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Abstract— This paper presents a novel exploration strategy
for coordinated exploration between unmanned ground vehi-
cles (UGV) and micro-air vehicles (MAV). The exploration
is modeled as an Integer Programming (IP) optimization
problem and the allocation of the vehicles(agents) to frontier
locations is modeled using binary variables. The formulation is
also studied for distributed system, where agents are divided
into multiple teams using graph partitioning. Optimization
seamlessly integrates several practical constraints that arise in
exploration between such heterogeneous agents and provides
an elegant solution for assigning task to agents. We have also
presented comparison with previous methods based on distance
traversed and computational time to signify advantages of
presented method. We also show practical realization of such
an exploration where an UGV-MAV team efficiently builds a
map of an indoor environment.

I. INTRODUCTION

With the advent of micro-air vehicles (MAV) as a popular
robotic testbed [1], [2] numerous problems involving such
vehicles have been approached with right earnest. These
include systems modeling and control of such agents [3],
collision avoidance [4], mapping and state estimation with
such agents [5]. Mobile robots or unmanned autonomous
ground vehicles (UGV) have been in vogue for several
years and there arise several fruitful applications where such
heterogeneous systems of UGV-MAV work together. For
example a team of UGVs and MAVs can be asked to map a
terrain consisting of water bodies inaccessible to UGV while
several minute details hazy to MAVs from an aerial view
can be mapped by UGVs on ground. In an equivalent indoor
situation the MAV can map terrains inaccessible to UGV
such as areas above desks and tables while the UGV can
ably find and map regions underneath the tables and chairs
and detect spaces between them.

Central to such mapping applications is the requirement of
a collaborative exploration strategy. This exploration strategy
involving heterogeneous agents could bring with it additional
constraints not envisaged in typical multi robotic ground
applications. For example, a low cost off the shelf MAV
may not be able to carry depth sensors such as laser range
finders or depth cameras due to payload restrictions. In
such scenarios a MAV using a lightweight single camera
to map the terrain would require the aid of the UGV
for egomotion estimation every once in a while. It may,
moreover, need the UGV for guidance in moving between
frontiers that are far apart. These constraints emerge since
single camera (Monocular) Simultaneous Localization and
Mapping (SLAM) systems typically do not scale up over
large areas. Till date almost all single camera SLAM systems
have been manually guided [6], [7], even semi autonomous

systems are rare.
Herein we present a novel optimization formulation for

coordinated exploration using heterogeneous agents(Fig. 1).
We follow the next best view strategy where a set of favor-
able goal/frontier locations are estimated using the current
map information. The problem of allotting frontier locations
to agents is posed as an Integer Programming (IP) problem
where allotment of agents to frontier location is specified as
integer constraint. Despite the complexity of the IP solution
sufficient pragmatic heuristics coupled with sophisticated
relaxation techniques ensure that the performance gain due
to a fully optimal formulation is maintained without com-
promising computational time.

The paper is best viewed in two ways. Firstly it shows
how an exploration problem can be cast as an Integer
Programming problem with one shot assignment of frontiers
and the performance gain accrued thereof. All previous
works in this area [9], [11] make use of incremental frontier
assignment. The performance gain is visible in terms of
reduced distances traveled by the robots for completing
the exploration without tangible loss in computation times.
This is shown in a generic multiagent exploration scenario
wherein constraints specific to UGV-MAV heterogeneous
situations are not incorporated. Secondly it also paves way
for adding several practical constraints in a heterogeneous
framework in a seamless fashion. Posing the problem as one
of constrained optimization formulations that do not make
explicit use of such an optimization framework hand coding
of these constraints has tend to become rather unwieldy.

The formulation is also tested for distributed/ decentralized
systems. Distribution of agents becomes necessary in-case
of communication breakdown. As agents disperse into the
environment constant communication between them cannot
be guaranteed. We divide agents into smaller teams using
graph cut partitioning where each vertex of graph is location
of ground vehicle in map.

This paper goes beyond our earlier shorter version [22]
by detailing the optimization formulation, posing practical
requirements of visibility and MAV guidance as integer
constraints, elaborating how the time complexity can be kept
to manageable levels, through extensive comparisons and
real-time experiments on heterogeneous set of robots.

