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Abstract

We present efficient measurement models for localiza-
tion in a feature based EKF SLAM framework. Both points
and segments form the features, points include corners
formed by intersection of wall like segments. The point fea-
tures are described by its coordinates, while the segment
feature is represented by the angle made by the normal to
the segment from the global origin with the abscissa called
the normal angle or N-angle for short. The measurement
equation involves measuring the distance and bearing to
the point feature and only bearing to the line feature. The
distance measurement to the segment is intentionally kept
out of the measurement equation due to its inefficacy in cor-
recting the robot and landmarks state. This arises due to
very large differences in the predicted and observed dis-
tances even for modest measurement errors when the robot
is not very near the segment. Hence for this reason the seg-
ment feature is represented only by its N-angle devoid of
distance since such a representation results in better state
correction. The number of computations resulting from the
covariance matrix updates is also less than a representa-
tion that includes both N-distance and N-angle.

1. INTRODUCTION

The SLAM problem has witnessed immense attention
from the robotic community. There are now many excel-
lent material to initiate the reader in a systematic fashion
[1, 2, 3]. Several solutions have been proposed that in-
clude the popular Extended Kalman Filter framework [4],
the FAST-SLAM framework which uses EKF to model the
map features while a set of particles describe the proba-
ble robot trajectories [5] and the Graph SLAM [6]. Within
the EKF framework there have been many approaches that
have tried to kept a check on the growth of the covariance
matrix for real-time considerations. For example in [7] a
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compressed EKF (CEKF) is proposed that updates only
part of the map one can see while the rest of the update
is postponed. A faster alternative to the EKF based on fac-
torization of the information matrix was proposed in [8].
Others have attacked the problem of improving the data
association, which is very crucial for a successful SLAM
implementation using methods such as joint compatibility
branch and bound [10], the Maximal Common Subgraph
[9] and the combined constrained data association [11].

In this paper the concern is about approaches that use
both point and segment features as landmarks. The amount
of literature on segment based EKF SLAM has been rel-
atively sparse. In a recent paper [12] a line feature based
SLAM with lower end sensors such as an IR range finder
was proposed. The paper formulates the framework for
segments that are parallel to one of the two axes of the
global reference frame. In [13] the line feature is repre-
sented by its center of gravity. By tracking corners that
form the endpoints of the line the statistical growth of line
like features is curtailed. Earlier a framework of SLAM
based on segment representation and map management was
presented in [14]. However this work did not consider in-
corporating point features also as part of the landmarks.

This paper draws certain inferences in the context of
segment and point features based EKF SLAM that has not
appeared before in other literature based on our survey.
Firstly it infers that a measurement equation involving the
normal distance or any such distance measure to a line fea-
ture is highly sensitive to even modest measurement noise.
Thus even the initial features augmented to the state matrix
possess very high variance and covariances. These high
values prevent subsequent correction of the state vector.
Secondly the measurement equation involving N-angle to
the line feature is a lot more stable to measurement noise
and hence can correct the state vector closer to its actual
value. Thirdly the bearing measurement of point features
is more sensitive to measurement noise when the robot is
close to the feature than the n-angle measurement to the
line feature. Based on these inferences the paper shows the
following:

1. Including line features apart from point features with
only n-angle being measured in line features results



Figure 1: Figure depicting set of points measured with a ranger
device like laser. Associated ellipses around each point are uncer-
tainities.

in more robust state correction than using only point
features.

2. Involving N-distance in the measurement as well as
a landmark feature does not improve the state correc-
tion at all or rather inconsequentially. Sometimes it is
found to degrade the performance. Hence with only
N-angle in the measurement and representation of the
feature leads to better performance than having both
n-distances and n-angles, when the option exists to get
distance measurement from points.

While decomposing the line feature to a point through
its center of gravity as described in [13] could alleviate
some of the issues described above, it is a difficult propo-
sition to track the center of gravity when the line is not
completely seen and the length of the line varies from scan
to scan.

2. Motivation

We elaborate the inferences mentioned through figures
that constitute our motivation. Figure 1 shows a set of
points as measured by a range device like the Laser Range
Finder (LRF) that constitutes a segment like object such
as a wall. The uncertainty ellipses of these points are also
shown. The uncertainties in the laser range measurement
and the uncertainty of the angle of the laser ray are trans-
formed to the uncertainties in the coordinates of the mea-
sured point and shown by the ellipses. We are not depict-
ing uncertainty in the robot pose for the time being for the
sake of clarity in these illustrations. Consider two proba-
ble line segments that could arise due to these uncertainties
shown in blue and green in figure 2. We regard the blue
line to be the predicted line segment and the green as the
obtained or perceived line from the most recent scan. The
perpendiculars to these two line segments are shown from
two different robot positions. Evidently the difference be-
tween the perpendicular distance to the two lines is rather

Figure 2: Perpendicular distances dropped from two robot loca-
tions (R1,R2) to predicted line(blue) and perceived line(green).
Clearly the difference between perpendicular distances from lo-
cation R2 is more than the difference from location R1.

