
Visual Localization in Highly Crowded Urban Environments

A. H. Abdul Hafez1, Manpreet Singh1, K Madhava Krishna1, and C.V. Jawahar1

Abstract— Visual localization in crowded dynamic environ-
ments requires information about static and dynamic objects.
This paper presents a robust method that learns useful features
from multiple runs in highly crowded environments. Useful
features are identified as distinctive ones that are also reliable
to extract in diverse imaging conditions. Relative importance
of features is used to derive the weight of each feature. The
popular bag-of-words model is used for image retrieval and
localization, where query image is the current view of the
environment and database contains the visual experience from
previous runs. Based on the reliability, features are augmented
and eliminated over runs. This reduce the size of representation,
and make it more reliable in crowded scenes. We tested the
proposed method on data sets collected from highly crowded
in Indian urban outdoor settings. Experiments have shown that
with the help of a small subset (10%) of the detected features,
we can reliably localize. We achieve superior results in terms
of an localization error even when more than 90% of the pixels
are occluded or dynamic.

I. INTRODUCTION

The localization problem tries to provide an answer to the
question “Where am I?”. In other words, it is the process of
computing the current pose of robot in the environment [1],
[2]. Appearance-based localization [2], [3], [4] is a variant
of content-based image retrieval. The query image, in the
case of robotic localization, is the current view as seen by
the robot, and database is the past experience. Images are
represented using local or global features. The utility of
global visual features was explored for mobile robot explo-
ration, navigation, and localization [5], [6]. Local features [7]
are computed at interest points on the image. However, the
number of descriptors as well as the computations required to
match explode with large databases. To handle the problem
for large databases, Sivic et al. [8] quantized the features into
a set of visual words, popularly known as the Bag-of-Words
technique. It is used along with popular techniques such as
the Inverted Index and Min-Hash [9] for fast matching and
retrieval of images.

Localization in outdoor environment is difficult because,
queries are often at different viewpoint, scale and illumina-
tion from the previous visual experience [3]. In crowded and
cluttered out door settings, the problem is further challeng-
ing [10]. Dynamic objects could constitute most of the visible
region and thus complicates the localization (see Fig. 1). The
results are often erratic since the robot may not distinguish
the features from static and dynamic parts of the image.
We are interested in designing a robust localization solution
in highly crowded urban environments. For this purpose,
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Fig. 1. Change in dynamic objects with time. The four images were
captured at the same pose at different instances from a camera fixed to
moving vehicle.

Fig. 2. Random frames from [10] dataset (first row) and our dataset (second
row) depicting extent of occlusion and large difference in useful visible
background.

collected multiple runs of data from crowded Indian roads.
We aim at learning to localize better by finding out reliable
and useful features.

Knopp et al. developed in [11] an automatic method
to detect and suppress confusing (useless) features. The
method significantly improved the performance and reduced
the database size. Turcot and Lowe [12] reduce the database
size by selecting a small portion of the total detected features.
They call them useful features. The removed features are not
useful and not representative. The matching performance is
as accurate as using the full set.

Cummins and Newman [4], [13] describe a probabilistic,
called FAB-MAP, for recognizing places based on their
visual appearance. Their algorithm is suitable for online loop
closure detection in mobile robotics. Milford and Wyeth [3]
presented a new approach, is called SeqSLAM, for visual
localization under different environment and illumination
conditions. Instead of obtaining the single most likely lo-
cation given a current view, the system calculates the best
candidate matching sequence. However, both methods pre-



Fig. 3. The first row shows visual features of images after one training run of environment. We tested Achar’s [10] formulation on these set of features.
The second row shows the same frames with only useful features after fifth run.

sented above, i.e. FAB-MAP and SeqSLAM, are not tested in
highly crowded urban environments, they also neither use the
concept of useful features nor they identify dynamic object
in the scene.

