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Abstract— Computing time optimal motions along specified
paths forms an integral part of the solution methodology for
many motion planning problems. Conventionally, this opti-
mal control problem is solved considering piece-wise constant
parametrization for the control input which leads to convexity
and sparsity in the optimization structure. However, it also
results in discontinuous control trajectory which is difficult to
track. Thus, in this paper we revisit this time optimal control
problem with the primary motivation of ensuring a high degree
of smoothness in the resulting motion profile. In particular, we
solve it with continuity constraints in control and higher order
motion derivatives like jerk, snap etc. It is clear that such
constraints would necessitate the use of time varying control
inputs over the commonly used piece-wise constant form.

The primary contribution of the current work lies in the
introduction of a C∞ class of time scaling functions represented
as parametric exponentials. This in turn allows us to represent
time varying control inputs as products of parametric expo-
nential and a polynomial functions. We present the motivation
behind adopting such representation of time scaling function
over more common polynomial forms, both from mathematical
as well as implementation standpoint. We also show that the
proposed representation of time scaling function and control in-
put leads to a very simple optimization structure where most of
the constraints are linear. The non-linearity has a quasi-convex
structure which can be reformulated into a simple difference of
convex form. Thus, the resulting optimization can be efficiently
solved through sequential convex programming where, at each
iteration, the constraints in difference of convex form are further
simplified to more conservative linear constraints.

I. INTRODUCTION
To reduce the complexity of a general motion planning

problem, it is often broken down into two hierarchical steps.
At the first step, smooth kinematically feasible, collision free
paths are computed, and then at the second step, motion pro-
files along it are computed subject to velocity, acceleration
bounds and higher level constraints such as dynamic collision
avoidance. Some such works can be found in, [1], [2]. Thus,
computing time optimal motions along a given path subject
to some generic set of constraints is critical to various motion
planning problems.

Time optimal control along specified paths decomposes
a general optimal control problem into just two variables,
velocity and acceleration along the given path. These two
variables can respectively be considered as the pseudo state
and control input. Many existing works like [3], [4], [5],
[6] solves this optimal control problem considering piece-
wise constant form for the control input (path acceleration).
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As shown in [5], [6], such representation leads to convexity
and sparsity in the structure of the resulting optimization.
Convex optimizations are not only computationally fast, but
also various high fidelity open source solvers like [7] exist for
rapid prototyping. But this computational gain provided by
piece-wise constant form comes at the cost of discontinuous
control trajectory which are difficult to track [8]. Although
[9] uses piece-wise constant control, it includes additional
jerk constraints to smoothen the transition of control inputs
between the maximum and minimum bound.

In this paper, we revisit this problem of time optimal
control along specified paths with the primary motivation of
ensuring high degree of smoothness in the resulting motion
profiles. This is accomplished by enforcing continuity in the
control inputs, as well as higher order motion derivatives
like jerk, snap, etc. We show that the proposed framework is
capable of ensuring motion continuity upto any desired order,
depending on the smoothness of the given path. It is clear that
control and motion continuity constraints would necessitate
the use of time varying control input and consequently non-
linear time scaling function. Most commonly, non-linear time
scaling functions are represented as parametric polynomial
functions like B-Spline [10], [11], [12]. However, we show
in section III that, for the problem of path constrained time
optimal control, there is a necessity to depart from this
polynomial representation. To give a quick preview here,
we show that it is difficult to enforce the necessary positive
definite condition on time scaling functions which are based
on polynomial representations.

The primary contribution of the current work lies in the
introduction of a globally C∞ class of non-linear time
scaling functions, represented as parametric exponentials.
It comes as a generalisation of a globally C0 class of
functions, introduced in our earlier works [2], [13] for
differentially constrained motion planning problems and used
in [14] within the context of path constrained time optimal
framework. The parametric exponential based time scaling
function allows us to represent time varying control inputs
as product of a parametric exponential and a polynomial
function. We show that such representation leads to a very
simple optimization structure where most of the constraints
are linear. The non-linearity has a quasi-convex structure
which can be reformulated into a simple difference of convex
(DC) form [16]. Although theoretically any non-convex
constraint can be represented in DC form, obtaining the
exact mathematical representation is not trivial. Moreover
the complexity of the optimization is dictated by the chosen
DC representation [17]. We show that the DC reformulation



presented in the current work has the simplest form. The
resulting optimization is solved through sequential convex
programming where, at each iteration the DC constraints are
further simplified to a more conservative linear constraints.
We also compare our proposed time scaling function with
the current state of the art in non-linear time scaling function
[12] and show significant improvement in terms of optimality
and fidelity of the resulting optimization.

