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Abstract—We present a method for extracting ground and Three parts constitute the algorithm. The first part cogsist
other planes from a single non rotating laser mounted on a of decomposing a scan line into linear clusters. The second
slow moving car used for on-road driving. A laser scan is part involves merging clusters obtained across a se of

decomposed into linear clusters. Corresponding clusters from . itial i to f | Th d ol d oth
subsequent scans are merged to form planes. The ground plane Iniial scanlines 1o rorm planes. the ground plane and other

is identified based on the current vehicle height and the variance Planes are identified in the process through the popular
in height of the planes. Once these seed planes are identified RANSAC based approach. Clusters of points that are not
future_scan po_ints either get associated_ with these planes or gmenable to plane parametrization are left as such in the
resultin formation of new planes. Scan points that do notbelong - yoresentation. In the third part we associate clustens fro
to any of the plane are left as such in the representation. Since .
the robustness of the method is contingent on how a single scan the most recentN + 1, . scanline to pIar.1es. formed so far.
is decomposed into linear clusters, we compare the quality of Clusters that get associated to planes within a threshattsle
the terrain representation due to three such clustering methods to re-parametrization of those planes based on most recent
one by iterative end point fit, other by adaptive breakpoint data. Clusters that do not get associated with any of the
detection and thirdly the current method based on adaptive janes are maintained as such and could result in formation
cosine S|m|Iar|ty. . . .
of new planes in the future. The algorithm is thus able to

recognize from every new scanline the continuation of the
ground plane. If such a continuation of a ground plane is

On-road navigation is a crucial component of autonomousalted as new scanline clusters do not get associated with
navigation outdoors and presents interesting challerthes, the current ground plane, the algorithm then identifies agnon
prominent among those being the ability to discern théhe newly formed planes that which is most easily navigable
traversability of a terrain patch. Unlike in planar worldsfrom the currently traversed ground plane. This identified
where anything that the range scanner detects is considef@dne becomes the incumbent ground plane.
to be an obstacle, in 3D terrains such easy classificatiootisn We compare three methods of forming clusters from a
possible as perceived obstacles are not necessarily dt rigganline of points. One is the popular iterative end point fit
angles to the currently traversed plane. [6], the second is due to an adaptive breakpoint detection

Outdoor navigation is significant for automation of robot42] and third the method of this paper based on an adaptive
that act as sentries and guards in big university campusks a#psine similarity measure. We show that the adaptive break-
firms where the terrain includes roads along with trees arfgbint detection algorithm, abbreviated as ABD hencefasth i
plantations. It is a key component for automating outdoogonservative in decomposition of clusters and hence temds t
vehicles that are required to interpret the terrain for safeave points on the kerbs as part of the road cluster. This is
autonomous driving. In this paper we present an algorithipecause the paramet{2] denoting the worst case incident
for representing the local terrain of the vehicle in term@&ngle is rather difficult to determine for outdoor data.
of planes and points to discern the traversable region. TheThe novelty of this effort includes the use of plane
algorithm finds with respect to the current robot pose thparametrization from scanline data obtained incremgntall
areas that are navigable. The exploration process invtiiees to discern the ground plane from other planes as well as
use of a GPS and AHRS for obtaining the state of the vehicle identify the subsequently navigable planes when ground
with respect to a global reference frame. The transformatigplane continuation is halted. The subsequently navigable
of the laser frame with the vehicle is known. The laser iplanes are determined based on the angles made by their
tilted such that the readings hit the terrain below. normals with the current ground plane. The paper also

The algorithm has been tested on real-time laser dapiesents a new adaptive cosine similarity rule for forming
obtained from a Maruti-Omni Vehicle and a Pioneer P3D)clusters from scanline data and evaluates it with other know
robot at our university campus. The algorithm has been abheethods in the context of outdoor data. Previous approaches
to classify navigable and non-navigable regions and is ablBat have compared scan line clustering algorithms froerlas
to identify the traversable roads for successful navigatio range finders have done so predominantly on indoor data

only [1], [3].
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them with the ground plane. This not so surprising intuition Iz
has been verified among other places in a most recent pape 0, .
on Connected Component -RANSAC or CCRANSAC [5]. It \ Ly
is also more apt for real-time situations due to its inherent @& :
divide and conquer like philosophy.

Efficient detection and parametrization of ground and
other planes as well as classification of navigable regions
as shown in the section on experimental results confirms the
efficacy of the proposed method.