Achar et al. [10] investigated the problem of localization
in urban environments, and conducted experiments to verify
their methodology on roads in India. They propose a novel
method to identify dynamic scene elements from the base run
of the robot, and filter out features obtained from dynamic
elements in order to facilitate robust localization of the
robot. In contrast, a highly crowded environment containing
dynamic elements, like standing pedestrians, movable objects
and parked vehicles is considered in our work as shown
in Fig. 2. Such elements may not always be present at the
same pose in the environment, and hence can misguide the
localization process of the robot.

We propose a method to learn elements that are “truly”
static for a given scene and hence, improve localization
performance. The learning of these useful features is done
incrementally over time. We assume that every time the
robot runs through a certain spatial locality, it learns new
features with the possibility to discard part of the features
which are already learnt during previous runs. Over time the
number of features converges to very small portion of the
total features. This removal of non-useful features improves
memory efficiency and computational time.

The remaining of this paper is organized as follows.
Section II shows an overview of the proposed localization
method, while Section III focuses on learning useful features
when a new data is available from new run of the robot
through the environment. Section IV explains the results
from conducting a set of experiments support our proposed
localization method. Finally, we conclude with some remarks
and future work proposals.

II. QUALITATIVE VISUAL LOCALIZATION

Qualitative visual localization uses past experiences of the
robot to determine a set of images in close neighbourhood of
its current pose. The motivation of our work arises through
observing that a majority of extracted visual features belongs
to the dynamic environment Fig. 3. Many recent works [10],

[11], [12] have argued that only a small percentage of the
extracted features are useful. These however haven’t been
tested in highly crowded environments, which is necessary
for future autonomous systems. Our proposed framework
is a localization methodology for these highly crowded
urban environments through multiple experiences. Rather
than using available object detectors, we propose that the
ability to learn the useful subset of environment can be
enhanced by traversing the same path multiple times.

The extraction of interest points, called features from the
available images using suitable detectors is the first step
in visual localization. Many works have suggested the use
of the available features in image retrieval but the Bag of
words method [8] has been observed to be highly efficient.
The method represents the images as a set of unordered
visual words which are used to build an inverted index
which quantifies the occurence of each feature. A query
image, captured at robot’s current pose is then quantized
to the exisiting vocabulary tree and mapped to a set of
visual words. The weighted retrieval method, which identifies
discriminative features, returns a set of images that represent
the current pose.

A. Bag of words model

The robot explores the environment during one traning
run and captures the frames referred as ground truth data.
SIFT features [7] are extracted from the keyframes and
a vocabulary tree of K branches and L depth containing
KL leaf nodes is constructed using hierarchical k-means
clustering [2]. The inverted index stores for each visual word
the occurrence of a feature and maintains its history through
weights . The occurrence of a feature has been quantified
by tf-idf [8] in some earlier works, but in this paper we use
the weighted retrieval which assigns higher weight to highly
discriminative features while lower weight to others.

B. Distinctive features

The distinctiveness of a given feature z with respect to
robot pose x is a measure of the information that is added to
our knowledge about the pose. Assume that our knowledge
about the robot pose is represented by the distribution P (X),



while the amount of information given by the measurement
is given by the P (Z). This can be interpreted as looking
for features which appear in all images about some specific
robot pose, but rarely appear elsewhere. The concept of in-
formation gain used in [2] captures this concept of distinctive
features.

Information gain I(X|Z) is a measure of how much
uncertainty is removed from a pose distribution P (X) given
some specific additional knowledge about features P (Z). It
is defined with respect to the entropy H(X) and conditional
entropy H(X|Z) of distributions P (X) and P (X|Y ). For
two random variables, X and Z, the entropy of X is given
by:

H(X) = −
∑
x∈X

P (X = x) logP (X = x), (1)

while the conditional entropy is

H(X|Z) = −
∑
z∈Z

P (Z = z)H(X|Z = z). (2)

Hence, the information gain is defined as

I(X|Z) = H(X)−H(X|Z). (3)

The information gain is always considered with respect to
a specific robot pose xi and a specific feature zk. In other
words, the distinctive weight wk of the kth feature zk in the
vocabulary tree is computed as

wk = I(xi|zk) = H(xi)−H(xi|zk). (4)

More detailed computation of the distinctive weight, i.e.
information gain, is available in [2], [10], [14], [15], where
this concept is successfully used.

