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Abstract— We present a method for extracting ground and
other planes from a single non rotating laser mounted on a
slow moving car used for on-road driving. A laser scan is
decomposed into linear clusters. Corresponding clusters from
subsequent scans are merged to form planes. The ground plane
is identified based on the current vehicle height and the variance
in height of the planes. Once these seed planes are identified
future scan points either get associated with these planes or
result in formation of new planes. Scan points that do not belong
to any of the plane are left as such in the representation. Since
the robustness of the method is contingent on how a single scan
is decomposed into linear clusters, we compare the quality of
the terrain representation due to three such clustering methods,
one by iterative end point fit, other by adaptive breakpoint
detection and thirdly the current method based on adaptive
cosine similarity.

I. INTRODUCTION

On-road navigation is a crucial component of autonomous
navigation outdoors and presents interesting challenges,the
prominent among those being the ability to discern the
traversability of a terrain patch. Unlike in planar worlds
where anything that the range scanner detects is considered
to be an obstacle, in 3D terrains such easy classification is not
possible as perceived obstacles are not necessarily at right
angles to the currently traversed plane.

Outdoor navigation is significant for automation of robots
that act as sentries and guards in big university campuses and
firms where the terrain includes roads along with trees and
plantations. It is a key component for automating outdoor
vehicles that are required to interpret the terrain for safe
autonomous driving. In this paper we present an algorithm
for representing the local terrain of the vehicle in terms
of planes and points to discern the traversable region. The
algorithm finds with respect to the current robot pose the
areas that are navigable. The exploration process involvesthe
use of a GPS and AHRS for obtaining the state of the vehicle
with respect to a global reference frame. The transformation
of the laser frame with the vehicle is known. The laser is
tilted such that the readings hit the terrain below.

The algorithm has been tested on real-time laser data
obtained from a Maruti-Omni Vehicle and a Pioneer P3DX
robot at our university campus. The algorithm has been able
to classify navigable and non-navigable regions and is able
to identify the traversable roads for successful navigation.
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Three parts constitute the algorithm. The first part consists
of decomposing a scan line into linear clusters. The second
part involves merging clusters obtained across a set ofN
initial scanlines to form planes. The ground plane and other
planes are identified in the process through the popular
RANSAC based approach. Clusters of points that are not
amenable to plane parametrization are left as such in the
representation. In the third part we associate clusters from
the most recent,N + 1, scanline to planes formed so far.
Clusters that get associated to planes within a threshold leads
to re-parametrization of those planes based on most recent
data. Clusters that do not get associated with any of the
planes are maintained as such and could result in formation
of new planes in the future. The algorithm is thus able to
recognize from every new scanline the continuation of the
ground plane. If such a continuation of a ground plane is
halted as new scanline clusters do not get associated with
the current ground plane, the algorithm then identifies among
the newly formed planes that which is most easily navigable
from the currently traversed ground plane. This identified
plane becomes the incumbent ground plane.

We compare three methods of forming clusters from a
scanline of points. One is the popular iterative end point fit
[6], the second is due to an adaptive breakpoint detection
[2] and third the method of this paper based on an adaptive
cosine similarity measure. We show that the adaptive break-
point detection algorithm, abbreviated as ABD henceforth is
conservative in decomposition of clusters and hence tends to
have points on the kerbs as part of the road cluster. This is
because the parameterλ [2] denoting the worst case incident
angle is rather difficult to determine for outdoor data.

The novelty of this effort includes the use of plane
parametrization from scanline data obtained incrementally
to discern the ground plane from other planes as well as
to identify the subsequently navigable planes when ground
plane continuation is halted. The subsequently navigable
planes are determined based on the angles made by their
normals with the current ground plane. The paper also
presents a new adaptive cosine similarity rule for forming
clusters from scanline data and evaluates it with other known
methods in the context of outdoor data. Previous approaches
that have compared scan line clustering algorithms from laser
range finders have done so predominantly on indoor data
only [1], [3].

The method of using RANSAC over clustered data such
as in this approach has been found to determine plane
parameters better than making use of RANSAC to determine
the inliers from an entire point cloud data and associating



them with the ground plane. This not so surprising intuition
has been verified among other places in a most recent paper
on Connected Component -RANSAC or CCRANSAC [5]. It
is also more apt for real-time situations due to its inherent
divide and conquer like philosophy.

