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Feasible Acceleration Count: A Novel Dynamic
Stability Metric and its use in Incremental Motion

Planning on Uneven Terrain

Arun Kumar Singh and K.Madhava Krishna

Robotics Research Center, IIIT-Hyderabad
∗

Abstract

Application of wheeled mobile robots have gradually progressed from the con-

fines of structured indoor environments to rough outdoor terrains. Material

transport and exploration are some of the few areas where wheeled robots are

required to navigate over uneven terrains. Stable and efficient navigation of

wheeled robots over uneven terrains require a framework which can correctly

ascertain the stability and maneuverability for a given robot’s state. Most ex-

isting works on uneven terrain navigation assumes a one-to-one correspondence

between postural stability and maneuverability. In this paper, we show that such

characterization is incomplete as states having high postural stability may have

restricted maneuverability depending on underlying terrain topology. We thus,

present a novel metric called Feasible Acceleration Count (FAC), introduced in

our earlier works as an unified measure of robot stability and maneuverability.

The metric gives the measure of the space of feasible accelerations available to

the robot at a given state. The feasibility is decided by a set of inequalities

which depends not only on robot’s state but also on surface normals at the

wheel ground contact point. This unique feature of the FAC metric makes it

a more appropriate choice for motion planning on uneven terrains than met-

rics like Tip-Over. We further show that since space of feasible accelerations
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is a direct characterization of the space of possible motions at a given state,

the metric FAC, also quantifies the quality of state space exploration achieved

at each step of incremental sampling based planners. We build on top of this

aspect of FAC and present an incremental trajectory planner with a novel node

selection criteria for navigation of generic four wheeled robots and articulated

systems like mobile manipulators on uneven terrain.

Keywords: Uneven Terrain, Feasible Acceleration Count, Incremental Motion

Planning, RRT

1. Introduction

With the advent of outdoor robotics and as more and more robots operate

outdoors they are entailed to navigate over terrains that are uneven. These

require some paradigm changes in robot motion planning methodologies. In

particular, one is required to go beyond usual geometric and kinematic motion

planning towards algorithms that integrate notion of stability and maneuver-

ability into trajectory planning algorithm. Most existing literature on uneven

terrain navigation assume a direct correlation between postural stability and

maneuverability. However, such characterization is incomplete as states with

high postural stability may have restricted maneuverability depending on the

topology of the underlying terrain. In this paper, an exact mathematical corre-

lation between stability and maneuverability of a robot’s state on uneven terrain

is presented through a metric called, Feasible Acceleration Count (FAC ). As the

name suggests, the proposed metric gives a measure of the space of feasible ac-

celerations available to the robot at a given state. The feasibility is decided

by a set of inequalities which depends not only on the robot states, the forces

and moments acting on it but also explicitly on the topology of the underlying

terrain. It is straightforward to note that the space of accelerations at a given

state also characterizes the space of possible motions at that state. Thus, the

concept of FAC proposed in this paper is central to the adaptation of sam-

pling based planners like Rapidly Exploring Random Trees (RRT) [1] [2], [3]
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for motion planning on uneven terrain. To understand this further, note that

sampling based planners like RRT relies on integrating the evolution model of

the system for discrete set of control inputs. This integration procedure results

in an incremental construction of a tree like data structure for the exploration

of the state space. Thus, the number of discrete control inputs available for

integration directly determines the quality of exploration of the state space. In

RRT like frameworks, number of discrete control inputs would depend only on

the resolution of discretization. However, as we show later, motion planning

on uneven terrain is associated with generic state and control dependent dif-

ferential constraints. Thus, the space of control inputs available for expansion

of tree would depend on the state of the robot and the terrain parameters. If

acceleration are taken as control inputs, then FAC gives an exact measure of

space of available control inputs and consequently the quality of state space

exploration. We build on top of this aspect of FAC and present an incremental

trajectory planner with a novel node selection criteria for navigation of generic

four wheeled robots and articulated systems like mobile manipulators on uneven

terrains.

1.1. Related Work

Stability of wheeled mobile robots on uneven terrains has been addressed in

many existing literatures, either in isolation or in the context of motion planning

on uneven terrain. One of the most popular metrics for defining the stability of

wheeled mobile robots on uneven terrain has been the force angle measure or

tip-over margin, proposed in [4] [5]. It has been used for motion planning on

uneven terrains in works like [6], [7], [8], [9], where the objective was to obtain

paths, along which at each point the robot posture satisfies the tip-over stability

constraints. An implicit assumption in these cited works is that high stability of

the robot as given by tip-over margin also corresponds to high maneuverability.

Hence, as such these works do not involve any analysis to ascertain whether

how well the robot can maneuver along the computed paths. However, this

one to one correspondence between tip-over stability and maneuverability is
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Figure 1: Figure showing front view of two robots which have similar states, forces and

moments but are operating on different terrain conditions. Tip-over stability concept would

not differentiate between the two cases. However it is quite apparent that the terrain in case

A is more favourable for motion than terrain B.

not justified. For example, consider figure 1 which shows two example scenarios

where the robots have identical state, forces, moments and wheel ground contact

location. The tip-over margin concept would not differentiate between the two

cases shown in figure 1. But it is apparent that the topology of the underlying

terrain shown in case A is more favorable for motion generation than that shown

in case B. In particular the surface normals at wheel ground contact point play

an important role in robot maneuverability, but is completely neglected by tip

over margin concept.

An alternative approach is presented in works like [10], [11], [12], where

robot’s stability is modelled through a set of constraints which enforce the re-

quirement of permanent contact and no-slip at all the wheel ground contact

points. In contrast to tip-over margin which primarily captures the postu-

ral stability, these set of constraints model stability from the point of view of

robot’s ability to maneuver and hence is more appropriate for motion planning

on uneven terrain. We further strengthen this observation later in the pa-
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per. The current proposed work also follows the approach of modeling stability

through permanent contact and no-slip constraints. However, we propose some

significant and critical advancements in the current state of the art which are

necessary for obtaining stable and highly agile trajectories on uneven terrain.