The rest of the paper is organized as follows: Section
II describes the problem formulation along the lines of [5]
and [6] in the form of an optimization problem. Section III
introduces the proposed C∞ class of scaling functions and
subsequently presents a simplification of the optimization
problem . Section IV explains the solution procedure through
sequential convex programming. Section V presents some
comparative results and discussions.

II. PROBLEM FORMULATION

Without loss of generalization, we consider a path in
Euclidean space i.e X(u) = (x(u), y(u), z(u))T , where
u ∈ [u0 uf ] is the path variable. The objective is to compute
time optimal motion profiles along the path X(u) subject
to actuator constraints. Like [4], [5] we assume that the
actuator constraints can be transformed to equivalent bounds
on acceleration. This assumption holds for many common
robotic systems like manipulators [4] and non-holonomic
wheeled mobile robots [14]. Moreover even for robotic
systems like quadrotors time optimal planning can be done
with acceleration bounds as actuator constraints [18]. Thus,
building on the philosophy of [3] and [4] to compute time
optimal motions, at each point along the path, we seek to
bring the velocity profile of the robot as close as possible to
the maximum velocity limit subject to acceleration bounds.
The formulation presented in this section has been done
assuming a free flying robot in 3D space like a UAV.
Extension to manipulator, non-holonomic systems etc. can
be easily done.

The total velocity v(t) and acceleration a(t) of a robot
operating in 3D space can be written as

v(t) =
√

ẋ(t)2 + ẏ(t)2 + ż(t)2, a(t) =
√

ẍ(t)2 + ÿ(t)2 + z̈(t)2

(1)
ẋ(t), ẍ(t) and similarly others represents individual veloc-

ity and acceleration components respectively. They can be
derived from path derivatives x

′
(u), x

′′
(u) by transforming

the path variable from u to the time variable t which results
in the following expressions.

Ẋ(t) = X
′
(u)

du

dt
, Ẍ(t) = (

du

dt
)2X

′′
(u) + X

′
(u)

d2u

dt2
(2)

The above expression suggests that the velocity compo-
nents are derived by scaling the path derivatives with the
function du

dt which is called the scaling function and decides
the transformation from the path variable u to the time
variable t. du

dt and d2u
dt2 is equivalent to the concept of path

velocity and acceleration in [3], [4], [6] . In all these works,
path acceleration, which can be considered as a pseudo
control input is piece wise constant. In [5], a piece-wise

constant form of d2u
dt2 is used. But as shown in the next

section, in the current proposed work du
dt and d2u

dt2 belongs
to globally C∞ class of functions.

Using the notation u̇ = du
dt and substituting (2) in (1) we

get
v(t(u)) = u̇

√
v(u), v(u) = (x

′
(u))2+(y

′
(u))2+(z

′
(u))2 (3)

As stated above, time optimal control along a specified
path reduces to that of bringing the velocity profile as close
as possible to maximum velocity limit. In other words, the
following objective function is to be minimized.

J =

∫ uf

u0

(u̇
√

v(u)− vmax(u))
2 (4)

The objective function,(4) has to be minimized with re-
spect to the following constraints

u̇
√

v(u) ≤ vmax(u) (5)
u̇ ∈ C∞ (6)

u̇(u0) = ṡ0, u̇(uf ) = ṡf
ü(u0) = s̈0, ü(uf ) = s̈f...

u(u0) =
...
s 0,

...
u(uf ) =

...
s f

.......................................

u(m)(u0) = s
(m)
0 , u(m) = s

(m)
f

(7)

|x
′′
(u)u̇2 + x

′
(u)ü| ≤ ẍmax(u) (8)

|y
′′
(u)u̇2 + y

′
(u)ü| ≤ ÿmax(u) (9)

|z
′′
(u)u̇2 + z

′
(u)ü| ≤ z̈max(u) (10)