1

Fig. 1. (Left) Computing the threshold angdg, based on the uncertainity

1. LITERATURE REVIEW ellipses. (Right) The angle maximufi(6,) is compared with;, to decide
. . the breakpoint.
Literature related to current effort includes feature astr

tion from laser scan line data and outdoor representatimms f

efficient navigation. There have been several approaches\{@rid as well. In [13] a method for obstacle detection and
extract features from line segment data and a comparison gjoidance in vegetated terrain is presented using a 3D Swiss
various popular methods such as the iterative end point filgser. There have also been approaches due to vision such
[6] based split and merge algorithm, RANSAC[7], regressioRs g fast color segmentation approach [10] for ground plane

models, Hough Transform [8] and EM based approachestraction that are not cited here for brevity of space.
has been presented in [3]. There it was reported that the

iterative end point fit based split and merge algorithm to I1l. THE METHOD
be the most reliable as far as decomposing scanline dat"’\Ne first delineate the notations used before detailing the
into linear clusters. Similar results were obtained in mmethod.
where a fuzzy based split and merge algorithm with adaptive
line breaking was proposed. The algorithm was extendesl Notations:
to detect curve like clusters in [2]. However the relative
efficacy of these methods in relatively sparse data obtdamed
largely unstructured outdoor terrains have not been regort
Moreover determining the apt incidence angl¢l], [2] has
been difficult for outdoor terrain and the performance Ojfase;r.frgme af = {(P'El’fﬁt-l)’ .(P'Ez’qiz)""'(P't-n’qq[-n.) }
these methods depend crucially on this parameter. The use oP'—i' Distance to a terrain point as measured byifhéaser
planes to represent indoor data has also been experimen@}ﬁ c.ast 2t .
with. In [11] an EM algorithm clusters a dense 3D into its qqtfi ' Angle of th?'”‘ laser ray. -
component planes. However it may be quite difficult to use xtLi' StaTte of ttheth r‘tr1eatsuremeTnt of laser in its own frame
this approach for incremental scan line data in a real-time [XtLi’ytLi] = “?Licogn-i’PLismqi].
scenario since the EM iterates to find the best clusters. X\t/. State ofit, measurement in V frame.

Many outdoor terrain representation methods work to- XG;: State ofi, measurement in G frame.
wards extracting the dominant planar patch from a point Re: State of vehicle in G frame &,Ryq Ry |
cloud like data. For example [14] uses RANSAC to ex- C ={Ci. ..'.,C}p}:Aset ofmlinear clusters formed from
tract the dominant plane from stereo data. However tH&€ scan at time instant S
susceptibility of such an approach to adequately estinnete t CL.CC.Cy: The clusterC at timet as represented in the
dominant plane in presence of multiple structures has begser.ground and vehicle frames.
well reported [4]. In a very recent contribution the authors Any memberCi, & C is a set of some pointse g, i.e.
in [5] propose a CCRANSAC approach that overcomes tHel, = {(X{,, Wi, -+ X, qo Yimig) } NOte that the points
problems of evaluating the dominant or ground plane bip & cluster are in angular sequence as obtained by the scan.
using RANSAC only on a set of points that belong to the di,: Distance between two poing, X,
same connected component. The current method is akin toG,t_ijk: Angle between the line joiningy, ,X,t_j and X,t_j X
this approach since it applies RANSAC only on clustered We have used the terms States and points synonymously.
data to parametrize the planes rather than invoking RANSAC
itself to extract the dominant plane cluster. In [9] Wolf andB. Formation of Linear Clusters:

Sukhatme present a method to segregate the ground plan€onsider three point¥, XL Xy obtained in an angular

from the surrounding grassy areas through a HMM basetkquence from the sc&h. Then6]. is found by the cosine
approach. An Extended Kalman Filter based algorithm for, .

road kerb detection is presented in [12]. The method assum&8™
an indefinite continuation of ground plane and does notector joiningX;,X;.

attempt to classify the data into navigable and non-navigab If G{i,k <6 then then points are accumulated into the
regions. The assumption that the roads are always bordergmnme cluster els¥, is discarded and the operation proceeds
by kerbs need not always be the case in various parts of thg considering the next set of 3 poid; X, X,. &n is

L,G,V : The coordinate frames of Laser, Ground and
Vehicle frames.
§: Scan at time; a set ofn measurements expressed in

larity measureog0! ) = CTCT
Lig” = vy TV

, whereV_. is the
ijH 1]
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Fig. 2. A single laser scan with breakpoints shown in red. Fig. 3. The scan points belonging to the current clusten@eg) correlated

with scan points of the previous cluster(in red).

adapted based on the distanakg,d . If these distances C. Merging clusters to form seed planes:

are bigger6y, is smaller and vice-versa. : - -
ggerén For every cluste€{, & C we find the cluste€{ * £ C{"*