1.2. Contributions

The contributions of the proposed work are synthesized from our earlier re-

sults [19], [20] and [21]. However, in contrast to these cited works, the current

paper presents a more in-depth analysis of various factors associated with mo-

tion planning on uneven terrain. The important aspects of the proposed work

can be summarized as follows: Firstly, it provides a more rigorous mathematical

representation of permanent contact and no-slip constraints by deriving them

from the full 3D dynamics of the robot. This is in contrast to planar model of

[10] and point mass model of [11]. The presented 3D constraint model is also an

improvement over the procedure presented in [12] where the dynamics are pro-

jected into pitch, yaw and roll plane separately. Such procedure requires three

different stability computations for each state of the robot. In contrast, the

presented framework considers the full 3D dynamic model at once. Moreover,

the number of variables in stability computation is same as that in each planar

analysis of [12]. Secondly, we incorporate a framework for ascertaining the 6D

evolution of the robot’s state for a given control input on uneven terrain. Such

framework not only forms the crux of obtaining the full 3D dynamics of the

robot and consequently the stability constraints, but is also imperative for con-

structing sampling based motion planners on uneven terrain. Works like [10],

[11], [12] do not talk about any such evolution model. Thirdly, we map the solu-

tion space of the permanent contact and no-slip constraints to a unified metric

called Feasible Acceleration Count (FAC) which provides a combined measure of

stability, maneuverability and quality of state space exploration achieved at each

step of incremental sampling based planners on uneven terrain. This explicit

correlation that we describe between FAC and the efficiency of incremental sam-

pling based planners on uneven terrain motion planning problems is a unique
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feature of the current proposed work and was not highlighted in [19], [20] and

[21]. Fourthly, we develop an incremental trajectory planner with RRT like data

structure for motion planning on uneven terrain. However, in contrast to the

conventional RRT framework, the proposed incremental planner has a new and

novel FAC based node selection criteria which has been specifically carved for

motion planning on uneven terrain. The proposed planner is applied to generic

four wheeled non-holonomic robots as well as to articulated systems like mobile

manipulator.

1.3. Layout of the Paper

The rest of the paper is organised as follows. Section 2 presents the frame-

work for computing the 6 dof evolution of a generic four wheeled robot on

uneven terrain. Section 3 utilises the evolution framework to derive the 3D

dynamics of the robot and consequently the permanent contact and no-slip

stability constraints. Section 4 describes the procedure for computing the solu-

tions space of stability constraints. It also elucidates the physical significance of

the solution space in terms of robot’s stability and maneuverability. Section 5

presents the proposed incremental planner and corresponding simulation results

are presented in Section 6

2. Robot’s 6D Pose Evolution on Uneven Terrains

In this section, we derive the evolution of the robot’s 6D pose on uneven

terrain purely as a function of robot’s geometric parameters and terrain topol-

ogy. Thus, the derivation presented in this section is applicable to various

generic four wheeled passive suspension robots with varied kinematics like skid

steered, all wheel steered, Ackerman steered etc., which are extensively used

for outdoor explorations, agriculture etc. [13], [14], [15]. To proceed with the

derivation, consider a generic four wheeled robot shown in figures 2(a) and

2(b). Let the configuration of the robot at any time t be represented by the

X = (x, y, α, z, β, γ)T ( the notational dependency on variable t is dropped in the
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paper for simplicity). For a passive suspension robot, the evolution of robot’s

yaw plane configuration i.e position (x, y) and heading angle (α) can be directly

controlled. The evolution of the rest of the configuration variables i.e z coor-

dinate, roll β and pitch γ are a function of yaw plane configuration and the

terrain geometry. Mathematically, this dependency can be represented in the

following manner.





z = f1(x, y, α)

β = f2(x, y, α)

γ = f3(x, y, α)

(1)

Obtaining the evolution of 6D pose on uneven terrains reduces to that of

obtaining the algebraic form of functions f1(.), f2(.) and f3(.).

It is straightforward to guess that these functions would depend on the ter-

rain geometry. Works like [16], [17] and [18] computes the evolution of a 3

wheeled robot by solving a large set of coupled differential algebraic equations

(DAE) at each instant of robot’s motion. However, these methodologies are

computationally intensive and hence it is difficult to incorporate them within a

motion planning framework. Moreover, extension of these methodologies to 4

wheeled robot has not been presented in the literature. In our earlier work [19],

we proposed a set of coupled non-linear equations which were solved numeri-

cally to obtain the complete 6D configuration of the robot. We now present

a framework for computing good approximate analytical functional forms for

f1(.), f2(.) and f3(.), based on our work [20], [21].

For mapping the yaw plane configuration to the full 6D configuration, we

assume that the terrain equation can be known in the following form

a = g(b, c) (2)

Where a represents the terrain height at the coordinate (b, c). Some works

related to generating terrain equations from Digital Elevation Models can be

found in [22], [23] and [24]. With the help of terrain equation this section

derives analytical functions relating robot’s x, y, α to its z coordinate, roll β
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and pitch γ. Along with it, x, y, α are also related to the twelve wheel ground

contact point variables xci, yci, zci. These relations comes from the holonomic

constraints defining the geometry of the robot(refer fig.2(a))

(a) (b)

Figure 2: (a): A four wheeled robot with the vectors describing the holonomic constraint

defining the geometry of the robot shown. (b): Top-View of the robot.

−→
P og +

−→
P gci =

−→
P oci (3)

where
−→
P gci = −→r f

−→r f = R
[
δih

2.5−i
|(2.5−i)|w −(li)

]
,∀i = 1, 2, 3, 4

δi = 1, i = 1, 4

= −1, i = 2, 3
−→
P og =

[
x y z

]

−→
P oci =

[
xci yci zci

]

R is the rotation matrix describing the orientation of the {G} (refer figure

2(a)) with respect to body fixed frame {L}. We assume the form of R given in

[25] for fixed angle representation. {G} has the same orientation as the inertial

frame {0} but moves along with the robot and is attached at the same point

as frame {L} . (2.5 − i) and δ has been incorporated to ensure proper sign of
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w and h corresponding to each vertex of the chassis. li are the equivalent leg

lengths which includes the radius of the wheels. h and w are width and breadth

of the chassis.