Figure 3: The distances drawn from Robot locations (R1,R2) to
the predicted and perceived points.Depending on the robot’s loca-
tion, the difference between distances to predicted and perceived
points is bounded inside the ellipse.

large and it grows as the distance of the robot from the seg-
ment increases. These large differences in the predicted
and obtained measurements results in large variance terms
for the distance measurement essentially rendering the per-
pendicular distance ineffective for state error correction or
update. A bit more formally if Xr = [xr,yr,θr]T represents
the robot state and Xl = [xl ,yl ]T any point on the segment
then the N-distance from the robot to the segment is given
by ρ = xrcos(φ)+yrsin(φ)−ρ0, where φ is the N-angle to
the line and ρ0 is the N-distance to the line from the origin.
If ml denotes the slope of the line, then the sensitivity of
the N-distance from the robot location to the line’s slope
is given by ∂ρ

∂ml
= 1

1+m2
l
(xl − xr)sin(φ) + (yr − yl)cos(φ).

Thus the changes in ρ due to changes in ml gets more pro-
nounced as the robot is further away from the line verifying
the observations of figure 2. On the other hand the sensi-
tivity of the bearing to the line, given by ψ = φ − θr, to
changes in line slope is of the form ∂ψ

∂ml
= 1

1+m2
l

which is

invariant to the distance from the robot to the line.
In case of point features there is no such thing as

slope and sensitivity of measurement parameters to slope
changes does not arise. However one can discern the sen-
sitivity of point measurement parameters to robot pose due
to measurement noise. Figure 3 shows that unlike line fea-
tures, the difference between predicted and observed dis-
tance to a point feature lies within the same bounds of un-



Figure 4: The angle Predicted-Robot-Perceived ∠PRP′ can
greatly vary depending on the robots location with respect to the
points.

certainty, irrespective of distance of the robot to the land-
mark. This is when the measurement noise of the measur-
ing device does not grow as the distance it measures in-
creases, which is normally true for laser and other range
finders for a given range of operation. Whereas figure
4 shows that the difference between predicted and mea-
sured angles can increase when the robot gets closer to the
point feature despite the feature noise remaining a constant.
These observations indicate that the bearing to a line fea-
ture and distance to a point feature are apt measurement
parameters. A careful combination of these could yield a
better set of results as the experimental section reveals.

3. The Method

While the current method holds true for any kind of a
mobile robot with range sensors, we assume a robot with
a differential drive for the sake of simplicity. In our EKF
model, we assume that a set of waypoints are given a priori
to the robot. Using the control model, the robot finds the
route to the next waypoint in discrete steps, using a linear
movement command or a rotation command alternately at
each step as required. The rotation is performed alternately
to correct the deviation in the heading of the robot due to
errors such as drift.

At any time, the state consists of the pose of the robot
and the features, both being erroneous. The noise in the
robot’s pose is modeled using two different Gaussian vari-
ables, the variance in linear motion and the variance in
heading. When experimenting on the robot, the variances
are estimated from several runs of the robot. As the pose
of the robot is stored using a Cartesian coordinate system,
the noise model needs to be mapped from the noise space
to the robot space, as below :

Xr =
[
r cosθr r sinθr θr

]T

Gu =

 ∂Xr
∂ r

∂Xr
∂θ

 =

cosθr −r sinθr
sinθr r cosθr

0 1


N(x,y) = Gu×N(T,θ)×G′

u

Similarly, the observation model for noise is modeled
as Gaussians, as according to the type of the feature. For
a point feature, the noise is in terms of the range and the
bearing variance and for a line, it is in terms of the variance
of the N-angle.

Rp =
[

σ2
r 0

0 σ2
θ

]
Rl =

[
σ2

ψ

]
The state vector initially consists of the robot pose with

new observed features being augmented to the state vector
with every scan.

Xr =
[
xr yr θr... xp yp... ψl ...

]T

As in every EKF framework, we model the measure-
ments with the following measurement equation for points
and lines respectively.

zp =

[ √
(xp− xr)

2 +(yp− yr)
2

tan−1 (yp− yr/xp− xr)−θr

]

zl =
[
φ −θr

]
Initially, the robot takes a scan of the environment fol-

lowed by the EKF algorithm. The algorithm begins with
a move command to the robot, followed by the prediction
of the new pose and covariance. A scan of the surround-
ings is acquired next, from which possible features are ex-
tracted for augmenting and/or associating to the state, fol-
lowed by the updating of the state vector from the associ-
ated features. These steps are followed interatively till the
last waypoint is reached.

The features acquired from each measurement are stored
in their raw form temporarily(with the robot pose as the
origin of the coordinate system). With each new measure-
ment, the last raw form array is transformed by the es-
timated movement of the robot between the last and the
current pose and then compared with the raw observations
in the current scan. The observations that are yet not as-
sociated are then checked for association using the Maha-
lanobis distance.