The constraint (5) ensures that the velocity profile is
always less than the limit curve. The constraint (6) en-
sures that the resulting time optimal motion profile can
be made continuous upto any desired order depending on
the smoothness of the given path X(u). The constraint (7)
ensures boundary constraints on the scaling function and
its derivatives. It is clear that appropriate boundary values
for the scaling function u̇ and its derivatives can be chosen
to enforce boundary constraints on corresponding trajectory
derivatives. For example, boundary values for u̇ and ü
can be chosen appropriately to satisfy the boundary value
constraints on Ẋ(t) and Ẍ(t). Inequalities (8)-(10) represent
bound constraints on the individual acceleration components.

The path derivatives like x
′
(u), x

′′
(u) and others are deter-

mined by the given path X(u) and hence, the only variable of
the optimization problem (4)-(10) is the pseudo control input
function ü (since u̇ is itself determined by ü). Although at the
moment the objective function and constraints do not reveal
any special structure as such, but the reformulation presented
in the next section where u̇ is represented as C∞ class of
parametric exponential functions, allows us to convert the
objective function and constraints into quadratic and linear
form respectively.

III. REFORMULATION THROUGH C∞ CLASS OF
PARAMETRIC EXPONENTIAL SCALING FUNCTIONS

We propose the following parametric exponential based
time scaling function belonging to C∞ class of functions

u̇ = eP (u) ⇒ ü = u̇2P
′
(u) (11)

Where, P (u) is a lth order polynomial in terms of variable
u and can be represented in many convenient forms, two



of which are represented below. In (12), uk is the regular
polynomial basis while Bl

k(u) is the basis in Bernstein
polynomial form. ak is the coefficient associated with the
basis.

P (u) =

l∑
k=0

aku
k, P (u) =

l∑
k=0

Bl
k(u)ak (12)

As mentioned earlier, many works like [10], [11], [12]
adopt a polynomial representation for both u̇ and ü. As can
be seen from (11), our representation is unique and quite
different from the existing polynomial representations like
B-Spline. To understand the necessity for this departure,
recall that the scaling function u̇ decides the transformation
between the path variable u and the time variable t. Since
time cannot reverse itself, this transformation between the
path and time variable needs to be monotonically increasing
function. Consequently, u̇ > 0 should be maintained through-
out the interval of the path variable variable u. This in turn
means that only positive definite functions can be a valid
choice for u̇. Now, it is challenging to construct positive
definite polynomials. In fact as shown in [15], ensuring
positive definiteness of a polynomial amounts to solving
matrix inequalities, which although convex are not easy to
solve. Thus, works like [10], [12] adopt a more simple
but approximate approach where, u̇ > 0 is imposed as an
additional constraint at sufficient number of grid points along
the path. This results in a set of simple linear constraints.
Although computationally useful, this approach is highly
problem specific and cannot be relied upon. In particular,
the number of grid points sufficient to ensure u̇ > 0 would
depend on the given path, the velocity and acceleration
bounds along it and cannot be known a priori. We also
highlight this critical shortcoming in section V, where we
show loss of positive definiteness across various problem
instances.

Based on the above discussion, it is clear that the para-
metric exponential function proposed in (11) is an apt choice
for representing u̇ since it satisfies the positive definiteness
constraint by construction. Although one can construct many
positive definite functions, the proposed choice is motivated
by the fact that it leads to a very simple optimization
structure with constraints in linear and DC form. This is
an improvement over polynomial constraints obtained in
optimization proposed in [10], [11]. Further, we also show
in section V, that the performance of the minimum time
optimization formulated in section II, is significantly better
with the proposed parametric exponentials (11) as compared
to polynomial functions proposed in a recent work [12].
Finally, at this juncture it is also worth reiterating that
irrespective of the number of parameters, the proposed time
scaling function is capable of ensuring arbitrary degree of
smoothness; a characteristic that cannot be matched by their
polynomial counterparts.