C. Querying

When the robot explores the environment again, it captures
a new set of frames, called query data. The extracted features
from each query image are quantized to visual words using
the available vocabulary tree and inverted index by using
greedy N-best paths algorithm [2]. Since the vocabulary tree
was built from ground truth data captured under different
conditions, a highly efficient method is required for both vo-
cabulary tree construction and image retrieval. By assisgning
desciminative weights to the visual words corresponding to
query feature, a score is calculated for each ground truth
image by searching for visual words corresponding to the
image. To reduce the complexity of search, the position of
features relative to the principal point of the camera is used
for filtering irrelavant images [10].

The normalized score for the few relevant images is
computed as:

Score(imgn) =

∑
zk∈Zn∩Zq

Wk

|Zn|
, (5)

where Zn is the set of SIFT descriptors in the nth key frame
of base run, Zq is the set of SIFT descriptors in the query
image, and Wk is the total weight of feature discussed later
in Eq. (12).

Fig. 4. Flowchart showing the gradual learning process of system. The
input to the system are newly observed frames and output are useful features

The top N images based on the normalized score are
returned as the best matches for direct image retrieval. In case
of global localization, the feature correspondences between
the top matches and the query image are geometrically
verified using epipolar geometry and results are filtered based
on number of inliers.

The weighted bag of words retrieval method, however
suffers from some disadvantages in crowded urban en-
vironments. The inclusion of non-distinctive features like
sky, lane markings and trees in the feature set results in
problems like perceptual aliasing which may lead to large
localization errors. As discussed above, the vocabulary tree
also provides inefficient output in such conditions which ne-
cessiates stricter geometrical validation of matching features,
thereby increasing retrieval run time. This paper addresses
the problem by identifying useful features of environment
through multiple experiences of robot which not only reduces
the size of vocabulary tree but also improves the performance
after each experience.

III. LEARNING USEFUL FEATURES

Through multiple experiences, the objective is twofold:
Firstly, to observe a set of new features which may be hidden
previously and secondly to identify the useful features from
previous experiences using current observation. Thus, the
expectation is that through each new training run, the robot
enhances its knowledge of the environment. Figure 4 depicts
a block diagram of the learning process of our proposed
method. From each available frame in the current run, SIFT
key points are extracted. To develop the relationship between
newly observed features and the existing feature set, the
best matching frame from current run corresponding to each
frame from the first training run (henceforth called base
run) is determined. The available GPS data defines a small
neighbourhood in which the best frame is searched through
feature matching followed by geometrical validation through
epipolar geometry. The repetitive features (useful features)
are assigned reliability weights whereas the new features are
augmented to the feature set with some initial weight.

Factors such as illumination, clutter and weather condi-
tions play a key role in the performance of visual localization
methods. By traversing the same path multiple times, the
effect of these factors is minimized and the probability of
observing the using features is increased. Every training run
is classified as one of the following:



• Base run: The robot experiences the environment for the
first time and unable to determine the useful features.

• Augmentation run: The knowledge of environment is
enhanced through new experience and the useful fea-
tures are learnt. Some newly observed features are also
augmented to the feature set.

• Elimination run: The useful features are retained based
on their reliability weights

A carefully designed methodology to use both augmentation
and elimination run is the critical to the learning process.

A. Initial reliability weights in base run

The robot explores the environment for the first time and
assignes equal weight to each feature. This weight, called
reliability weight indicates the usefullness of a feature in
the environment based on its ability to reoccur the neigh-
bourhood of the same pose under different conditions over
multiple runs. Assuming M1 features are initially extracted
and each kth feature is assigned reliability weight, w0

k = 1,
the normalized weight is given as:

ŵ0
k =

1∑M1

k=1 w
0
k

=
1

M1
(6)

where
∑M1

k=1 ŵ
0
k = 1. Alongwith the reliability weights, the

robot also saves visual features and a GPS tag for each pose
which is used in future experiences.