We linearize the rotation matrix R in (3) by assuming small variation in roll

β and pitch γ. Expanding (3), we get the following equations.

xci = x− 2.5− i
|(2.5− i)|w sinα− liγ sinα+ δh cosα− liβ cosα (4)

yci = y +
2.5− i
|(2.5− i)|w cosα− liβ sinα+ δh sinα+ liγ cosα (5)

zci = z +
2.5− i
|(2.5− i)|wγ − li − δhβ (6)

The wheel ground contact points xci, yci, zci would also satisfy the terrain

equation (2) and to explicitly solve for β and γ as a function of x, y, α it

is required that (2) could be represented as a combination of piecewise linear

planes. In case when the fitted terrain equation to the DEM is non-linear we

can linearise the terrain equation about the vehicle’s geometric centre. This

linearisation is justified since any terrain can be locally represented by a linear

plane having a particular orientation in 3D space. Linearising (2) about the

current chassis centre coordinate gives

zci = k3 + k1(xci − x) + k2(yci − y) (7)

where k3 = g(x, y), k1 = ∂(g)

∂b , b = x, c = y, k2 = ∂(g)

∂c , b = x, c = y.

Substituting xci, yci, zci values from (4), (5), and (6), four equations repre-

sented by (7) can be written in the matrix form as



1 w + η1 h+ ν1

1 w + η2 −h+ ν2

1 −w + η3 −h+ ν3

1 −w + η4 h+ ν4







z

γ

β


 =




H1

H2

H3

H4




(8)

ηi, νi, Hi are given by the following expressions and are a function of sus-

pension travel length.
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Figure 3: (a): Vehicle evolution obtained through approximate closed form solutions (b):

Posture Variation along the path. The figure shows that the posture obtained through ap-

proximate analytical functions agree well with that obtained from solving (3) exactly in the

non-linear form through the numerical approach presented in our earlier work [19]. The x axis

of the plot shown refers to the arc length ”u”
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ηi = k1li sinα− k2li cosα (9)

νi = k1li cosα+ k2li sinα (10)

H1 = k1x− k1w sinα− k1h cosα+ k2y − k2h sinα+ k2w cosα+ k3 + l1 (11)

H2 = k1x+ w(k2 cosα− k1 sinα) + h(k1 cosα+ k2 sinα) + k3 + l2 + k2y (12)

H3 = k1x+ w(k1 sinα− k2 cosα) + h(k1 cosα+ k2 sinα) + k3 + l3 + k2y (13)

H4 = k1x+ w(k1 sinα− k2 sinα) + h(−k1 cosα− k2 sinα) + k3 + l4 + k2y (14)

The coefficient matrix in (8) can be pseudo-inverted to solve for z, β, γ.

However if the suspension travel length is small which essentially means that

η1 = η2 = η3 = η4 = η, and ν1 = ν2 = ν3 = ν4 = ν , with small matrix

manipulation (8) can be reduced to



0 2w 0

0 0 −2h

1 −w + η h+ ν







z

γ

β


 =




H2 −H3

H3 −H4

H4


 (15)

Inverting coefficient matrix in (15) gives z, γ, β as analytical functions of x, y, α

and consequently we obtain the functions f1(.), f2(.) and f3(.). Figure 3(a)

shows the 6D evolution of the robot obtained along a path with the analytical

functions just derived. Figure 3(b) shows that the posture obtained through

approximate analytical functions agree well with that obtained from solving (3)

exactly in the non-linear form with the numerical approach presented in our

earlier work [19]

3. Dynamics and Stability Constraints

In this section, we make use of the derivations presented in the section 2

to derive the full 3D dynamics of the robot. Considering the scope of motion

planning framework discussed in the later sections, the derivation presented in

this section, corresponds to a four wheeled robot with non-holonomic kinematics

and independent torque actuation at each wheel, similar to the class of electric
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vehicles reported in [26]. The evolution model of the considered robot on uneven

terrain can thus be described as





ẏ = ẋ tanα

ż = ḟ1(x, ẋ, α, α̇)

β̇ = ḟ2(x, ẋ, α, α̇)

γ̇ = ḟ3(x, ẋ, α, α̇)

ẍ = U1

α̈ = U2

(16)

However, it should be noted that the derivations presented in this section can

be easily adapted to any four wheeled generic vehicles with independent torque

actuation at each wheel. For example, an adaptation of the presented framework

has already been reported in our earlier works [14] for all wheel steered vehicles.

While adapting the framework to vehicles with different kinematics, only the

first line of (16) needs to be changed; the rest of the structure remains the same.

Now, proceeding with the derivation, we first use (4)-(6) to express wheel

ground contact points as a function of x, y and α. Wheel ground contact points

location are important because they decide surface unit normal at wheel ground

contact point n̂i in the following manner.

n̂i =
[
nxi nyi nzi

]T

=




gx

2
√

g2
x+g2

y+g2
z

gy

2
√

g2
x+g2

y+g2
z

− 1
2
√

g2
x+g2

y+g2
z




(17)

gx = ∂(g(b,c))

∂b , b = xci, c = yci gy = ∂(g(b,c))

∂c , b = xci, c = yci, gz = 1

Once the unit normal vectors are calculated the traction force unit vector

can be derived with the help of wheel axis unit vector µ̂i in the following manner.

t̂i =
µ̂i × n̂i

|(µ̂i × n̂i)|
(18)
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With the above information the equations of motion can be written as

4∑

i=1

Nin̂i +
4∑

i=1

Tit̂i +m
[

0 0 −g
]T

=
−→
F =

[
Fx Fy Fz

]T

(19)

4∑

i=1

ri ×Nin̂i +
4∑

i=1

ri × Tit̂i =
−→
M =

[
Mx My Mz

]T

(20)

ri =
−→
P gci (21)

Fx = max (22)

Fy = may (23)

Fz = maz (24)

Mx = IxxΩ̇x + IzzΩyΩz − IyyΩyΩz (25)

My = IyyΩ̇y + IxxΩxΩz − IzzΩxΩz (26)

Mz = IzzΩ̇z + IyyΩxΩy − IxxΩxΩy (27)

In (19), g is the magnitude of acceleration due to gravity, while, Ixx, Iyy, Izz

in (25)-(27) are the moment of inertia of the chassis and here a diagonal Inertia

matrix has been taken.