With the necessity for the parametric exponential based
time scaling function firmly established, we now present a
reformulation of the objective function and constraints (4)-
(10) using (11) and (12). However, before proceeding it is
worth pointing out that the time scaling function (11) satisfies

constraint (6) by construction.

A. Reformulating Velocity Constraints

To reformulate the velocity level constraint, we first dis-
cretize the path interval [u0 uf ] into n + 2 grid points as
u0, u1, u2, u3....un, uf . Next, evaluating the velocity level
constraint (5) at the grid points, substituting expression of
u̇ and taking logarithmic transformation, results in following
n inequalities

Cvi = log(u̇(ui))− log(s(ui)) ≤ 0

⇒ Cvi = P (ui)− log(s(ui)) ≤ 0, ∀i = 1, 2, 3....n (13)

s(u) =
vmax(u)√

(x′(u))2 + (y′(u))2 + (z′(u))2
(14)

The first term in n velocity level inequality constraints
Cvi is a logarithm of an exponential function u̇. Hence it is
linear in terms of variables ak. The second term is constant
and thus the velocity constraints represents linear inequalities
in terms of polynomial parameters ak.

B. Reformulation of Boundary value Constraints

Reformulation of boundary value constraints (7) depends
on the following lemma

Lemma 3.1: u(m)(u0) = s
(m)
0 , u(m)(uf ) = s

(m)
f is equiv-

alent to P (m−1)(u0) = P
(m−1)
0 , P (m−1)(uf ) = P

(m−1)
f i.e.,

the boundary value of the scaling function and its derivatives
can be enforced by choosing appropriate boundary values for
the polynomial P (u) and its derivatives.

Proof: Lets start with u̇. Using its definition from (11),
we get

u̇(uo) = ṡ0, u̇(uf ) = ṡf ⇒ log(u̇(uo)) = log ṡ0, (15)
log(u̇(uf )) = log ṡf

⇒ P (uo) = log ṡ0 = P0, P (uf ) = log ṡf = Pf

Now considering that ü = u̇2P
′
(u), we get the following

equalities

ü(u0) = s̈0, ü(uf ) = s̈f (16)

⇒ P
′
(u0) =

s̈0
ṡ20

= P
′
0 , P

′
(uf ) =

s̈f
ṡ2f

= P
′
f

Similarly
...
u = u̇3((2P

′
(u)2 +P

′′
(u)) and thus we obtain

the following equalities
...
u(u0) =

...
s 0,

...
u(uf ) =

...
s f (17)

⇒ P
′′
(u0) =

...
s 0

ṡ30
− (2P

′
0)

2 = P
′′
0 ,

P
′′
(uf ) =

...
s f

ṡ3f
− (2P

′
f )

2 = P
′′
f

We can proceed in a similar manner and derive the
boundary value P (m−1)

0 and P (m−1)
f required to enforce the

boundary constraints on u(m)

In the light of the above lemma, the boundary value
constraints on the scaling function and its derivatives can
be reformulated in the following manner



Cbound =


P (uo) = P0, P (uf ) = Pf

P
′
(u0) = P

′
0 , P

′
(uf ) = P

′
f

.......................................

P (m−1)(uo) = P
(m−1)
0 , P (m−1)(uf ) = P

(m−1)
f

(18)
It can be easily noted that the above modified boundary

constraints are linear in terms of the parameters ak.
C. Reformulating Acceleration Constraints

Similar to velocity constraint, evaluating acceleration con-
straint (8) at the grid points, and taking logarithmic transfor-
mation results in the following inequalities

log(u̇(ui)) + 0.5gxi(ak)− 0.5 log(ẍmax(ui)) ≤ 0, (19)
⇒ P (ui) + 0.5gxi(ak)− 0.5 log(ẍmax(ui)) ≤ 0

∀i = 1, 2, ..n

gxi(ak) = log(|x
′′
(ui) + P

′
(ui)x

′
(ui)|) (20)

Similar expressions can be written for y and z component
of the acceleration bound constraints.

