].

A. Collision Avoidance with Discrete Probability of Obstacle
States

Robot Navigating in a Corridor

intents of obstacle trajectories
251 \ Probability of
\ takin,
\ these intents
20| Robot original . o\ 4
traj(red), perturbed trajectories \
of Robo(black) \
\

Fig. 4. A scenario where the obstacle states are predicted as discrete
samples with associated probabilities. Even in this case, one could con-
struct closed form expressions for expectation and standard deviation and
consequently construct inequalities (16).

The derivation presented in the last section relied on the
parametric form of the distribution of the obstacle states and
the fact that we could obtain analytical functional form of
expectation and standard deviation . However, one can easily
obtain inequalities (16) even when the parametric form of the
distribution is not known or is too complicated to allow for
closed form derivation of expectation and standard deviation.
In such scenarios one could use the framework proposed in
[12] to represent predicted obstacle states as finite set of
samples with associated probabilities. One can then proceed

to compute the functional form of expectation and standard
deviation in the following form.

Bff) = uge = Yo mif?

o5 = o mfit = o mfe):

Where, 7; is the probability associated with the 3" sample
of predicted obstacle state. Similarly f is the time scaled
collision cone constraint (4) in terms variable s for the i*"
sample of predicted obstacle state.

As an implementation example, consider figure 4, which
shows a robot and a dynamic obstacle navigating in a cor-
ridor like scenario. Eight samples with varying probabilities
are used to predict obstacle states. It can be seen from the fig-
ure that the probabilities associated with each sample reflects
the constraints posed by the restricted space in the corridor.
Using (19) and (20), we construct inequalities (16) and solve
it along the current and the perturbed trajectories shown in
figure 4. The graphical representation of the solution process
and the resulting collision avoidance are shown in figures
5(a)-5(d).

Consider figure 5(a) which shows various samples from
the distribution of f; and plot of inequalities (16) for £ = 0.
It is easy to deduce that solution space of (16) with k£ =0
only ensures that ps: > 0 and as shown in figure 5(c), is not
sufficient for collision avoidance with all the samples. The
solution space corresponding to prs > 0 results in collision
with four of the predicted samples, along both the current
and the best candidate trajectory. Thus, we gradually move
to k = 2. It can be seen that similar to the results obtained
with parametric distribution of obstacle states, with increase
in k, the area formed by the inequalities (16) encompasses
more samples of f? and thereby improving Pr(f? > 0). The
results for the intermediate values of & can be found in the
supplementary material [16].

19

(20)

B. Comparison with Previous Work [9]

The objective of this section is to highlight how explicitly
shaping the avoidance constraints through the probability
of obstacle states, as proposed in section III leads to an
improvement in the solution space. To this end, we compare
the solution space obtained through the proposed formulation
with that obtained through our previous work [9]. Before
we explain the results, it is worth recalling that [9] draws
obstacle states from a distribution but does not take into
account the probability of the states. Further, the concept
of variable % is only implicitly present in [9], in the sense
that it signifies the portion of the distribution from which the
obstacle states are drawn.



TABLE V
COMPARISON OF THE SOLUTION SPACE OBTAINED FROM THE PROPOSED FORMULATION AND PREVIOUS WORK [9]

Formulation  Sol.Space k =1  Sol.Space k = 1.2 Sol.Space k = 1.5 Sol.Space k = 1.7  Sol.Space k =2
[9] [01.3] [0 1.0] [0 0.9] [0 0.8] [0 0.5]
Proposed [0 1.96] [0 1.18] [0 1.056] [0 0.964] [0 0.811]

 and Inequalities (16) for k = 0

fiS and Inequalities (16) for k = 2

f?(cyan) Mean £

20 !

Mean(red)
~10jcolliging(yellow) =10

Mean-2*std.dev(blue)

-20) =20
-30| -GOT
-1 0 1 2 3 4 -1 0 1 2 3 4
() (s)
_ @ (b)
Fig. 5.

Colfdng and Nor-Calkding Traedores fork=0 Coliding and Non-Colliding Trajectories for k =2

30—

Robot original Robot best candidate
20 traj traj
\ ,

/

Robot original ~ Robot best candidate
traj traj

/
/ Mean+2*std.dev(blue)
10 / 10 /
= £
S 0

/

L
)

Y[m]
>

non-colliding 0 non-colliding(all
fth
S - of them)
collidin - :
‘ . . ‘ ‘ 9 10 5 10 15
0 2 4m 8 10 Xm]

© (C)]

(a)-(b): Samples of f? and inequalities (16) for k = 0, 2. It can be seen that k = O only ensures that the y1ys > 0 and as shown in (c) is not

sufficient for avoiding collisions with all the samples. Thus, k is gradually increased to 2. It can be seen from the ﬁgurés (c) and (d) that as k increases,

more number of obstacle samples are avoided.

Now coming to the results, we expect to obtain a con-
servative solution space with [9]. Table V validates this
hypothesis. As can be seen, the proposed formulation consis-
tently provides better solution space then [9]. Moreover, the
difference/gap widens with increase in k. Physically, it means
that in this particular case, a high confidence maneuver
designed through [9] would require the robot to excessively
slow down. In contrast, the proposed formulation would
take into account the fact that some aggressive obstacle
trajectories are less likely and thus, excessive de-acceleration
is not required.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that for a given distribution of
obstacle states either in parametric or non-parametric form,
it is possible to reformulate probabilistic collision avoidance
constraints to a family of algebraic deterministic constraints.
The solution space of each member of the family can be
derived in closed form and at the same time can be related
to a lower bound on confidence measure.

We are currently extending the current formulation to
include robot’s uncertainty. We have already observed that
even while representing robot’s state as random variables,
we can still obtain symbolic expressions for expectation and
standard deviation of f7 in a form similar to that presented
in (9) and (10). Thus, the entire formulation of section III
can be very easily adapted to include robot’s uncertainty
information.
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