We also bring to note based on our survey there appears
no other effort that shows how a team of UGV and MAV
can explore and map an environment by collaboration.

II. LITERATURE SURVEY

In recent years there has been a spurt in literature dealing
with MAV systems in relation to various aspects of it. For
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Fig. 1. (a)A pair of heterogeneous agents. (b)Mapped ground(gray) and elevated area(colored points).

example, [12] describes a differential equation formulation
to decide the next location for exploration. This was done
for a payload constrained UAV. In [13], MAV formations
were addressed while following a group trajectory. A coop-
erative target tracking strategy with multiple MAV using the
Kalman Bucy formulation was presented in [14] whereas in
[15] a Recursive Bayes Filter formulation for incrementally
estimating the state of the environment with multiple MAV
was presented.

In the context of UGV-MAV collaboration, [16] present
a system paper on a UGV guiding a MAV to navigate in
an indoor environment making use of a LED cube structure
pattern attached to MAV. In [17], the authors propose a co-
operative control framework for real time task generation and
allocation for a hierarchical MAV/UGV platform. Whereas
[18] proposes a decentralized architecture for autonomous
teams of MAV’s and UGV’s engaged in actively searching
for and localizing ground features.

Finally from the point of view of multi agent/robot explo-
ration there have been several works addressing various prob-
lems ranging from coordination strategies [9], [10], choice
of metric [11] and presence of constraints [19]. However all
such efforts in multi agent exploration have used incremental
agent-frontier allotment as the quintessential strategy. This
paper differs from other multi agent exploration approaches
through its formulation and its application on heterogeneous
team of agents/robots.

III. PROBLEM AND SYSTEM DESCRIPTION

A. Problem Description

Given a workspace U consisting of floor area and obstacles
the objective is to find an efficient exploration strategy to
explore U through a combination of UGV and MAV. The
floor area denoted by F is the area explored by the UGV
while areas above obstacles such as desks, tables are mapped
by the MAV. The MAV-explored area is represented as A and
is disjoint from F.

B. Agent Mapping

The UGV’s and MAV’s share a global 2D occupancy grid
map, updated by sensor readings from each robot.

This map is processed in each iteration to identify points
at the boundary of unoccupied and unknown regions and
contiguous set of such boundary points are accumulated to

constitute frontiers. The remaining frontiers are then sampled
to generate a set of (pose, orientation) pairs used for deciding
the next best state for the heterogeneous system. MAV’s
follow UGV’s till they detect regions that are not mappable
by UGV’s but are mappable by MAV’s. These are identified
using sonar data in simulation by tracing the path of the
sonar through the occupancy grid map and its obstacles.
The boundaries of such regions constitute what we call as
“Passive MAV Frontiers”. When a MAV, which is currently
following a UGV, is assigned to explore one such frontier
it formally changes to “Active” state and starts mapping
the regions below it using its down facing 3D sensor. New
mapped points in global coordinates are added to the original
point cloud, which is again shared globally across MAV’s.
The point cloud is down sampled using a voxel grid to
remove redundant points and processed to extract frontiers.
Frontier extraction begins by converting the 3D point cloud
into a binary 2D occupancy grid with large cell size. The
rightmost point cloud boundary cell is identified and a 2x2
window is made to now trace a contour around the point
cloud. The large cell size ensures that the point cloud projects
to a continuous blob in the binary voxel grid and this makes
it very easy for the 2x2 window to trace the contour (see [21]
for details). Since, multiple runs of the MAV over different
elevated regions can create multiple blobs, these are split
into different point clouds using Euclidean clustering [23]
before being projected into separate binary voxel grids for
contour extraction. This contour is the required frontier and
is sampled to create a set of (pose, orientation) pairs used
for deciding the next best pairs for the heterogeneous system.
The pose of the MAV and UGV are assumed to be known
as it mapped the area beneath. The pose of all the agents are
centrally maintained by the ROS framework.

C. Optimization Formulation

As already discussed in section I, the objective is to allot
frontier locations from the set of current frontiers to the set
of UGV-MAV agents.