For each line segment feature in the state, endpoints are
stored separately and updated out of the EKF framework
using simple point projection. The endpoints of each ob-
served line from a scan are then compared to a transformed



Map Method 1 Method 2 Method 3
1 1.5391 0.32748 0.56607
2 1.3176 0.4120 0.4615
3 0.973 0.32 0.37

Table 1: Average landmark error for three different maps using
three different methods (All units are in metres). Method 1 uses
point features only, method 2 uses points and N-angles from line
segments,and the third method uses uses both points and lines(
with ρ and ψ)

Figure 5: Robot trails for one run of the algorithms.Red trails
are when considering point features alone, and green trails using
points and N-angles of lines. Whereas the blue lines is the actual
path expected. The dimensions of the map are 24×24 m2.

set of those obtained from a previous scan stored separately
in their original form as obtained. As in the points case, ob-
servations that are yet unassociated are then compared with
line features from the state for association using endpoints
and Mahalanobis distance for the N-angle.

4. Results and Comparisons

Figure 5 shows a map used for simulating our various
EKF algorithms. The translation and rotation variances for
the differential drive robot used in the simulations were
0.043 metres and 0.02 radians respectively while the laser
range and bearing measurement errors were 0.03 metres
and 0.017 radians. The variance used for the N-angle of
line segment features was 0.03 radians. The ground truth
path is shown in the same figure in green, while the mean
path obtained by considering only point features is shown
in red while the mean path obtained by using point fea-
tures with both distance and bearing measurements and
line features with only bearing measurements is shown in

Figure 6: The map estimated by the robot.The map estimated
when using points features alone is shown in red, the map esti-
mated with point features and line features (ρ and ψ) is in green,
and the map with points and the N-angle of line featuresv is in
blue

blue. The figure 6 shows the ground truth map which is
same as that of figure 5 in green, the mean values of land-
marks when only point features were used in red and when
both point and line features were used in blue. These plots
indicate that using points and lines as features results in
more accurate paths and maps than only point features. The
graphs of figure 7 show the error plots of various methods.
The abscissa of the plots is the instances when an update of
the state was made. The error shows the difference between
the ground truth robot state and the mean corrected state at
every instant the state update or state correction occurred.
The plot in red is due to Method 1 where point features
alone used with both bearing and distance measurements.
The blue plot corresponds to Method 2 where point features
with bearing and distance measurements and line features
with only bearing measurements were used. The green plot
is of Method 3 where both point and line features had dis-
tance and bearing measurements. These plots confirm that
Method 2 (points with distance and bearing, lines with only
bearing) corrected the robot states much better than Meth-
ods 1 and 3. The error in the graph due to point features
is quite high in this case due to certain instances where the
robot could not see any point features. Although the error
might be less in another case it would still be higher than
the error incurred when using Method 2.

The graphs of figure 8 have the same connotations as
that of figure 7 except they show difference between the
ground truth map features and the corrected map features
at the end of the navigation run. Every unit on the abscissa
corresponds to one iteration of the algorithm, the ordinate is



Figure 7: Errors between ground truth and assumed pose. The red
graph is for the points only case, the green is for points and lines,
and blue is for points and N-angles of lines. The error incurred
over a 40 meters movement of the robot is shown.

Figure 8: Error between actual feature and estimated feature co-
ordinates. Red for points only, green for points and lines, blue for
point and N-angle of lines. The error incurred in features over a
40 meters movement of the robot is shown.

the difference between actual and corrected map feature at
the termination of the iteration. Method labels denote the
same methods as in the earlier graphs. Once again these
confirm the superior performance of Method 2 over 1 and
3.

The experiments have been conducted in simulation evi-
ronment in Player-Stage, linked to Octave code which was
acquired from Tim Bailey’s [11] home page and modified
to work with the different methods used.

Table 1 tabulates these results in various maps for land-
mark errors. The first column in the table denotes the var-
ious maps across which the comparisons were performed.
The remaining columns correspond to methods 1 to 3. The
entries in these columns are the average error at the end of
the navigation run in that corresponding map. The values
in table 1 are the average of the landmark errors (in me-
tres) compared to ground truth. The tabulated results are in
consonance with the earlier graphs.

5. Conclusions

The paper makes a case for choosing the apt choice
of measurement parameters for a point and segment fea-
tures based SLAM. The motivation for choosing a partic-
ular measurement model stems from the sensitivity of that
model with changes in the state of the landmarks that arise
due to measurement noise. Those measurement parameters
that are less sensitive to changes in state of the landmarks
such as slopes in case of segments and position in case of
points are preferred over the less sensitive ones. The paper
concludes that when the option of using both points and
line features exists without any scarcity of those features,
a SLAM algorithm that takes only bearing measurements
on line and distance and bearing measurements on points
performs better than an algorithm that considers only point
features or uses both bearing and distance measurements
for both lines and point features. Extensive comparisons
over various maps corroborate these conclusions
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