B. Augmentation of features

As the robot explores the enviornment again under differ-
ent conditions, it observes a set of features which may or may
not have been recorded previously. To develop a relationship
between these newly observed features and the exisiting
features, first the best visually matching frame from the
current run corresponding to every frame of the base run is
determined. We realize that matching all the newly observed
features with exisiting may not be a realistic approach.
So based on the available GPS data, a set of K images
from current run are indentified which represent nearest
neighbours of the image belonging to the base run. This is
justified since the useful features observed in an image of the
base run at a particular pose cannot be observed at an entirely
different pose in the current run. Thus, the problem of N1.Nt

computations is reduced to only N1.K computations and
the image with maximum number of geometrically validated
matching features is labelled as the best matching frame.
Here N1 and Nt are the number of images from base run
and the current run respectively.

Any feature D1 from the selected best image is labelled
as a match to a feature D2 of the base image if and only if:

d(D1, Di)

d(D1, D2)
≤ T, (7)

where d(Di, Dj) is the Euclidean distance of descriptor Di

to descriptor Dj . This formula can be interpreted as that
the Euclidean distance d(D1, D2) multiplied by a threshold
T is smaller than the distance of descriptor D1 to all other

descriptors Di in the image from base run [16]. Selecting
T = 1.5 show best satisfaction.

The matching visual features represent the previously ob-
served features, newly observed features as well as features
belonging to dynamic objects. These features are assigned
the visual stability weight given as:

wvs =
F
N

, (8)

where N is the number of visual features in the keyframe of
base run, and F is the number of feature correspondences
between image of base run and its best matching image from
current run.

The feature correspondences contain many negative re-
sults, dynamic objects which are discarded by identifying
spatially consistent features through epipolar geometry. Thse
are simply the inliers estimated by fitting a fundamental
matrix using RANSAC algorithm and assigned the spatial
consistency weight as:

wsc =
G
N

, (9)

where N is the number of features of key frame of base run,
G is the number of geometrically validated matches.

A large portion of the newly observed data consists of the
features belonging to the dynamic objects while a smaller
percentage, though useful belonging to to the static part
hidden during the previous run. Despite the knowledge that
inclusion of these hidden static features would imply inclu-
sion of large number of useless features as well, we augment
the exisitng data because learning these hidden features has
been our objective throughout. The newly observed features
are assigned a reliability weight, wk equal to the weight
possessed by the minimum weighted feature in the database
during the particular run.

It may be argued that a certain percentage of these hidden
useful features, though distinctive may never reappear even
under a different conditions, thus making it impossible for
robot to learn them. Such features which have a tendency to
be hidden for prolonged period of time are labelled as non
useful features and treated similar to the dynamic features. A
similar argument could be made for some dynamic objects
which may always be present in the environment and may
mislead the system into being considered as useful. For such
features, we use the idea of the distinctiveness to negate their
relative importance.

C. Enhancing the knowledge through elimination

The features belonging to dynamic objects and augmented
to the exisiting knowledge of robot pose the problem of
decreasing the efficiency of localization process. However, it
can be analyzed that only the useful features would reoccur
at the same pose under different conditions, i.e. gain higher
reliability weight. Thus, the features with reliability weights
greater than the minimum weighted feature are retained while
the remaining are eliminated. To ensure that a visual feature
is not discarded unfairly, we continue to augment feature
set till third run. Though expensive, the idea is to provide



Fig. 5. Gradual learning process through base, augmentation and elimination run. Note the growth in number of features over frame 2 and 3 and finally
retention of only useful features in last frame.

new features sufficient support to prove theirusefullness. The
features unable to prove their importance to the process are
then eliminated but at the same time, the newly observed
features in the third run are retained for future explorations.
This ensures that the newly observed features during any
training run are verified substantitally before elimination.
Thus, after t runs, any kth useful feature will have a
reliability weight:

wt
k = ŵt−1

k + wvs + wsc (10)

Then, it is normalized to produce the weight, ŵt
k is given as:

ŵt
k =

wt
k∑Mt

k=1 wk

∈ (0, 1) (11)

where Mt is number of features after tth run Thus, the total
weight assigned to each feature of base run is given as:

Wk = w1.w2 (12)

where w1 = I(X;Y ) as in Eq. 4 and w2 = − 1
log(ŵt

k)
Here,

the total weight of a feature is directly related to its reliability
and distinctiveness.