We formulate this problem in following manner,

max
∑

Agent i

∑
Frontier j

(
hij ×

V(j)

D (i, j)

)
(1)
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Vj symbolizes visibility at jth frontier and Dij is the
amount of distance agent i has to travel to reach frontier
j and hij=1 if agent i is allotted frontier j, otherwise 0. The
optimization attempts to maximize net visibility gain per unit
distance(V/d) traveled. This metric was demonstrated to give
superior results [11] than metrics which used various other
combinations of utility (visibility gain) and cost (distance
traveled). Since, hij is either 0 or 1, this problem becomes
a standard 0-1 Integer Linear-Programming problem.

Determining an exact solution for integer linear program-
ming problem is in general NP-Hard. By exact we mean that
all the unknowns (to be solved) are well constrained to be
integers. To get a better insight on solving this NP-Hard prob-
lem we first introduce FacilityLocationProblem(FLP )
problem, a well know subject of Operational Research.

Suppose there is a set J = 1...n of n potential sites for
establishing facilities to serve m customers. The objective
of FLP is to determine which subset of facilities should be
opened in order to minimize cost of transportation and cost
of opening a facility, which can be presented as

min
h,l

∑
i∈C

∑
k∈J

hikdik + α
∑
k∈J

lk (2)

such that
∀ik, hik ≤ lk, (3)

∀i,
∑
k∈J

hi,k = 1, (4)

∀ik, hik ∈ {0, 1}, lk ∈ {0, 1} (5)

Here C = 1...m is set of clients/customers, lk =1 if facility
at k is opened and lk =0 otherwise, hik =1 if customer i is
served by facility at k, dik is transportation cost and α is
the cost associated with opening a facility. Comparing FLP
problem with problem posed in 1, we find they are similar.
Both are challenging (NP Hard) linear integer programming
problems. There has been many strategies proposed for
tackling NP Hard problems and among them Linear Program
Relaxation(LPR) is one of the most promising approach.
The key idea behind LPR is to relax 0-1 integer constraint
into linear inequalities over continuous variables, thereby
reducing to a form that can be solved as a set of linear
programming solvers. LPR has been applied successfully in
many cases, including FLP problem.

We have used glpk solver [26] to obtain the solution
for the IP formulation. The solver uses branch and cut
method which is a combination of branch and bound and
cutting plane methods to find the solution. Branch and cut
methods efficiently works on LP relaxation of IP problem. It
prune branches to remove non integer optimal solution from
feasible space thereby preventing an exhaustive search for
solving the non polynomial IP formulation.

To further improve the performance, we use a clustering
heuristic to decrease the number of frontiers to be considered
for allotment. This technique reduces the size of feasible
solution space, hence improving the computational time
required for finding solution for IP formulation.

1) Objective: Since our formulation involves heteroge-
neous agents, equation 1 is modified to following form,

max
∑

UGV i

∑
UGVFrontier j

(
xij ×

V(j)

D (i, j)

)
+

∑
ActiveMAV i

∑
MAVFrontier j

(
yij ×

V(j)

D(i, j)

)
+

∑
PassiveMAV i

∑
MAVFrontier j

(
zij ×

V (j)

D(i, j)

)
+

∑
UGV i

∑
ActiveMAV j

(
haij
D(i, j)

)
(6)

First three terms capture the allotment of frontiers for
UGV, ActiveMAV and PassiveMAV respectively, whereas the
last term signifies the transition where an MAV goes from
an active map builder (Active MAV) to a passive follower
(Passive MAV), after completion of mapping or due to lack
of new reachable frontiers. The integer variables xij , yij , zij
and haij are discussed in the section below (III-C.2).