H : J
Fig. 1 shows three such poinkg, X, X, and the uncer- hat has the maximum correlation wittf . If the correla-
tainty surrounding those point by ellipses. This uncetfai®  (ion measure between them is greater than a threshold the

essentially the uncertainty associated with the measureme,;sters are merged.The correlation is done as convolution

[AL.@.] represented by the covariance ma ixa"iz 0  like operation as shown in Fig. 3, where the smaller of the

0 02 clusters is moved over the large one to find the set of points

This uncertainity is transformed to the covariance matrixhat offer the highest correlative measure.
representing uncertainty iX, ,which results in the elipses Define correlation measure betwe@h and CtLJfl where
shqwn in Fig. 1 Then anglé& cgmputgd as follows. We Clt_i hass points anoCthl hasr points,s>r as
project the center of the uncertainty ellipseXf, onto the !
line joining X, and X_, and denote it a¥,p, as shown in max 1
Fig. 1. The angle formed by the line connecting the midpoirfem; = k STTC R
of X,,X, with the endpoint of the projected uncertainty j=1 L(|+k)t L . . ,

' Then for every cluste€;, € C; the indexj of the cluster

ellipse of defines the threshold andig. Then the maximum _; ", _ : et .
of the two angles made by the center of the ellipses &LJ from previous scan with whic;; gets merged is found

X_,, X, With the endpoints of the original uncertainty ellipseas j = 292X [ Ci }

.Of XL, (when it is not'pro!ected onto the Il'ne joining; ;) Clusters that are merged in this manner kosuch scans
is found as shown in Fig. 1 If the maximum of these two

angles is greater thafiy, i.e. max6y,6,) > 6p then the are plane parameterized to form the seed plane.

three points belong to the same cluster else a new clusi{gr Ground plane Identification
starts fromX,,. Thus 6 adapts with the distanceiiij and
hence claimed as the adaptive cosine similarity measure.

vk e [1,5—T]

Based on the current height of the laser obtained from the
GPS and AHRS readings, we predict the distance measure-
Points are then considered in the angular sequence thiggnts to the ground plane. We find to which of the formed
at a time and accumulated into a cluster if they satisfy thgeed planes these predicted distances correlate the lebst su

adaptive similarity. A new cluster is started whenever simiynat the correlation measure is greater than a threshaid; th
larity is violated. When the cosine similarity is applied pnl ggeq plane is identified as the ground plane.
by considering three consecutive points, there is a certain

lack of memory that can result in a long cluster overlooking=. Plane Continuation:
the breakpoints.To overcome this whenever more than tenThe seed planes formed from the initi&l scans are

consecutive points get accumulated in the same cluster,t8@ended in the subsequent scans by a resource allocation
cosine similarity is reformed by taking the endpoints ofjke process, merging the current scan clusters with the
the current cluster along with an arbitrarily chosen pomt i pjanes formed so far. Considering the set of clusters
between. This process is repeated a few times by choosigg cyrrent scanCl, to be the process and the set of
different points in the middle to detect breaks or change iflanes B to be the resources, we find the best pair
slope in order to split the cluster is required. (C5.A,)iCs € C5,R, € A which gives the smallest
Fig. 2 shows the formation of clusters for a scan linenedian perp')endicular distance from the point in the cluster
data of an outdoor terrain. The breakpoints where cosine the plane
similarity are violated also shown.



argmin
i/ HA

(CtGi’H—j): , J

(MaPd €5, R))

i'=1-mj=1-np.

MgPd CGi , R,) is the median perpendicular distance of the

points inCg; to the planeR;.

If the median distance of the best match pair is less tha
a threshold the pair is removed from the allocation proces

this allocation continues till all clusters are allocatedh®re

exists no more planes or if the median distance thresho

was exceededZy; is a cluster of points in th& frame as
mentioned before. The transformation between frames giv
by Xg, = T¢ + RGR/ X, whereT? is the translation of the

vehicle from the origin of the ground frame (usually the

starting location of the vehicle) anB is the rotation of
frame A with respect toB.

The unalloted clusters are retained in the terrain represe

tation as such.and after evekysamples unallocated clusters

are tested for merging conditions with existing planes or fo

the formation of a new seed plane.