Efficient detection and parametrization of ground and
other planes as well as classification of navigable regions
as shown in the section on experimental results confirms the
efficacy of the proposed method.

II. L ITERATURE REVIEW

Literature related to current effort includes feature extrac-
tion from laser scan line data and outdoor representations for
efficient navigation. There have been several approaches to
extract features from line segment data and a comparison of
various popular methods such as the iterative end point fit
[6] based split and merge algorithm, RANSAC[7], regression
models, Hough Transform [8] and EM based approaches
has been presented in [3]. There it was reported that the
iterative end point fit based split and merge algorithm to
be the most reliable as far as decomposing scanline data
into linear clusters. Similar results were obtained in [1]
where a fuzzy based split and merge algorithm with adaptive
line breaking was proposed. The algorithm was extended
to detect curve like clusters in [2]. However the relative
efficacy of these methods in relatively sparse data obtainedin
largely unstructured outdoor terrains have not been reported.
Moreover determining the apt incidence angleλ [1], [2] has
been difficult for outdoor terrain and the performance of
these methods depend crucially on this parameter. The use of
planes to represent indoor data has also been experimented
with. In [11] an EM algorithm clusters a dense 3D into its
component planes. However it may be quite difficult to use
this approach for incremental scan line data in a real-time
scenario since the EM iterates to find the best clusters.

Many outdoor terrain representation methods work to-
wards extracting the dominant planar patch from a point
cloud like data. For example [14] uses RANSAC to ex-
tract the dominant plane from stereo data. However the
susceptibility of such an approach to adequately estimate the
dominant plane in presence of multiple structures has been
well reported [4]. In a very recent contribution the authors
in [5] propose a CCRANSAC approach that overcomes the
problems of evaluating the dominant or ground plane by
using RANSAC only on a set of points that belong to the
same connected component. The current method is akin to
this approach since it applies RANSAC only on clustered
data to parametrize the planes rather than invoking RANSAC
itself to extract the dominant plane cluster. In [9] Wolf and
Sukhatme present a method to segregate the ground plane
from the surrounding grassy areas through a HMM based
approach. An Extended Kalman Filter based algorithm for
road kerb detection is presented in [12]. The method assumes
an indefinite continuation of ground plane and does not
attempt to classify the data into navigable and non-navigable
regions. The assumption that the roads are always bordered
by kerbs need not always be the case in various parts of the

Fig. 1. (Left) Computing the threshold angleθth based on the uncertainity
ellipses. (Right) The angle maximum(θ1,θ2) is compared withθth to decide
the breakpoint.

world as well. In [13] a method for obstacle detection and
avoidance in vegetated terrain is presented using a 3D Swiss
Laser. There have also been approaches due to vision such
as a fast color segmentation approach [10] for ground plane
extraction that are not cited here for brevity of space.

III. T HE METHOD

We first delineate the notations used before detailing the
method.

A. Notations:

L,G,V : The coordinate frames of Laser, Ground and
Vehicle frames.
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We have used the terms States and points synonymously.

B. Formation of Linear Clusters:

Consider three points,XLi , XL j , XLk, obtained in an angular
sequence from the scanSt

L. Thenθ t
Li jk

is found by the cosine

similarity measurecos(θ t
Li jk

) =
VLi j ·VL jk
‖VLi j ‖‖VL jk

‖ , whereVLi j is the

vector joiningXLi ,XL j .
If θ t

Li jk
<θth then then points are accumulated into the

same cluster elseXLi is discarded and the operation proceeds
by considering the next set of 3 pointXL j ,XLk,XLl . θth is



Fig. 2. A single laser scan with breakpoints shown in red.

adapted based on the distancesdLi j ,dL jk . If these distances
are biggerθth is smaller and vice-versa.

Fig. 1 shows three such pointsXL1,XL2,XL3 and the uncer-
tainty surrounding those point by ellipses. This uncertainty is
essentially the uncertainty associated with the measurement

[PLi ,φLi ] represented by the covariance matrix

[

σL2
i

0

0 σL2
i

]

.