2) Variables: The state of the system is captured using
5 sets of binary integer variables. The first three, xij , yij
and zij denote that the ith robot is allotted the jth frontier.
More elaborately, the first set {xij} identifies the UGV:UGV
frontier pairing/allocation. The second, {yij} serves the same
purpose but now for Active MAV:MAV frontier alloca-
tion. {zij} records the pairing between Passive MAV:MAV
frontiers. Apart from frontier allocation, explicitly labeling
active to passive and passive to active transitions greatly
helps in imposing constraints specific to the nature of these
transitions. We define:-

haij =

{
1 ith UGV helps jth ActiveMAV become passive

0 otherwise

hpij =

{
1 ith UGV helps jth PassiveMAV become active

0 otherwise

3) Constraints: While the complete formulation can be
seen here [24], we discuss the most important constraints.
V isibilityConstraint:- In our formulation we have in-

troduced a visibility constraint, which requires an UGV to
observe a MAV at its frontier location. Due to scale drifts[8]
that occur in monocular SLAM, ego estimation of MAV
by an UGV becomes inevitable. Since the UGV is more
firm about its own ego estimate its observations of the MAV
enhance the mapping performance of the air vehicle.

This constraint is difficult to express in closed form
and is non-linear. Hence, we compute the pairs of viewer-
object positions which satisfy the constraint and provide this
information as input to the Optimization. The following two
types of viewer-object position pairs are of interest:-

FF - (i, j) εFF if MAV at frontier j is visible to UGV
at frontier i.

CF - (i, j) ε CF if MAV at frontier j is visible to ith
UGV at its current position.

This way, a complicated non linear visibility constraint
can be incorporated into the Integer program. This is also
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Fig. 2. Simulation models (a)Map1 (b)Map2 (c)Map3

why frontier positions are modeled using binary variables
corresponding to real valued positions instead of formulating
an MIP where variables represent x,y coordinates.

One of three Visibility constraints are explained below:-

∀ MAVfrontier j∑
ActiveMAV i

yij −
∑

(l,j)εFF

{∑
UGV k

xkl

}
(7)

+
∑

(k,j)εCF

(( ∑
UGVfrontier l

xkl

)
− 1

)
≤ 0

Equation 7 can be understood by noting the significance of
each term in the equation. The first summand is 1 if a MAV
is allotted the jth frontier, otherwise 0. The second summand
is equal to the number of UGV frontiers that can see the jth

MAV frontier and have a UGV assigned to reach it by the
next time step. The third summand is equal to negative of
the number of UGV’s who in their current position can see a
MAV after it reaches the jth frontier. We also ensure that this
UGV is not allotted frontier in the present iteration by the
inner summation used in this term. Put together, if a MAV is
assigned the jth frontier, we should have atleast one UGV
that can see it either after reaching a UGV frontier or by
staying at its current position. 1

MinimumDistanceBetweenFrontiers:-The objective
function does not subtract the region of overlap corre-
sponding to the selection of two neighboring frontiers. We
compensate for this by forcing allotted frontiers to be a
minimum C distance apart. xijdjlxkl ≥ C suggests that if
the ith UGV is allotted the jth frontier and the kth UGV
is allotted the lth frontier then the precomputed distance
between these frontiers djl should exceed a threshold C. This
formulation of the minimum distance constraint introduces
non linearity. To ensure that our formulation remains linear

1This also explains why a UGV might in some iterations choose to not
move to any frontier location

we instead impose that

djl +

(
2−

((∑
i

xij

)
+
∑
k

xkl

))
× C ≥ C

. This achieves the same result because, if any robot is
allotted the jth frontier then (

∑
i xij) = 1. Similar is the

case with xkl. Three cases arise.
1) If none of the frontiers are allotted then the equation

becomes djl+2C ≥ C and we are done. The distance
is not constrained as expected.

2) If only 1 of the frontiers is allotted then the equation
becomes djk + 1C ≥ C and we are done. Again the
distance is not constrained as expected.

3) If both are allotted then the equation becomes djk ≥ C
and the constraint is applicable as required.

AtMostOneFrontierPerAgent:-The minimum distance
constraint discussed above does not ensure that two robots
are not allotted the exact same frontier. This is incorporated
with a simple constraint saying

∀ UGV frontier j
∑
UGV i

xij ≤ 1 (8)

IV. DISTRIBUTED SYSTEM

In real world situations uninterrupted communication be-
tween agents cannot be guaranteed. As agents disperse
into environment, communication link between them are
stretched and a breakdown becomes inevitable. This break-
down can be avoided by ensuring constant communication
between agents and make them move in a pack, like in [20] a
reactive virtual spring damper system was used to manipulate
motion of agents to ensure constant communication.