The first terms in each acceleration level constraints are
same as the velocity level constraints and thus are linear
in terms of parameter ak. The second term in the ith

constraint is a logarithmic function in terms of variables
ak. This logarithmic non-linearity has a special structure.
To understand this further, consider the surface of the ith

constraint shown in figure 1(a). It shows the structure of the
function gxi(.) for P (u) = a1u+a2u

2. As can be seen from
the figure, it consists of two concave surfaces on either side
of the line passing through a continuum of singular points,
satisfying the following equation.

x
′′
(ui) + P

′
(ui)x

′
(ui) = 0 (21)

The logarithmic non-linearity in the ith constraint is quasi-
convex in nature since any level set of its will be character-
ized by intersection of linear inequalities. A detailed proof is
omitted here because of lack of space. Quasi-convexity forms
the intuition behind the following final modification to the x
component of the acceleration bound constraints (19).

Caxi =



gxi(ai) ≤ log(Gxi)
⇒ x

′′
(ui) + P

′
(ui)x

′
(ui)− Gxi ≤ 0

⇒ −x
′′
(ui)− P

′
(ui)x

′
(ui)− Gxi ≤ 0

log(u̇(ui)) + 0.5 log(Gxi)− 0.5 log(ẍmax(ui)) ≤ 0
⇒ P (ui) + 0.5 log(Gxi)− 0.5 log(ẍmax(ui)) ≤ 0

∀i = 1, 2, 3...n
(22)

In (22) the slack variable Gxi is used to split the ith ac-
celeration constraint into three separate inequalities. Similar
expressions can be derived for the y and z component as
Cayi and Cazi respectively.

It can be easily noted that the first two inequalities are
linear in terms of parameter ak. The third inequality has a
linear term followed by a purely concave non-linearity. As
stated in [17], a purely concave function f has the simplest
difference of convex (DC) representation in the form 0− f .
Thus, the third inequality in (22) represents DC constraints
in its simplest form.

D. Reformulating Minimum Time Optimization Problem

The minimum time optimization problem can now be
formulated as the following.

min Jmod (23)
Cvi ≤ 0, Caxi ≤ 0, Cayi ≤ 0, Cazi ≤ 0, ∀i = 1, 2..n

Cbound = 0

Jmod =

i=n∑
i=1

[log(u̇(ui))− log(s(ui))]
2 (24)

Jmod as given in (24) has been obtained from (4) by
approximating the integral through summation and by noting
that minimizing an objective (ax − b)2 is similar to mini-
mizing (log(x) − log( b

a ))2. It can be easily noted that the
objective function (24) is quadratic in terms of parameters
ak of the polynomial P (u).

We next describe the solution procedure for the optimiza-
tion (23).

IV. SOLVING THE OPTIMIZATION PROBLEM

An optimization problem with purely concave non-
linearity represents a special case of difference of convex
programming problem DCP [16]. Sequential convex pro-
gramming (SCP) [16] routine is an efficient choice for
solving such problems since the notion of trust region usually
associated with SCP is not relevant for DCP problems. In
SCP procedure, at each iteration, the convex part of the
problem is preserved while the non-convex part is replaced
with a convex approximation around the solution obtained
at the previous iteration. The resulting convex problem can
be solved very efficiently and quickly. The SCP procedure
is continued till some stopping criteria is met.

A. Convex Approximation

The non-convexity in optimization problem (23) arises out
of purely concave logarithm functions in the acceleration
constraints Caxi, Cayi and Cazi. Let Gkxi, Gkyi and Gkzi rep-
resent the slack variables at the end of kth iteration. At the
(k+1)th iteration, the concave part is replaced with following
affine approximation around the solution obtained at the kth

iteration.

log(Gxi) ' log(Gkxi) + (
1

Gkxi
(Gxi − Gkxi)) (25)

Similar expressions can be written for y and z component
as well. The affine approximation is shown in figure 1(b).
As it can be seen from the figure, affine approximation to
a concave non-linearity acts as a global upper bound. This
implies that the feasible region of relaxed problem with
approximate affine constraints is contained in that of the
original optimization problem.