Equations (19) and (20) can be written in the following matrix form

A ∗ C = D (28)

where C =
[
Ti Ni

]T

2n×1
D =

[
m−→a I

−→̇
Ω +

−→
Ω × I−→Ω

]T

6×1
Ti,Ni,−→a ,

−→̇
Ω ,
−→
Ω

are the traction, normal forces, linear and angular acceleration and angular

velocity respectively. n is the number of wheels of the vehicle, m is the mass of

the vehicle and I3×3 is the inertia matrix. The elements ofA6×2n matrix depends

on vehicle posture, geometry and terrain dependent parameters like surface
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contact normal and traction unit vectors. It is to be noted that because of the

derivation presented from (4-15), matrix A can also be known in closed form as

a function of x, y, α. Inverting the matrix A results in the following expressions,

relating traction and normal forces to the terrain’s geometry, robot’s state and

control inputs.

Ti = ai1(max) + ai2(may) + ai3(mg + maz) + ai4(IxxΩ̇x + IzzΩyΩz − IyyΩyΩz)

+ai5(IyyΩ̇y + IxxΩxΩz − IzzΩxΩz) + ai6(IzzΩ̇z + IyyΩxΩy − IxxΩxΩy) (29)

Ni = aj1(max) + aj2(may) + aj3(mg + maz) + aj4(IxxΩ̇x + IzzΩyΩz − IyyΩyΩz)

+aj5(IyyΩ̇y + IxxΩxΩz − IzzΩxΩz) + aj6(IzzΩ̇z + IyyΩxΩy − IxxΩxΩy) (30)

∀ i = {1, 2, 3, 4}, ∀ j = i+ 4. The term g is the acceleration due to gravity.

The coefficients ai1,ai3,aj2..ain,ajn, are the elements of the pseudo inverse of

matrix A and ax = ẍ, ay = ÿ, az = z̈. The coefficients of the pseudo inverse

matrix depends explicitly on the terrain conditions and the terrain geometry.

The permanent contact and no-slip constraints can be written in terms of

traction and normal forces at the wheel ground contact points through the

following relations.

Ni > 0 (31)

|(Ti)| < ρNi ⇒ −Ti ≤ ρNi, Ti ≤ ρNi (32)

C(X, Ẋ,U) =





−Ni < 0

−Ti ≤ ρNi, Ti ≤ ρNi

(33)

In (32), ρ is the coeffecient of friction. It is straightforward to understand

that if matrix A could be inverted symbolically, we could have analytical func-

tional description of constraints (33) and in theory we could have a gradient

descent based algorithm to generate a one shot stable trajectory. However,
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robots operating on uneven terrain generally have 4-8 wheels which makes A

under-constrained and have to be pseudo-inverted. Some algorithms like [27]

computes symbolic pseudo inverse for small matrices having one or two inde-

pendent variables. However pseudo-inverting matrix A, whose dimension will

increase with the number of wheels can turn into a complex problem. It should

be noted that this problem is not unique to the framework proposed in this

paper but is fundamental with modelling robot dynamics in 3D and relating

traction and normal forces to velocity and acceleration in closed form. This is

a fundamental bottleneck associated with using permanent contact and no-slip

as stability constraints. In contrast, constraints resulting from tip-over stability

[4], [5] have an analytical form and hence is easier to incorporate in motion

planning. But as mentioned earlier, this increase in complexity resulting from

the use of permanent contact and no-slip constraints is essential for accurate

motion planning on uneven terrain.

4. Solution Space of the differntial stability constraints

The variable in the differential stability constraints (33) are the control in-

puts. Recall from (16) that we take acceleration as the control input. Thus, we

are interested in obtaining the space of feasible/stable accelerations satisfying

the constraints (33) for a given state of the robot. We next present a method for

obtaining the feasible set of accelerations. We then describes how this feasible

set can itself act as a stability metric.

4.1. Obtaining Feasible/Stable Set of Accelerations

As shown in (16), the control input is taken as the acceleration pair (ẍ, α̈).

To obtain the feasible set of accelerations at any given state, we search ẍ in

the range (ẍmax, ẍmin) and α̈ in the range (α̈max, α̈min) to find those values

which satisfy (33). In other words, we generate a fixed grid of values for ẍ and

α̈ and ascertain which of the grid point values satisfy the constraints. Here the

subscript min and max stands for maximum negative and positive accelerations

15



respectively. We refer to the number of discrete feasible acceleration pairs at a

given state as the feasible acceleration count (FAC ).

For a non-holonomic robot, the control input is usually body frame aligned

acceleration v̇ and not the ẍ. However, these two are related in the following

manner.

(ẍ, ÿ, z̈)T = R
[

0 v̇ 0
]T

+ Ṙ
[

0 v 0
]T

(34)

In (34), v is the robot velocity in the body/local reference frame. Due to the

non-holonomic constraint v and v̇ are assumed to align with the robot longitu-

dinal axis in the robot’s body/local frame. Now with the help of the evolution

model (16) and the derivations presented in section 2, at every state of the

robot, we can compute the space (ẍmax, ẍmin) corresponding to space of actual

control input (v̇max, v̇min). The process of obtaining the feasible acceleration

set can then be performed as described above.

4.2. Physical Significance of Feasible Acceleration Count (FAC) from Stability

and Motion Planning Point of View

Maneuver at a given state is dictated by the control input which in our case

is the acceleration. Thus, encodes the ability of the robot to perform various

set of motions at given state and can be used as a metric to describe how stable

the robot is on the terrain. Alternatively, it can be viewed as the set of discrete

control inputs available for expansion of the tree in the sampling based planners

like RRT. As the state of the robot evolves on the uneven terrain, FAC and

consequently the set of feasible control inputs would change. The number of

available control inputs directly affects the quality of state-space exploration.

Thus, it can be seen that there is a direct co-relation between the quality of

stability and maneuverability of the robot as defined by FAC and quality of state

space exploration achieved at each step of incremental sampling based planners

like RRT. Deducing this co-relation is one of the important contribution of the

proposed work. In the light of this information, we next summarize the proposed

incremental trajectory planner for motion planning on uneven terrain.
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5. Incremental Trajectory Generation on Uneven Terrain

The proposed incremental trajectory planner has a data structure similar

to (RRT) [1]. However in contrast to the general RRT framework [1], it has

an additional step for computing the space of feasible control input. Further, a

novel node selection criteria is introduced for the expansion of the tree.