To tackle the communication constraint problem, we use
a distributed system approach. As agents disperse into en-
vironment they are divided/distributed into smaller teams.
Graph G = (V,E) is used for capturing the spread of UGVs.
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Fig. 3. (a)Grey area shows ground map and colored points represent point cloud. Red arrows represents UGV frontiers, green arrow represents Passive
MAV frontiers.(b) and (c)Blue arrows point to UGV and MAV pair which are maintaining visibility constraint.

Each vertex vi ∈ V represents position of a UGV and it
is connected to every other vertex through edge eij . Edge
weight wij between vertex vi and vj is calculated using
Equation 9.

wij = e−dij (9)

dij =

{
||vi − vj || if vibij is 1
pij if vibij is 0 (10)

When a pair of UGVs are visible to each other, vibij is
set to 1 and dij is the Euclidean distance between them. If
visibility is occluded by an obstacle then dij is set to pij
where pij is the total distance that UGV at vi has to travel
to reach location of UGV at vj .

In every iteration total distance between UGVs (Equation
11) is computed. When D exceeds a predefined threshold, the
graph is partitioned using k Way partitioning algorithm [25].
The objective of graph partitioning problem is to compute a
k-way partitioning such that sum of the weight of the edges
that straddle different partitions is minimized so that robots
that are far away from each other are part of a different team.
Using dij we find UGVs that are farthest away from each
other beyond a threshold and arrive at an initial guess on the
number of partitions. Since at the end of every iteration each
UGV is uniquely associated with a MAV, explicit partitioning
of MAV is not required.

D =
∑
ij

dij (11)

V. MAPPING WITH REAL AGENTS

For mapping a Pioneer P3DX, iRobot Turtlebot and Parrot
ArDrone(MAV) is used. P3DX is equipped with a SICK
laser, Turtlebot is equipped with a Kinect while MAV is
equipped with a downward facing camera. For state estima-
tion of MAV, attached AR-marker [27] is tracked by kinect.

A global 2D occupancy gound map is created using sensor
attached to UGVs. A SLAM algorithm runs on UGVs for
effective and accurate localization and mapping. The data
from the MAV camera is input to the Parallel Tracking And
Mapping (PTAM) algorithm [7] giving a sparse map of the
elevated regions of the map. Since ground robot is accurately
localized, tracking the MAV by Kinect results in the VSLAM
based maps being accurate and up to scale. The resulting map
consists of a dense occupancy grid of the ground along with

a sparse aerial map of the elevated region. The pose of the
MAV is given by Equation 12.

TWorld
MAV cam = TWorld

UGV base×TUGV baseUGV cam ×TUGV camMarker ×TMarker
MAV cam

(12)
TWorld
UGV base is the localization of the robot provided by

the GMapping algorithm. TUGV camMarker comes from [27], while
TUGV baseUGV cam and TMarker

MAV cam are obtained from system calibra-
tion.

The PTAM algorithm runs in real time and has been
effective over small workspaces. We break down our aerial
region into disjoint parts running the PTAM algorithm on
them individually. The PTAM algorithm outputs a set of
points and the MAV camera trajectory for certain keypoints.
These results are in a variable scale which has to be solved
for to allow accurate map fusion. We find scale for points of
the camera trajectory as well as the map using:

Pworldi = TworldMAV cam × TMAV cam
ptam × P ptami (13)

and

Cworldi = TworldMAV cam × TMAV cam
ptam × Cptami (14)

where, P and C represent a map point and camera trajec-
tory point respectively. The transformation matrix TworldMAV cam

has the scale factor s embedded in it. We solve for s using
successive camera poses. The camera pose at instant k can
therefore be written as

Cworldk = sRworldMAV cam × CMAV cam
k + tworldMAV cam (15)

Subtracting successive poses and and solving for s we get,

[Cworldk+1 − Cworldk ]T × [Cworldk+1 − Cworldk ] = s2×
[CMAV cam
k+1 − CMAV cam

k ]T × [CMAV cam
k+1 − CMAV cam

k ]

Thus the scale is a ratio of distances between two camera
locations in the world frame to two camera locations in the
camera frame.