B. Approximate Quadratic Programme
The affine approximation presented above results in fol-

lowing quadratic programme with only linear constraints at
the (k + 1)th iteration of SCP.

min Jmod (26)
s.t, Cvi ≤ 0, Ck+1

axi ≤ 0, Ck+1
ayi ≤ 0, Ck+1

azi ≤ 0,∀i = 1, 2, 3..n

Cbound = 0
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Fig. 1. (a): Plot showing the surface of logarithmic non-linearity gxi(.). As it can be seen, the surface consists of two concave parts around a continuum
of singular points. It is easy to verify that the non-linearity is actually quasi-convex in nature. (b): Affine approximation of a concave constraints. Affine
approximation acts as a global upper bound for the original concave non-linearity. It implies that feasible region of the optimization problem with approximate
affine constraints is contained in the feasible region of the optimization with the original non-linear concave constraint.

The SCP procedure involving affine approximation and
quadratic programming is continued till |Jk+1

mod −Jk
mod| < λ,

for some user defined small constant λ. The SCP procedure
converges within two to three iterations for the optimization
problem (23).

C. Examples

Two sample outputs of the minimum time optimization are
shown in figures 2(a)-2(d). In accordance with the theory of
time optimal motions, at any given instant, either the velocity
constraints or the acceleration level constraints should be
saturated. This is followed quite closely in 2(a)-2(d). For
example, consider figures 2(a)-2(c) where, in the interval
u ∈ [2 3.3], y component of the acceleration constraint is
saturated at the maximum limit. Similarly, in the interval
u ∈ [3.3 4.3], the scaling function u̇ curve lies on the
s(u) curve, suggesting the saturation of the velocity level
constraints (13). In the interval u ∈ [4.5 4.8], x and y
component of the acceleration constraints are saturated at
the minimum limit, while in the interval u ∈ [5.4 10.0],
the velocity level constraints are saturated. Similar trend of
constraint saturation can be seen in the figures 2(b)-2(d) as
well. It can also be observed from the figures that there exist
points, where none of the constraints are saturated. This loss
in optimality is attributed to discretization issues and can
be reduced by increasing the resolution of discretization,
although at the cost of increased computation time.

Besides resolution of discretization, the quality of solu-
tion of the minimum time optimization (23) depends on
the degree of the polynomial P (u). The above discussed
results were obtained for a 31st order P (u). Performance
of the optimization with various other degree polynomials
are summarized in tables I and II. As can be seen, the
objective function value decreases with increase in the order
of the polynomial P (u). However, the reduction in the
objective function is also accompanied by increase in the
computation time. The computation time reported in tables I
and II were obtained for a MATLAB implementation using
the open source tool box CVX [19] on a standard PC with
an Intel Core 2 Duo CPU 2.93 Ghz and 4.0 GB of RAM.
The optimization was solved with 165 grid points which

resulted in around 1650 inequality constraints. The number
of variables in the optimization depends on the order of the
polynomial P (u) and are summarized in the tables I and II.
Significant computation gain can be expected by prototyping
the code in C++ or Python. The computation times are low
enough to suggest that a real time implementation of the
optimization can be obtained by solving it over a shorter
horizon.

V. ADDITIONAL RESULTS AND DISCUSSIONS

A. Effect of Control and Higher Order Motion Continuity

In this section, we highlight the effect of enforcing control
(acceleration) as well as higher order motion continuity
constraints in the time optimal framework. To this end,
we compare the output of the optimization (23) with that
proposed in our earlier work [14] which solves the prob-
lem of time optimal control along specified paths without
acceleration continuity constraints. This particular work was
chosen because, it uses a time scaling function very similar
to that proposed in (11) and thus, has an identical difference
of convex form as that obtained for optimization (23). The
form of time scaling function used in [14] can be represented
in the following manner.

u̇ = pe−qu (27)

It can be easily observed that the above scaling function,
belongs to the family of scaling functions proposed in (11).
In particular (27) is obtained with P (u) = −qu. It can also
be easily noted that since (27) has been obtained from a
lower order polynomial P (u), it has too few parameters for
it to be used in an optimization. Thus, in [14], a time scaling
function was constructed by piece-wise combination of (27)
(ref. figure 3). As can be observed from figure 3, that u̇
used in [14] is continuous but not differentiable and thus,
consequently has discontinuity in the acceleration profile.