D. Amount of Learning

The robot learns the environment gradually with each run
through augmentation and elimination of feature set. Since
the data in the proposed work is collected over a shorter
duration, the number of useful visual features is limited
in the environment. Hence, it is fair to assume that the
system’s incremental learning ability will reduce with each
training run. Since 39.31% features have been classified
as useful after seventh run (Table I), the system may not
be expected to learn further due to lack of static visual
features. It will be shown experimentally later that the mean
error also saturates after fifth run (Fig. 7). Rather, in some
cases it increases slightly which is due to unintentionally
learning of reoccuring non useful features. This improvement
in performance is also closely related to the accuracy of GPS
data. The performance of the system will never exceed the
minimum error of GPS receiver.

IV. EXPERIMENTS AND RESULTS

A. Dataset creation by applying learning principle

The visual environment forming the dataset was captured
in the highly cluttered Koti Area of Hyderabad, India using a
forward facing digital camera attached to a moving vehicle.
The 640 x 480 resolution data containing 68700 frames was

recorded at 30 fps under varying conditions of traffic and
illumination. The key frames were obtained by sampling
the training data at 10fps, the base run then having 2596
frames. The motion blur and unpredictable motion of traffic
added to the uniqueness of collected data. A GPS receiver
of permissible error was used to record the current position
of the vehicle and used later as ground truth data. Based on
the time stamp associated with the GPS information and the
captured video, GPS tags were assigned to the extracted key
frames.

The total number of features increases linearly with each
training run and if allowed to continue would affect the com-
putation time with no improvement in retrieval performance.
By applying the proposed elimination concept, the number
of features was reduced by 90.99%, 84.63% and 80.94%
for third, fifth and seventh run respectively which highlights
the effectiveness of our approach in retaining only the small
subset of useful features and eliminating the rest.

B. Testing

Training video from eighth run of the same environment
was sampled at 10 frames per second to obtain 3734 key
frames. Though there was a large variation in number of
useful features with each training run (Table I)the size of
the vocabulary tree was kept constant at 537K without any
observed degradation in performance. As already explained
in II-C, the inverted index of the quantized visual words
was searched for matches and the score was assigned to
each database frame. The top 10 results based on the score
were returned as best matches and labelled as direct retrieval
results. The matched features in this set of 10 top results
were geometrically verified to remove the mismatches and
top results were again obtained based on the number of
geometrically validated features. GPS ground truth data was
used to check localization performance by measuring mean
error for both direct retrieval and global localization. The
returned results were deemed to be correct if the localization
error was less than 7.5m. The proposed formulation was
implemented on three datasets. For all the tests, the query
images were chosen randomly assuming independent and
identically distributed samples.

1) Test 1: The first 500 key frames of all the eight runs
covering (approx) one-fifth of the total path were chosen.
The key frames from the first seven runs were used to build
database of useful features. A random 200 frames extracted
from the first 500 frames of eighth run were used as query.



TABLE I
VARIATION IN NUMBER OF VISUAL FEATURES WITH EACH TRAINING RUN. THE NUMBER OF USEFUL FEATURES RETAINED BY SYSTEM AFTER

ELIMINATION ARE ALSO SHOWN. THE DRASTIC REDUCTION IN NUMBER OF FEATURES IS INDICATIVE OF THE AMOUNT OF CLUTTER PRESENT

Training Run 1 2 3 3-E 4 5 5-E 6 7 7-E
Number of features 2.90M 5.53M 8.15M 734k 3.38M 6.02M 925k 3.52M 6.01M 1.14M

Fig. 6. Sample query frames from eighth training run.The repeating
dynamic elements, pedestrians and the clogged roads make the localization
process difficult.