Though the MAV was localized in the global frame, the
error in pose estimates leads to error in point cloud position,
orientation and scale. These errors are particularly large
due to the instability of the quad-copter during PTAM’s
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initialization. In particular, achieving the pure translation
required for good initialization was hard on table tops.
Hence, a map fusion post processing phase was used to align
PTAM’s point clouds with the occupancy grid map.

For map fusion we find the mean of the PTAM point
cloud and find the unknown region of the occupancy grid
nearest to it. Points are uniformly sampled from this region
and the aerial PTAM point cloud are then projected onto the
occupancy grid plane.For aligning the two point clouds we
align their eigen vectors. We do so because the point clouds
to be fused have complete overlap and are sampled from a
close boundary. The process is non-iterative, making it fast
and stable.

The scale is obtained from the ratio of corresponding
eigenvectors. The rotation is obtained from the eigenvectors
and translation from the vector joining the means of both the
point clouds.

More formally, let CA and CB be the covariance matrices
of the point clouds A and B respectively. va1, va2 and
λa1, λa2 be the normalized eigenvectors and eigenvalues
corresponding to CA respectively. We assume λa1 ≥ λa2.
Similarly, for B. Then,

θ = arccos(vTa1vb1)

s∗ =
λb1
λa1

t∗ = b− a

Here, b and b are the means of point clouds A and B
respectively.

VI. SIMULATION AND COMPARATIVE RESULTS

A. Simulation

The simulation was carried out on a Intel(R)Core(TM)i7-
2600K CPU @ 3.40Ghz processor running Ubuntu version
12.04 with 8Gb RAM. The ROS framework was used to
model and simulate the ground and aerial robots. The UGV
was equipped with a Laser Range Finder (LRF) similar to
SICK LRF while the MAV was simulated with a horizontal
sonar and downward pointing 3D sensor. Various results are
shown for three different maps(Fig. 2) amongst those where
we have tested our formulation.

Fig. 3(a) shows a snapshot of simulation where the map
constructed by the UGV is shown in grey. Passive frontiers
are marked by green arrows and UGV frontier locations
are marked by red arrows. Active frontier locations are not
shown since as all the MAV’s are in passive state at current
instant. In next iteration one MAV have becomes active
and blue arrows show a pair of UGV and MAV which are
maintaining visibility constraint. Fig. 3(b) & 3(c) shows the
situation for next couple of iterations, after all agents have
reached their allotted positions.

In simulations however the MAV pose is known to a good
degree of accuracy, however in a real implementation these
observations are of prime importance.

B. Comparative Results

We present here multiple sets of comparisons of the IP
formulation vis-a-vis earlier ones. The first set of compar-
isons are shown for the heterogeneous UGV-MAV scenario
where constraints specific to such scenarios discussed before
are incorporated. The comparisons are shown from the point
of view of the net distance traveled by agents as well as
the computational time for every iteration of optimization.
The second set of comparisons depict performance gain
when constraints are relaxed thereby establishing that IP
formulation being apt for any generic exploration situation.

Graphs of Fig. (4) shows comparisons between IP formu-
lation and incremental frontier allocation method [9], [11].
The incremental method first finds the best agent-frontier
allotment based on an objective function. Once the allotment
is made the process of finding the best agent frontier pair
continues till all agents have been allotted the frontiers.
We use the same objective function of Equation 6 for all
the methods except that in the incremental formulation the
integer terms denoting the allotment of an agent to frontier
are not part of the objective function. Thus, the allotment is
computed extrinsically as the one that evaluates to the best
value of the function. Evident from Fig. 4(a)-4(c), IP for-
mulation outperforms incremental frontier allocation method
in terms of distance traveled. The average distance traveled
by an agent reduced by 10-15% in case of IP formulation.
Distance values are averaged over several runs for a given
number of agents in the map. Each run corresponds to
different starting pose of agents and the average is computed
over ten such runs. The process is repeated for varying
number of agents and plotted.