This uncertainity is transformed to the covariance matrix
representing uncertainty inXLi ,which results in the elipses
shown in Fig. 1 Then angleθth computed as follows. We
project the center of the uncertainty ellipse ofXL2 onto the
line joining XL1 and XL3 and denote it asXL2p as shown in
Fig. 1. The angle formed by the line connecting the midpoint
of XL1,XL3 with the endpoint of the projected uncertainty
ellipse of defines the threshold angleθth. Then the maximum
of the two angles made by the center of the ellipses of
XL1,XL3 with the endpoints of the original uncertainty ellipse
of XL2 (when it is not projected onto the line joiningXL1,XL3)
is found as shown in Fig. 1 If the maximum of these two
angles is greater thanθth, i.e. max(θ1,θ2) ≥ θth then the
three points belong to the same cluster else a new cluster
starts fromXL2. Thusθth adapts with the distancesdLi j and
hence claimed as the adaptive cosine similarity measure.

Points are then considered in the angular sequence three
at a time and accumulated into a cluster if they satisfy the
adaptive similarity. A new cluster is started whenever simi-
larity is violated. When the cosine similarity is applied only
by considering three consecutive points, there is a certain
lack of memory that can result in a long cluster overlooking
the breakpoints.To overcome this whenever more than ten
consecutive points get accumulated in the same cluster,the
cosine similarity is reformed by taking the endpoints of
the current cluster along with an arbitrarily chosen point in
between. This process is repeated a few times by choosing
different points in the middle to detect breaks or change in
slope in order to split the cluster is required.

Fig. 2 shows the formation of clusters for a scan line
data of an outdoor terrain. The breakpoints where cosine
similarity are violated also shown.

Fig. 3. The scan points belonging to the current cluster(in green) correlated
with scan points of the previous cluster(in red).

C. Merging clusters to form seed planes:

For every clusterCt
Li

ε Ct
L we find the clusterCt−1

L j
ε Ct−1

L

that has the maximum correlation withCt
Li

. If the correla-
tion measure between them is greater than a threshold the
clusters are merged.The correlation is done as convolution
like operation as shown in Fig. 3, where the smaller of the
clusters is moved over the large one to find the set of points
that offer the highest correlative measure.

Define correlation measure betweenCt
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andCt−1
L j
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as j =
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[
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.

Clusters that are merged in this manner fork such scans
are plane parameterized to form the seed plane.

D. Ground plane Identification

Based on the current height of the laser obtained from the
GPS and AHRS readings, we predict the distance measure-
ments to the ground plane. We find to which of the formed
seed planes these predicted distances correlate the best such
that the correlation measure is greater than a threshold; that
seed plane is identified as the ground plane.

E. Plane Continuation:

The seed planes formed from the initialk scans are
extended in the subsequent scans by a resource allocation
like process, merging the current scan clusters with the
planes formed so far. Considering the set of clusters
of current scanCt

G to be the process and the set of
planes PL to be the resources, we find the best pair
(Ct

Gi
,PL j );C

t
Gi
∈ Ct

G,PL j ∈ PL which gives the smallest
median perpendicular distance from the point in the cluster
to the plane
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(
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)

i′ = 1→m, j ′ = 1→ p.

MdPd (Ct
Gi

, Pl j ) is the median perpendicular distance of the
points inCGi to the planePl j .

If the median distance of the best match pair is less than
a threshold the pair is removed from the allocation process,
this allocation continues till all clusters are allocated or there
exists no more planes or if the median distance threshold
was exceeded.Ct

Gi
is a cluster of points in theG frame as

mentioned before. The transformation between frames given
by XGi = TG

V +RG
V RV

L XLi , whereTG
V is the translation of the

vehicle from the origin of the ground frame (usually the
starting location of the vehicle) andRB

A is the rotation of
frameA with respect toB.

The unalloted clusters are retained in the terrain represen-
tation as such.and after everyk samples unallocated clusters
are tested for merging conditions with existing planes or for
the formation of a new seed plane.

F. Navigability Decision:

When ground plane continuation is halted the next nav-
igable plane is identified as that plane whose normal with
the normal of the currently halted ground plane has the least
angular difference which can be negotiated by the vehicle.