Step 1

For the current state of the robot (x, y, z, α, β, γ, ẋ, ẏ, ż, α̇, β̇, γ̇), search for ẍ

in the range (ẍmax, ẍmins) and α̈ in the range (α̈max, α̈min) to find n discrete

values satisfying the stability constraints (33). The evolution model (16) is

integrated for a short duration of time with n feasible control inputs to obtain

n next instant state.

Step 2

For the n number of states resulting from the forward evolution described

above, the following metric is evaluated

M =
FAC

d
. (35)

where d represents the geodesic distance to the goal. A state which max-

imises the metric M is chosen and updated as the current state. Metric M is

maximised when FAC is maximised and distance to the goal is minimized. The

step 1 and 2 are repeated till the robot reaches the goal configuration.

To understand the motivation and necessity for the proposed node selection

criteria, note that the node selection criteria for a general RRT framework [1]

involves computing the distance of the all the current nodes of the tree with a

randomly selected configuration. The node which has the minimum distance is

selected for expansion and the iteration continues. Since the random configura-

tion can be chosen from the obstacle free work space, it automatically satisfies

the geometric obstacle avoidance constraints. But unlike indoors where obsta-

cles are vertical projections from a horizontal ground plane and all obstacles
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need to be strictly avoided, in outdoors the distinction between obstacles and

ground is hazy as the obstacles and ground blend with each other to form the

terrain. As such an obstacle free configuration has little physical significance.

On uneven terrains, stability and maneuverability is far more generic concept. If

the robot can maneuver with stability over a part of the terrain, then that part

is not an obstacle and vice versa. But it is difficult to ascertain the stability of a

configuration as the stability constraints depend on both state and the control

input. Thus the proposed metric M is an apt choice for node selection criteria

as it captures the stability and maneuverability of robot’s state corresponding

to a particular node in a tree. Moreover, as discussed in the previous section,

FAC decides the quality of state space exploration and hence maximising FAC

would ensure better efficiency of the proposed incremental trajectory planner.

Figure 4 illustrates couple of steps of the proposed incremental trajectory

planner. Four feasible control inputs are obtained at the first step. The forward

evolution model is integrated for a short duration of time with these four control

inputs, resulting in construction of a tree where the number of branches is

equal to the number of feasible control inputs obtained. Out of the four states

resulting from the integration of the evolution model, the one shown in blue has

the highest value for M. Hence, this particular state is chosen and updated as the

current state and the process is repeated. As evident from the figure, that the

number of available control inputs for the construction of tree at each iteration

would vary as the state of the robot evolves on the uneven terrain. In particular,

it can be seen that only three feasible control inputs (and consequently three

branches) are obtained at the second iteration as compared to four, obtained at

the first iteration.

6. Simulation Results

The objective of this section is two fold : Firstly, to highlight the efficacy of

the proposed incremental trajectory planner in generating trajectories satisfying

stability constraints (33). In particular, we highlight the effect that the metric
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Figure 4: Iterations of the proposed incremental trajectory planner. As can be seen that the

number of control inputs available for the construction of tree at each iteration varies as the

state of the robot evolves on the uneven terrain.

M has on trajectory produced by incremental sampling based planners. Sec-

ondly, to show the effectiveness of Feasible Acceleration Count (FAC ) as a com-

bined measure of robot’s maneuverability and stability. In the simulations, we

consider a small robot of dimension 1.2×1.2×1.2 m3 and mass m = 10kg in the

simulation. The model of the uneven terrain had the form A sin(ax)+B cos(by).

Terrains with different geometry were generated by changing the coefficients of

the terrain model. The friction coefficient between the robot wheels and the

terrain, ρ was kept at 0.7. The proposed incremental planner was required to

generate trajectories between a start and a goal position. The final heading and

velocities were considered free. The feasible ẍ and α and consequently FAC

was obtained by searching in a 100 X 100 grid

We first present motion planning results for a generic four wheeled mobile

robot on uneven terrain. We then extend the proposed trajectory planner,

the concept of FAC and cost metric M to articulated robotic systems like a

mobile manipulator. We show that by just expanding the state space, all of

the concepts described till now can be naturally applied for motion planning of

high-dof systems like mobile manipulators on uneven terrain.
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6.1. Effect of Metric M on Motion Planning on Uneven Terrains

In this section, we highlight how the metric proposed in (35) influences tra-

jectory generation on uneven terrain. For this purpose, two sets of trajectories

as shown in figure 5(a)-5(b) were computed. The first set of trajectories (shown

in green) maximizes the metric M of (35), while the trajectories shown in blue

are biased by only the distance to the goal. The variation of FAC along both

sets of trajectories are shown in the figures 5(c)-5(d). For the sake of presen-

tation in the plots, we normalise FAC with that obtained on the flat terrain to

obtain a number between 0 and 1.It can be seen from these figures that while

distance only metric results in shorter trajectories, metric M based trajectories

are more stable in terms of FAC. In particular, note the highlighted portions

in figures 5(c) and 5(d). FAC along trajectories biased by only the distance to

the goal, gets very close to zero. In contrast, optimization of metric M at each

instant of the robot’s motion ensures that FAC remains well above zero. As

stated high FAC signifies high stability and maneuverability and this can be

also be inferred by the fact that the FAC trajectories are better aligned with

the gradient of the terrain.

It can be easily noted that the proposed incremental planner based on metric

M is greedy in nature. It finds the node that maximises M for the next instant.

However, the planner does not include information ahead of the immediate next

instant nodes. In that sense, while the planner with metric M would move to

the node with a higher FAC for the next instant when compared with distance

only metric, this action need not always result in globally higher FAC when

compared with distance only metric based trajectories. For example, consider

figure 5(d) where towards the end, the FAC along distance biased trajectories is

more than that obtained along metric M biased trajectories. However, in spite

of this limitation, we have observed in simulations that on an average metric

M based trajectories ensures far higher FAC than trajectories biased by only

the distance to the goal. This is because as explained in the previous sections,

FAC directly quantifies the efficiency of the state space and thus, metric M

biased incremental planners can perform better exploration of the state space
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and thus, is more likely to converge faster to the goal.