We are now in a position to compare the output of the
optimization (23) with that obtained from [14]. To have a
fair comparison, the number of free variables, equality and
inequality constraints were kept equal in both the optimiza-
tions.
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Fig. 2. Sample outputs obtained from solving optimization (23) along two different paths. As can be seen that the resulting scaling function and acceleration
profile agrees quite closely with the characteristics of time optimal motion. That is, any one of the constraints is saturated at each instant. As can be
seen either the u̇ profile is at the limit curve s(u) or the acceleration profile is at the maximum or minimum limit. However, there do exist some points
where neither constraints are saturated. This loss in optimality can be attributed to discretization issues and can be reduced by increasing the resolution of
discretization.

TABLE I
(23) WITH DIFFERENT ORDERS OF P (u) FOR PATH 1

Order obj.value comp.time(ms) Variables incld. slack
9th 5.19 210 496
15th 4.11 267 502
21th 3.98 400 508
31th 3.7 610 518

TABLE II
(23) WITH DIFFERENT ORDERS OF P (u) FOR PATH 2

Order obj.value comp.time(ms) Variables incld. slack
9th 12.75 230 496
15th 12.06 300 502
21th 11.80 440 508
31th 11.27 680 518

Figures 4(a) and 4(b) compares the output of both the
optimizations. A few important things can be easily observed
from these two figures. Firstly, the scaling function, u̇
curve resulting from optimization (23) is smoother than that
obtained through optimization [14]. In particular, u̇ resulting
from [14] is only continuous in nature as compared to that
obtained through optimization (23), which exhibits higher
order differentiability. Secondly, u̇ profile resulting from
both the optimization have similar magnitudes, suggesting
similar final objective function values. Thus, the proposed
C∞ class of scaling functions (11) induces control and
motion continuity constraints without significant loss in the
optimality of the solution. Thirdly and most importantly
the acceleration profile obtained through [14] has abrupt

and discontinuous jumps in magnitude. The most prominent
discontinuities are highlighted in figure (4(b)). In contrast,
the acceleration profile obtained through optimization (23)
has a highly smooth evolution.

B. Parametric Exponential Vs Polynomial Time Scaling
Functions

In this section, we further expand our comparison between
parametric exponential and polynomial based time scaling
functions. In particular, the objective of this section is
to highlight two important points. Firstly, we show that
incorporating u̇ > 0 as an additional constraint in the
minimum time optimization does not reliably ensure positive
definiteness of the polynomial based time scaling function.
Secondly, we show that for the same number of free vari-



Fig. 3. Time scaling function used in [14]. Discretization of path variable
interval into various sub-intervals by the grid points u1, u2, u3...un. An
exponential function is fitted in each subinterval. The scaling function u̇
is obtained as a continuous combination of the exponential functions. As
can be easily observed that u̇ is continuous but not differentiable and
consequently time optimal motions obtained through it has a discontinuity
in the acceleration profile.
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Fig. 4. (a), (b): Comparison between optimization (23) and that proposed
in [14]. Few important things can be easily noted from these figures.
Firstly, the u̇ curve obtained through solving (23) is much smoother
than that obtained through solving [14]. However, both the curves have
similar magnitudes which suggests similar final objective function values.
Finally, the acceleration profile obtained through solving [14] has abrupt
and discontinuous jumps. In sharp contrast, optimization (23) ensures highly
smooth evolution of acceleration values.

ables, the performance of the minimum time optimization is
significantly better with proposed parametric exponentials as
compared to polynomial time scaling functions. To this end,
we compare the parametric exponentials proposed in (11)
with the following polynomial time scaling function.

u̇ =
√

P (u)⇒ ü = 0.5P
′
(u) (28)

The above form of scaling function was proposed in the
recent work [12] and is significantly better as compared to
that used in works like [10], [11] which are also based
on polynomial time scaling functions. To be precise, in
contrast to polynomial constraints in these cited works, (28)
leads to linear constraints. It is straightforward to follow the
approach of section III and derive the velocity, acceleration
bound constraints, objective function and minimum time
optimization problem (23) with the above polynomial based
time scaling function and control input.