Fig. 4(d)-4(f) shows computational time for IP formulation
and incremental frontier location remains comparable. Com-
putational time is time taken for one iteration of exploration
and it includes the time taken by the path planning mod-
ule for computing paths to frontiers from agent locations,
time taken by the optimization/incremental formulation in
respective methods and time taken for graph partitioning
for distributed method. Amongst these the computational
cost/time of finding paths between all possible agent frontier
pairs is found to be maximum and dominates over all
other modules. Beside, the advantages of clustering that
have been mentioned in section III-C also helps in reducing
computational time required for finding path between agent
frontier pair. Fig.4(g) shows how the typical computational
time falls as the number of frontier clusters reduces for a
given number of agents.

Fig. 4(h) shows comparison of the IP formulation when
the constraints were relaxed, compared with result when
constraints were kept intact. Distance traveled to complete
the exploration is notably lesser. This is along expected lines
for in the absence of constraints there is more freedom
to choose the best allotment that optimizes the objective
function. Further performance gain in terms of reduced
distances with the corresponding incremental formulation
sans constraints is shown in figure 4(i). This vindicates the
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Fig. 4. Comparison between incremental frontier allotment(blue) and IP(red) on the basis of (a)-(c)Distance (d)-(e)Computation time(secs) across different
iterations for map 1, map2 and map3(L-R).(g) Comparison of time taken as number of clusters are changed (h)Comparison when constraints are intact
(red) and relaxed(blue) for IP Method.(i)Comparison between IP(red) and incremental allotment(blue) when constraints are relaxed.

IP formulation as an alternative that advances the state of the
art and can be applied for a generic exploration situation.

Further results when the agents get partitioned into multi-
ple teams and the optimization is run distributively on each
team is shown in fig. (5). Unlike the original formulation due
to breakdown of communication or other such contingent
situations the teams are unable to share information related
to the map structure amongst them. This results in an area
being explored multiple times and can be seen in increased
distances when compared with original formulation in fig.
5(a). Fig. 5(b) shows comparison on the basis of computa-
tional time. The motivation behind this effort of exploring
in multiple teams is more than anything else, to achieve the
goal of completing the exploration when communication and
other contingent hardware failures occur.

(a) (b)

Fig. 5. Blue depicts the performance when multiple teams are formed
versus original formulation (red). Comparison on the basis of (a)Distance
(b) Time.

VII. EXPERIMENTAL RESULTS

Results are presented for experimental setup discussed in
section V. Fig. 6(a) & 6(d) shows starting configuration, grey

area in figure represents mapped ground area, red markers
represent ground frontiers. Yellow arrows mark goal position
for agents. UGV1 starts exploration whereas UGV2 stays
at current position to maintain visibility with MAV at its
goal position. Fig. 6(h) shows tracking of ArMarker using
Kinect mounted on UGV2. Fig. 6(b) & 6(e) shows updated
ground map, point cloud and next set of goal positions. As
mentioned in section V pointcloud is accurate up to scale.
Fig. 6(c) & 6(f) shows the state of system at next iteration.
Fig. 6(g) shows image of scene from MAV’s camera and
fig 6(j) shows final mapping for environment showed in fig.
6(i). Movement of MAV was autonomous but at times was
teleoperated to ensure stability in flight.

VIII. CONCLUSIONS

The paper presented an Integer Programming based multi
robotic exploration framework as an alternative that advanced
the state of art when compared with previous incremental for-
mulations. The formulation provided performance gain both
in the presence of constraints that arise in a heterogeneous
team of UGV-MAV and also in the absence of such con-
straints. The latter is more akin to a traditional multi robotic
exploration scenario. Sophisticated LP relaxation techniques
coupled with practical heuristics such as clustering contain
computational times to levels comparable with previous
formulations. Finally experimental results using couple of
ground robots and Parrot drone based on this formulation
were presented. Future scope of the work include dense aerial
monocular mapping for generation of accurate terrain profiles
and aerial vehicle stabilization for sustained exploration.
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Fig. 6. Experimental setup for consecutive iterations (a)-(c)Yellow arrows represent goal position for agents, red arrows shows ground frontiers, mapped
ground area is shown in gray and colored points represent pointcloud. (d)-(f) State of real system at multiple instants. (g) Snapshot of scene from MAV’s
camera (h) Tacking of ArMarker using Kinect (j)Final mapping result showing ground map(grey) and pointcloud over obstacles for environment(i)
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