6.2. Choice of FAC Vs Tip-Over Metric for Motion Planning on Uneven Ter-

rains

Figure 6(a)-7(d) show the trajectories generated on uneven terrain between

four different start and goal locations. Two kinds of trajectories were generated

in each example. The first set of trajectories (XF0, XF1, XF2, XF3) shown

in red result from using stability constraints presented in (33) which enforces

the requirement of permanent contact and no-slip at the wheel ground contact

points. Consequently, these set of trajectories use metric M as given in (35) as

the node selection criteria. The second set of trajectories (XT0, XT1, XT2, XT3)

shown in blue are obtained by considering the constraints resulting from the

tip-over stability concept[4] . The node selection criteria for constructing these

trajectories was obtained by modifying the cost metric as M = tip−over−margin
d .

Thus, the trajectories shown in red seek to optimize FAC at each iteration of

the trajectory planner, while the trajectories shown in blue optimize the tip-over

stability. A common pattern that emerges out of all the four examples 6(a)-

7(d) is that the tangent to the FAC based trajectories aligns better with the

gradient of the terrain than the tip-over based trajectories. Since the tangent to

the trajectory would correspond to the robot heading, FAC based trajectories

would encourage robot to move along the gradient. It can be intuitively reasoned

that it is easier to maneuver while moving along the gradient of the terrain than

across it. Thus the behavioral differences between the FAC and tip-over based

trajectories further strengthens the discussion of section 1.1: tip-over stability

does not capture the ability of the robot to execute various motions and is not

suitable for motion planning on uneven terrain. FAC on the other hand has

been carved out specifically for motion planning and can act as the combined

measure of maneuverability and stability. To further quantitatively justify this

claim, two sets of simulations were performed. We evaluated the tip-over margin

along the FAC based trajectories, XF0,XF1,XF2,XF3 and FAC along the

tip-over based trajectories XT0,XT1,XT2,XT3. The results are summarized
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in figure 8(a)-8(d). For the sake of comparison, we normalise FAC and tip-

over margin by the values obtained on the flat terrain and thus they appear

in the plots as non-dimensional number between 0 and 1. It can be seen from

the figures that FAC based trajectories also ensures that the tip-over stability

constraints are satisfied. However, the converse is not true as FAC goes to zero

at various places along the trajectories based on tip-over stability constraints.

Figure 9(a)-9(d) show the variation of robot’s roll, β, pitch, γ and z co-

ordinate of the robot along the FAC based trajectories, XF0, XF1, XF2 and

XF3. It can be seen that the plots further validate the approximate closed form

evolution model derived in section 2. On moderately uneven terrains, baring a

few isolated points, the evolution obtained through approximate model agrees

well with that obtained from solving the non-linear model (3) exactly through

numerical means. At this point, it is worth mentioning that on more complex

terrains, one could easily resort to exact numerical solution of (2) for deducing

the evolution of 6D pose of the robot. Use of numerical solution over approxi-

mate closed form solution, does not in any way affect the framework described in

this paper. To be precise, the derivation of dynamics, the concept of FAC and

the incremental motion planning framework holds as such with numerical solu-

tion approach as well. A preliminary implementation with numerical solution

approach can be found in earlier work [19].

Figure 10(a)-11(d) validates the satisfaction of permanent contact and no-

slip constraints, (33) along the FAC based trajectories.

6.3. Motion Planning for Mobile Manipulators on Uneven terrain.

In this section, we consider the problem of coordinating the motion of the

manipulator and the robot base when the manipulator is not constrained to

follow any trajectory. Similar to the previous section, the objective still remains

to generate feasible/stable trajectories for the robot base between a given start

and a goal location. However, now appropriate motions for the additional dofs

of the manipulator also needs to be planned so that the combined system can

navigate without loosing stability on uneven terrain. These kind of situations
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Figure 5: (a)-(d): Influence of the proposed node selection metric M on trajectory generation

on uneven terrains. It can be seen from the figures (a) and (b) that the incremental trajectory

planner biased by only distance to the goal produces shorter trajectories. In fact, the distance

biased trajectories actually cuts across the gradient of the terrain. In contrast, the trajectory

planner biased by the metric M aligns itself with the gradient of the terrain. While, this

increases the trajectory length, it also ensures a higher stability. The stability of the robot

as measured by FAC for distance only and metric M based trajectories are shown in (c) and

(d). It is easy to observed that FAC for distance biased trajectories gets very close to zero,

while in contrast, metric M biased trajectories enjoy FAC well above zero.
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Figure 6: Trajectories XF0, XF1 produced by the incremental sampling based planners with

metric M = FAC
d

. These trajectories are compared with XT0, XT1 produced by the planner

with metric M = tip−over−margin
d

. It can be clearly seen that FAC based trajectories are

better aligned with the gradient of the terrain, thus allowing for better maneuverability.
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Figure 7: Similar results as that presented in figures 6(a)-6(d). Again, it can be seen that

FAC based trajectories XF2 and XF3 are better aligned with gradient of the terrain that

tip-over margin based trajectories XT2 and XT3
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Figure 8: (a)-(d): Quantitative Comparison of FAC with tip-over stability metric. Both FAC

and tip-over margin were evaluated along the trajectories, XF0, XF1, XF2, XF3 obtained

through FAC and the trajectories XT0, XT1, XT2, XT3 obtained through tip-over. It can

be seen that FAC trajectories ensures that the tip-over margin also remains above zero.

However the same conservativeness is not shown by tip-over trajectories as FAC goes to zero

at various points along the tip-over trajectories. This experiment further strengthens the

position of FAC as a combined measure of manoeuvrability and stability.
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Figure 9: (a)-(d) Posture variation along the FAC trajectories. It can be again seen that

the approximate closed form evolution model agrees well with the exact non-linear evolution

model.

often arise in planetary exploration, where rovers equipped with a manipulator

are required to navigate over general uneven terrain. Moreover the framework

can also be used in situations where the mobile manipulator is required to

transport objects on uneven terrain, [28]. The generated trajectories seek to

maximize the FAC for the combined robot and manipulator system.
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Figure 10: Satisfaction of permanent contact constraint (Ni > 0) and no-slip constraint

(|T | − ρNi ≤ 0) along FAC based trajectories XF0 and XF1
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Figure 11: Satisfaction of permanent contact constraint (Ni > 0) and no-slip constraint

(|T | − ρNi ≤ 0) along FAC based trajectories XF2 and XF3
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The problem of coordinating the motion of the robot base and the manip-

ulator has been previously addressed in works like [5], [29], [30], . A two level

approach has been adopted in these cited works, where at the first level a path

is computed in the configuration space and then at the second level an appro-

priate time parametrization of the paths are obtained considering the effect of

manipulator dynamics. These approaches suffer from the drawback that the

configuration space planning needs to be repeated if there exists no feasible

velocity and acceleration between two points, which as already shown in the

previous section, could indeed often be the case on uneven terrains. Authors in

[31], [32] address a relatively simpler problem of analysing the mobile manipula-

tor stability for a given trajectory of robot base and manipulator. But since they

do not provide any framework for computing the general 6 dof evolution of the

robot base, extending their method to a more general planning domain would

be difficult. The current paper proposes an unified approach of simultaneous

motion planning of robot base and manipulator on uneven terrain.