Figures 5(a)-5(d) compares the output of both the opti-
mizations. As stated before, an additional constraint u̇ > ε,
where ε is small positive number, has to be incorporated
at number of grid points in the minimum time optimization
obtained with (28). Please note that ε has to be chosen small
enough to make sure it does not conflict with the velocity
bound constraints (13). As can be seen from the figures 5(b)
and 5(d) that u̇ > ε at a fixed resolution is not sufficient for
ensuring positive definiteness of polynomial based time scal-
ing function across various problem instances. To be precise,
while a resolution of ∆u = 0.005 was enough to enforce
positive definiteness for the example shown in figure 5(b), the
same resolution proved insufficient for that shown in figure
5(d). As can be noted from (28) that positive definiteness
is lost when P (u) goes to zero or negative, consequently
forcing u̇ to zero or imaginary values. In figure 5(d), the
highlighted points are those where u̇ becomes imaginary.
For illustrative purposes, the imaginary values are plotted as
zeroes in figure 5(d). It is worth mentioning that example
shown in (5(d)) had significantly lower velocity bounds that
that shown in figure (5(b)). However, the acceleration bounds
in both of them were comparable.

Further now, compare figures 5(a)-5(b) and 5(c)-5(d). It
can be seen that the time optimal scaling function obtained
in parametric exponential form is on an average much closer
to s(u) curve than their polynomial counterparts. This in turn
means that, for the same number of free variables as decided
by the degree of polynomial P (u), parametric exponential
(11) leads to lower objective function values than polynomial
based time scaling function (28). (refer (24)). However,
it is worth mentioning that minimum time optimization
with scaling function of the form (28) is generally faster
as compared to the optimization obtained with parametric
exponentials. This is because of the fact that (28) leads to
velocity and acceleration bound constraints in linear form
[12]. Also please note that our implementation with (28) is
slightly different from [12]. To be precise in contrast to cubic
splines in this cited work, our implementation uses higher
order polynomials P (u) to ensure continuity in higher order
motion derivatives.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we solved the problem of time optimal
control along specified paths with continuity in control
and higher order motion derivatives like jerk, snap etc.
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Fig. 5. First Compare figures (b) and (d), which shows that additional
constraints in the form u̇ > 0 does not reliably enforce positive definiteness
in the polynomial based time scaling functions. The fundamental issue is
that resolution of discretization, i.e, number of grid points at which the
constraints u̇ > 0 needs to be enforced to ensure positive definiteness may
vary with problem specifications. As an example, a resolution of 0.005
works for the optimization example shown in (b) but not for the example
shown in (d). As can be noted from (28), positive definiteness is lost when
P (u) goes to zero or negative and thus forcing u̇ to zero or imaginary
values. In figure (d), imaginary values of u̇ are highlighted as zeroes. Further
now compare (a)-(b) and (c)-(d). As can be seen that the time optimal scaling
function in the parametric exponential form is much closer to s(u) curve
than that based on polynomial functions. This in turn means that for the
same number of free variables in the optimization, parametric exponentials
leads to lower objective function values than their polynomial counterparts.

We proposed a novel C∞ class of time scaling functions
represented as parametric exponentials. This in turn allowed
us to represent time varying control inputs as product of
a parametric exponential and a polynomial function. We
showed how natural positive definiteness of parametric expo-
nentials makes it a more appropriate choice for a time scaling
function as compared to polynomial functions. Moreover
performance of minimum time optimization with parametric
exponentials was shown to be significantly better than that
obtained with polynomial based time scaling functions.

The structure of the minimum time optimization derived
with parametric exponential based time scaling function was
shown to be very simple with primarily linear constraints.
The non-linearity could be easily reformulated into simple
difference of convex (DC) form . A sequential convex pro-
gramming approach was adopted for solving the optimization

where, at each iteration, the (DC) constraints were further
simplified to more conservative linear constraints.

The current work can be extended in various directions.
For example, it is easy to incorporate bounds on higher
derivatives like jerk. It is not difficult to show that the jerk
bound constraints would be quadratic and thus would also
have a natural DC representation [16]. We are also extending
the framework to include force and torque constraints.
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