F. Navigability Decision:

When ground plane continuation is halted the next nav-
igable plane is identified as that plane whose normal wit
the normal of the currently halted ground plane has the lea:

angular difference which can be negotiated by the vehicle

Overall Algorithm
1) Starting Phase:
a) For firstk time instants do
i) CK «— Obtain Linear ClustersY)
ii) Clyy — Merge clusters, Cio.);
Ck‘,'g is the list of merged clusters at instant
k
b) SP— Form Seed Plane<,)
¢) GP« Identify Ground plane (SRg,PL,. .. PY)
d) PL+ SP
e) If (not(IsldentifiedGroundPlang)
i) EndOfNavigation— true
f) go to Phase 2
2) Subsequent Phase:
a) while (not(EndOfNavigation) do
b) for nextk instants do
i) PL « MergeClustertoPlan@L,CK)
i) C{y < Merge Cluster@{,,,CKh); CKy are
clusters inC‘L< not merged to planes in PL
i) if not(GroundPlaneContinuedF| «— False
c) SP« Form seed Planes{,)
d) if not (FI)
ifnot(FoundNextNavigablePlane (GP,SP))
EndO fNavigation— True
else
Append(PL,SP); Append seed planes

IV. EXPERIMENTAL RESULTS

Fig. 4. The experimental set up with the measuring devices raduon
the Maruti-Omni

Terrain modeling experiments were performed on a
Maruti-Omni Vehicle that was mounted with a Sick Laser
Igf’mge Finder (LRF), Sirf3 based GPS and an attitude head
reference system (AHRS) from Xsens inc. The vehicle trav-
eled at around 10kph.The experimental setup on the vehicle
is shown in Fig 4. The terrain is represented using OSG
Graphics Library.

The top left image of Fig. 5 in the next page depicts the
front view of a part of the road as seen from the vehicle. Top
right image of Fig. 5 shows the representation of the terrain
as computed by our algorithm. The seed plane is shown in
yellow and the subsequently navigable planes in green. The
boundary between two navigable ground planes is shown
in Magenta. The non navigable planes are shown in cyan,
clusters that could not form planes are shown as red dots.
Top middle image shows the point cloud representation of
the scene.Similarly,in the bottom row ground and side plane
formation of another scene is shown.Background of the scene
is shown in Navy blue in the middle and right images.

We compare the performance of three clustering algo-
rithms on the basis of how accurately they extract the ground
plane. The algorithms evaluated are the iterative endtpoin
fit (IEPF), the adaptive breakpoint detection (ABD) and
adaptive cosine similarity (ACS). The ground truth data is
more readily obtainable for the road regions of the terrain
than the non ground regions such as bushes, kerbs, trees and
people. Hence the comparison is done based on the accuracy
of ground plane extraction than other parts of the terrain.

TABLE |
COMPARISION OF CUSTERING OF SCAN POINTS METHODS

SP to the list of planes, PL

Map No. ABD IEPF ACS

FP [ FN | FP [ FN | FP | FN
Map 1 30.305 | 3.809 | 0.586 | 0.795 | 0.418 4.73
Map 2 1.672 | 1.564 | 1.832 | 0.402 | 0.089 | 3.753
Map 3 12.247 | 56.6 0.324 | 38.687 | 0.324 | 17.842




Fig. 5.
and top right image is the representation of terrain in groand other planes.Similary,in the bottom row another scemepresented

In the top row,actual image is in top left,top middle iraag point-clound representation of the image(green is aélégand red non-navigable)

Table | tabulates the comparisons. The first column corr@ngles between the various planes formed. Since we were
sponds to various maps on which the comparisons were penore interested in classification rather than accurate mgpp
formed. The second and third columns show the percentagé the outdoor data, we have relied on a GPS with 1m
of false positives and false negative classification of gtou resolution and linearly interpolated scans obtained betwe
plane by the ABD method, the fourth and fifth for the IEPRwo GPS waypoints onto the terrain. This has not in anyways
method and the last two columns for the proposed ACSffected the classification process on numerous experiment
method. The false positive and false negative percentagee have performed thus far.

are obtained for each scan line data once the ground plane
is formed and then averaged over subsequent scans till the
mapping terminates. The average values are reported in the
table. The ground truth data is available as width of the road™!
between the kerbs. For a given state of the robot it is passibl
to estimate then, those angular sequence of points thatiwoul2
hit the ground. The false positive and negatives can then be
computed. The value used in the ABD was 10 since it gave [3]
the best clusters for various valuesofried between 5 and
100. It can be seen from the tabulations that the performanCﬁ]
of ACS and IEPF methods were generally better than ABD
in terms of positive. This is because the ABD tends to miss
out the kerbs, thereby increasing the length of ground planés]
cluster resulting in more false positives.

The method is applicable for outdoor navigation, for [6
identifying the next best region to navigate based on the
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