The approach can be naturally built on the concepts discussed till now by

just expanding the configuration space and control input space to include the

manipulator joint variables. The configuration space and control input space of

the mobile manipulator would have the following form

Xman = (x, y, z, α, β, γ, φi)T ,Uman = (ẍ, α̈, φ̈i),∀i = 1, 2...p (36)

where φi are the manipulator joint angles and p is the number of joints in

the manipulator. The expansion in the configuration and control input space

induces the following changes in the expression for traction and normal forces.

Ti = ai1(max + F0x) + ai2(may + F0y) + ai3(mg + maz + F0z)

+ai4(IxxΩ̇x + IzzΩyΩz − IyyΩyΩz + M0x)

+ai5(IyyΩ̇y + IxxΩxΩz − IzzΩxΩz + M0y)

+ai6(IzzΩ̇z + IyyΩxΩy − IxxΩxΩy + M0z) (37)
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Ni = aj1(max + F0x) + aj2(may + F0y) + aj3(mg + maz + F0z)

+aj4(IxxΩ̇x + IzzΩyΩz − IyyΩyΩz + M0x)

+aj5(IyyΩ̇y + IxxΩxΩz − IzzΩxΩz + M0y)

+aj6(IzzΩ̇z + IyyΩxΩy − IxxΩxΩy + M0z) (38)

where
−→
F 0 = G1(x, y, α, φi, φ̇i, φ̈i) and

−→
M0 = G2(x, y, α, φi, φ̇i, φ̈i) are the re-

action forces exerted by the manipulator on the robot’s chassis in the global

frame. The functions G1(.) and G2(.) can be obtained by Newton-Euler for-

mulation which involves computing the linear and angular velocities of each

link recursively through outward iterations starting from the base link and then

with its help, computing the forces and moments at each link through inward

iterations starting from the last link. The equation for recursively computing

the velocity, acceleration, forces and moments is given by [25]. Note that the

effect of robot’s base motion on manipulator dynamics is taken into account by

superimposing its motion on the base link of the manipulator during outward

iterations. Corresponding to (37) and (38), a feasible acceleration would now be

defined as a tuple (ẍ, α̈, φ̈i) which satisfies the stability constraints (33). Conse-

quently feasible acceleration count, FAC is expanded to include the manipulator

accelerations.

In order to perform motion planning for the mobile manipulator system in

the same manner as presented for the four wheeled robot in the previous sec-

tion, the proposed incremental trajectory planner is applied with the expanded

configuration and control input space. The stability constraints would have the

modified expression for traction and normal forces and the cost metric M now

depend on the manipulator accelerations as well. The model of the mobile ma-

nipulator used in the simulation is shown in figure 12. The manipulator consists

of a 2 dof arm. The D-H parameters and inertial properties of the manipulator

are summarized in tables 1 and 2 respectively and are taken from our earlier

work [20]. Further, the simulation results presented in the subsequent sections

are derived from [20]. However, we present a much broader analysis as compared
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to [20]. The feasible tuple (ẍ, α̈, φ̈1, φ̈2) and consequently FAC was obtained by

searching in a grid of 100 X 100 X 100 X 100 points.

The simulation consists of the following major parts: (i). Comparisons of

the trajectories obtained for the robot plus manipulator system and only robot

base in terms of FAC to analyze the effect of manipulator motion on stability

(ii). Analysis of the manipulator and robot base motion . (iii). Comparison of

stability of the mobile manipulator from the viewpoint of tip over margin and

FAC.

Figure 12: Model of mobile manipulator used in the simulation. It comprises of a base of a

generic wheeled mobile robot with a two dof non-planar arm.

Table 1: D-H Parameter of the Manipulator

Joint αi−1 ai−1 di φi

1 0 0 d1 φ1

2 pi
2 l1 0 φ2

3 0 l2 0 0

6.3.1. Comparison of Robot plus Manipulator and only Robot’s Motion in terms

of FAC

Figure 13(a) shows the final trajectories on uneven terrain. Two trajec-

tories Xm0, Xm1 are generated for the mobile manipulator starting from the
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Table 2: Inetial Properties of the manipulator

Link Ixx(kg −m2) Iyy = Izz(kg −m2) mass(kg) di(m) li(m)

1 75 ∗ 10−6 2.5 ∗ 10−3 0.5 0.40 0

2 75 ∗ 10−6 2.5 ∗ 10−3 0.5 0 0.75

3 75 ∗ 10−6 2.5 ∗ 10−3 0.5 0 0.75

same initial robot base configuration but different manipulator configuration.

A trajectory for only the robot base without the manipulator is also planned

for comparative purposes which will be referred to as Xv. The trajectory Xv

is significantly different from Xm0 and Xm1 and to understand the underlying

cause behind this, we analyse the FAC for the robot base without the manip-

ulator when evolved (artifically placed) along the trajectory of Xm0 and Xm1.

The FAC plots are shown in figure 14(a) and 14(b). Similar to previous section,

the normalised version of FAC is presented. It can be seen that while robot

without the manipulator has higher FAC at some places, mobile manipulator

on an average shows better performance. In fact, FAC for the robot base goes

to zero at some places along Xm0and Xm1. For example consider figure14(a),

where around 58th simulation step (x = 2.24,y = 3.6) the FAC for the vehicle

goes to zero for the first time. Hence at this point, the path Xv and Xm0 which

were very similar prior to this point, bifurcates. The role of the manipulator in

increasing the FAC at this particular point for the combined robot and manip-

ulator system can be inferred from table 3. As can be seen from the table that

the robot without the manipulator violates the permanent contact and no-slip

stability constraints (33) while utilizing the reaction forces of the manipulator,

the combined system of robot and manipulator is able to improve upon the

constraint values. This further reiterates the fact that planning an appropri-

ate motion for the manipulator is necessary for planning stable trajectories for

the combined robot and manipulator system. This can also be inferred from

figure 14(c) which shows the FAC plots along Xm0 when the manipulator is

kept fixed. The plot shows the FAC for various possible fixed positions and it
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can be seen that no fixed position maintains a non-zero FAC along the entire

trajectory.