Fig. 7. Variation of mean localization error for both direct retrieval (solid
lines) and global localization (dashed lines) corresponding to the three tests
is shown. The performance can be observed getting better with increase in
number of runs. However, a slight increase in mean error is observed for
seventh run which can be attributed to unintentional learning of dynamic
features by the system. (Green=Test 1, Blue=Test 2, Red= Test 3)

2) Test 2: To check for accuracy over larger number of
frames, the database of useful features was built using all the
keyframes from the first seven training runs. After building
the vocabulary tree, a random 1000 key frames were chosen
from the eighth run and queried for both direct retrieval and
global localization.

3) Test 3: To check the scalability of our proposed work
and the effectiveness of larger vocabulary tree, database of
useful features was built as in test 2 from the first seven runs
but the full eighth run, i.e. 3734 key frames covering the full
path were used as query.

C. Discussion

Despite occlusion of useful features, the returned results
have shown good visual performance. As can be seen from
adjoining Fig. 8, good performance was achieved after fifth
training run with only 30% visual features whereas tests after
first run with all the features based on the work of [10] failed
to give desired results. The failure was due to large occlusion
of useful features as well as similarity in appearance of
scenes. In our case, even the total 30% features contained
a major portion belonging to sky and roads. So, the actual
available useful features were far less, on an average 10%.

Fig. 8. The first row shows the query frames. The second row shows the
retrieved results using the formulation of [10] whereas the third row shows
the retrieved results through the proposed method after fifth run using only
10% useful features

Over the full eighth run, our formulation continued to return
results similar in appearance to the query and belonging to
the same pose.

The quantitative analysis (Table II) in terms of distance
measure has shown remarkable improvement. The direct
retrieval and global localization results showed an improve-
ment of 60.72% and 43.12% respectively after seventh run
for Test 3 (Fig. 7). The reduction in variance is much larger
with 95.53% and 98.46% respectively for both the cases.
Considering the inherent GPS error and usage of only 10%
useful features, the currently achieved results can be termed
as excellent and support our approach to gradually learn the
useful features through multiple experiences.

12 frames from a total of 3734 queries returned extremely
large errors (greater than 20m) that can be observed both
visually (Fig. 9) and quantitatively (Fig. 10). The match-
ing features in these queries belong to the non distinctive
elements like trees, lane markings and sky which being
repetitive, are incorrectly classified as useful because of
the weights. This error can be attributed to the inability of
Achar’s method to effectively assign low weights to non-
distinctive features. Our argument is aided by the fact that
no matching feature in these frames belonged to the dynamic
clutter, implying that our proposed method is successful.

V. CONCLUSION AND FUTURE WORK

The basic objective of the paper to achieve good localiza-
tion performance using only the set of useful features that
are not more than 10% of the total feature excluding the sky
and road features, has been surpassed with extremely positive
results and large improvement in both visual appearance as
well as quantitative measurement. The learning principle has
been effectively applied to the system and the challenging
task of searching useful features amongst clutter has been



Fig. 10. The first row shows the mean localization error comparison for direct retrieval between Run 1 and Run 7 corresponding to Test 3. The second
row compares the same for global localization. The few frames with large errors even after seven runs are shown in Fig. 9

Fig. 9. Shown are the matching features of the frames returning large errors.
Most of these matching features correspond to non distinctive elements like
trees and lane markings

reduced to a simple cyclic process of augmentation and
elimination. At the same time, we have observed that the
unintentional learning of non-useful features by the system
needs to be avoided by carefully monitoring its change
in performance after every run. Though the performance
of system has been excellent over the majority of query
frames, large error has been observed for a small percentage
of frames (0.003%) due to failure of distinctiveness. This
is a concern that needs to be addressed by designing a
robust mathematical framework for recognition of distinctive
features in such densely cluttered environments.
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