Overall Algorithm

1) Starting Phase:

a) For firstk time instants do

i) Ck
L ← Obtain Linear Clusters (Sk

L)
ii) Ck

Mg ← Merge clusters (Sk
L, Ck−1

Mg );
Ck

Mg is the list of merged clusters at instant
k

b) SP← Form Seed Planes (Ck
Mg)

c) GP← Identify Ground plane (SP,RG,P1
L ,. . . ,Pk

L )
d) PL← SP
e) If (not(IsIdenti f iedGroundPlane())

i) EndO f Navigation← true

f) go to Phase 2

2) Subsequent Phase:

a) while (not(EndO f Navigation)) do
b) for nextk instants do

i) PL ←MergeClustertoPlane(PL,Ck
G)

ii) Ck
NM←Merge Cluster (Ck

NM,Ck−1
NM ); Ck

NM are
clusters inCk

L not merged to planes in PL.
iii) if not(GroundPlaneContinued) Fl ← False

c) SP← Form seed Planes(Ck
NM)

d) if not (Fl)
ifnot(FoundNextNavigablePlane (GP,SP))

EndO f Navigation← True.
else

Append(PL,SP); Append seed planes in
SP to the list of planes, PL

IV. EXPERIMENTAL RESULTS

Fig. 4. The experimental set up with the measuring devices mounted on
the Maruti-Omni

Terrain modeling experiments were performed on a
Maruti-Omni Vehicle that was mounted with a Sick Laser
Range Finder (LRF), Sirf3 based GPS and an attitude head
reference system (AHRS) from Xsens inc. The vehicle trav-
eled at around 10kph.The experimental setup on the vehicle
is shown in Fig 4. The terrain is represented using OSG
Graphics Library.

The top left image of Fig. 5 in the next page depicts the
front view of a part of the road as seen from the vehicle. Top
right image of Fig. 5 shows the representation of the terrain
as computed by our algorithm. The seed plane is shown in
yellow and the subsequently navigable planes in green. The
boundary between two navigable ground planes is shown
in Magenta. The non navigable planes are shown in cyan,
clusters that could not form planes are shown as red dots.
Top middle image shows the point cloud representation of
the scene.Similarly,in the bottom row ground and side plane
formation of another scene is shown.Background of the scene
is shown in Navy blue in the middle and right images.

We compare the performance of three clustering algo-
rithms on the basis of how accurately they extract the ground
plane. The algorithms evaluated are the iterative end-point
fit (IEPF), the adaptive breakpoint detection (ABD) and
adaptive cosine similarity (ACS). The ground truth data is
more readily obtainable for the road regions of the terrain
than the non ground regions such as bushes, kerbs, trees and
people. Hence the comparison is done based on the accuracy
of ground plane extraction than other parts of the terrain.

TABLE I

COMPARISION OF CUSTERING OF SCAN POINTS METHODS

Map No. ABD IEPF ACS
FP FN FP FN FP FN

Map 1 30.305 3.809 0.586 0.795 0.418 4.73
Map 2 1.672 1.564 1.832 0.402 0.089 3.753
Map 3 12.247 56.6 0.324 38.687 0.324 17.842



Fig. 5. In the top row,actual image is in top left,top middle image is point-clound representation of the image(green is navigable and red non-navigable)
and top right image is the representation of terrain in groundand other planes.Similary,in the bottom row another scene isrepresented

Table I tabulates the comparisons. The first column corre-
sponds to various maps on which the comparisons were per-
formed. The second and third columns show the percentage
of false positives and false negative classification of ground
plane by the ABD method, the fourth and fifth for the IEPF
method and the last two columns for the proposed ACS
method. The false positive and false negative percentages
are obtained for each scan line data once the ground plane
is formed and then averaged over subsequent scans till the
mapping terminates. The average values are reported in the
table. The ground truth data is available as width of the road
between the kerbs. For a given state of the robot it is possible
to estimate then, those angular sequence of points that would
hit the ground. The false positive and negatives can then be
computed. Theλ value used in the ABD was 10 since it gave
the best clusters for various values ofλ tried between 5 and
100. It can be seen from the tabulations that the performance
of ACS and IEPF methods were generally better than ABD
in terms of positive. This is because the ABD tends to miss
out the kerbs, thereby increasing the length of ground plane
cluster resulting in more false positives.

The method is applicable for outdoor navigation, for
identifying the next best region to navigate based on the

angles between the various planes formed. Since we were
more interested in classification rather than accurate mapping
of the outdoor data, we have relied on a GPS with 1m
resolution and linearly interpolated scans obtained between
two GPS waypoints onto the terrain. This has not in anyways
affected the classification process on numerous experiments
we have performed thus far.
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