Table 3: Comparison of only Robot base and Mobile Manipulator

minNi max(|Ti| − ρNi)

OnlyRobotbase −0.79 22.15

MobileManipulator 14.39 −10.67

6.3.2. Analysis of Motions of Combined Robot and Manipulator System

Figure 15(a) shows the 3D evolution of the mobile manipulator along Xm0

where it moves from right to left towards the goal. Common intuition dictates

that when the robot’s base is moving up the slope, the most appropriate position

for the manipulator is towards the front and vice-versa while coming down the

slope. The manipulator tries to follow this as closely as possible provided it finds

a feasible acceleration. For example consider the initial part of the manipulator’s

trajectory shown in a magnified view in figure 15(b) . It can be seen from the

figure that the robot’s base is moving up the slope in the encircled part C1 but

due to the lack of appropriate feasible acceleration, there is very little movement

of the elbow joint(φ1) (shown in yellow) and the shoulder joint (φ2)(shown in

pink). This can be confirmed by the plot of joint angles shown in figure 15(c)

(sim step 0-20). However during the encircled part C2, when the robot’s base is

moving down the slope, the elbow joint is able to rotate backwards and shoulder

joint downwards(sim step 20-50). Moreover the manipulator moves in a way so

as to compensate for the centripetal forces acting on the robot’s base.

6.4. Comparison between FAC and Tip Over Stability Metric for Mobile Ma-

nipulator

In this section we compare FAC and Tip-Over as stability metric with regard

to trajectory planning for articulated systems like a mobile manipulator. We

validate that the ability of FAC to capture both stability and maneuverability

is applicable for articulated systems as well. To this end, two sets of manipulator
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trajectories were computed along Xm0 and Xm1. Similar to section 6.2 one set

is based on the permanent contact and no-slip constraints (33) and maximizes

FAC while the other set uses the Tip-Over constraints [4] and maximises tip-

over margin.

Figure 16(a) gives the FAC and tip-over margin plot along the trajectories

Xm0 and Xm1 for the set of manipulator motions aimed at maximizing FAC.

It can be seen from the figure that maximizing FAC ensures that both tip-over

margin and FAC remain above zero. However the situation is quite different in

figure 16(b) which shows the results for the set of manipulator motions aimed

at maximizing tip-over margin. It can be seen that while the tip-over margin

has improved as compared to figure 16(a), FAC has drastically deteriorated.

This further shows that FAC is a more conservative metric and its satisfaction

generally ensures stability beyond what is predicted by tip over margin.

7. Conclusions and Future Work

In this paper we presented a novel metric called Feasible Acceleration Count

or FAC. The metric was derived from the full 3D dynamics of a generic four

wheeled robot on uneven terrain and gives a measure of the space of feasible

accelerations at a given state of the robot. It was shown that FAC can act as

an unified measure for robot maneuverability and stability. Moreover it was

explained in detail, how FAC represents the space of control inputs available

for the expansion of the tree in incremental sampling based trajectory planners

like RRT. Thus FAC also quantifies the quality of state space exploration and

consequently efficiency of motion planning on uneven terrains. We built on top

of this aspect of FAC and proposed an incremental trajectory planner with

RRT like data structure. The proposed planner was applied for motion plan-

ning of a generic four wheeled robot as well as articulated systems like mobile

manipulators on uneven terrain.

The proposed trajectory planner however is computationally intensive be-

cause of two primary reasons. Firstly, the trajectory is only constructed incre-
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mentally and hence it’s convergence to the goal would be dictated by a great

extent by the time step of integration of the evolution model at each iteration.

Secondly, at each iteration the solution space of the differential constraints needs

to be computed. In the current chapter a brute force search in the discretized

control input space was employed to compute the solution space. Thus, one of

our current primary focus is on developing efficient methodologies for comput-

ing the solution space of feasible accelerations. To this end, we are adapting the

non-linear time scaling based methodology presented in our previous work [21],

which computes a one shot solution space of feasible velocities and accelerations

along a given path and combining it with the concept of FAC. The crux of the

idea is that computing FAC along a path would reduce to computing the max-

imum and minimum feasible accelerations and can be reduced to solving a set

of single variable inequalities through our non-linear time scaling methodology

of [21].
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Figure 13: (a),(b): FAC based trajectories obtained for only the robot base and the combined

robot base plus manipulator system
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Figure 14: (a), (b): FAC variation of only robot base along the mobile manipulator tra-

jectories. The figures clearly show the role of manipulator’s motion in improving FAC, as

mobile manipulator is stable at various points along the trajectories where only robot base

would loose stability. (c): FAC variation along the obtained mobile manipulator trajectories

if the manipulator is kept locked at various different configuration. It can be seen that no

manipulator configuration can ensure a non-zero FAC along the entire trajectory, thus further

re-iterating the need of proper coordination between the manipulator and robot base motion.
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Figure 15: (a),(b): Evolution of mobile manipulator on uneven terrain. (c): Plot of manipu-

lator configuration
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Figure 16: (a),(b): Figures showing that the conservativeness of FAC over tip-over stability

concept is valid for even articulated robotic systems like mobile manipulator. Along each

trajectories obtained for the mobile manipulator, two sets of manipulator trajectories were

computed. One set optimizes FAC while other set optimizes tip-over margin. It can be seen

that optimizing FAC also ensures that tip-over remains above zero. However FAC goes to

zero at various points along the trajectory if the manipulator motion is aimed at maximising

tip-over
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 A novel dynamic stability metric called Feasible Acceleration Count(FAC) is proposed 

 FAC gives a measure of the space of feasible/stable accelerations at a given state. 

 It acts as a unified metric for quantifying stability and maneuverability of robot. 

 It quantifies the efficiency of state space exploration in sampling based planners. 

 An incremental planner with a novel node selection criteria based on FAC is 

proposed 
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