
Intel Serv Robotics (2009) 2:81–93
DOI 10.1007/s11370-009-0035-x

ORIGINAL RESEARCH PAPER

Towards load-balanced de-congested multi-robotic agent traffic
control by coordinated control at intersections

D. V. Karthikeya Viswanath · K. Madhava Krishna

Received: 20 January 2008 / Accepted: 19 February 2009 / Published online: 15 March 2009
© Springer-Verlag 2009

Abstract This paper presents a methodology for the coor-
dination of multiple robotic agents moving from one location
to another in an environment embedded with a network of
agents, placed at strategic locations such as intersections.
These intersection agents, communicate with robotic agents
and also with each other to route robots in a way as to mini-
mize the congestion, thus resulting in the continuous flow of
robot traffic. A robot’s path to its destination is computed by
the network (in this paper, ‘Network’ refers to the collection
of ‘Network agents’ operating at the intersections) in terms
of the next waypoints to reach. The intersection agents are
capable of identifying robots in their proximity based on sig-
nal strength. An intersection agent controls the flow of agent
traffic around it with the help of the data it collects from
the messages received from the robots and other surround-
ing intersection agents. The congestion of traffic is reduced
using a two-layered hierarchical strategy. The primary layer
operates at the intersection to reduce the time delay of robots
crossing them. The secondary layer maintains coordination
between intersection agents and routes traffic such that delay
is reduced through effective load balancing. The objective at
the primary level, to reduce congestion at the intersection,
is achieved through assigning priorities to pathways leading
to the intersection based on the robot traffic density. At the
secondary level, the load balancing of robots over multiple
intersections is achieved through coordination between inter-
section agents by communication of robot densities in differ-
ent pathways. Extensive comparisons show the performance
gain of the current method over existing ones. Theoretical
analysis apart from simulation show the advantages of load-
balanced traffic flow over uncoordinated allotment of robotic

D. V. K. Viswanath (B) · K. Madhava Krishna
International Institute of Information Technology, Hyderabad, India
e-mail: viswanath@research.iiit.ac.in

agents to pathways. Transferring the burden of coordination
to the network releases more computational power for the
robots to engage in critical assistive activities.

Keywords Wireless network · Distributed computation ·
Multi-agents · Multiple robots · Robot traffic control

1 Introduction

Network-mediated robot navigation has become popular
[1–3] in recent years from different viewpoints. First, the
network acts as a computing medium thereby reducing the
computational payload on-board the robot. In a manner akin
to swarm robotics, where each of the individual entity has
limited intelligence but the group in itself behaves as a suf-
ficiently intelligent system, the network allows the robots to
be possessed with minimal decision-making capabilities but
the network plus the robot behaves as a system of enhanced
intelligence. Second, the network provides for fault toler-
ance capabilities for if the on-board sensors fail or misbehave
the robotic agent can look up to the network for informa-
tion about the environment. Third, the network supplements
the computational capacity of the robot. Efficiently designed
sensor fusion algorithms can agglomerate intelligence gath-
ered through on-board as well as off-board resources to come
up with robust decisions. The essential novelty of this work
is that, among the survey of papers on a similar theme, the
authors have not come across the one that provides for multi-
robotic traffic control in a world mediated by a network.
While single robot navigation mediated by a network is well
studied [1,2], there has been little in the area of multi-robotic
navigation. The performance gain of this method over exist-
ing methods of traffic coordination is also reported.

123



82 Intel Serv Robotics (2009) 2:81–93

In this paper, we describe the problem of coordinating
multiple robots by network agents, placed at critical locations
such as intersections and T-junctions, such that the robots are
guided to their destinations in the fastest way. The paper is
divided into two parts. The first part deals with the primary
layer; where the robot movements are computed such that the
time delay/congestion at the intersection is reduced. The flow
of traffic is coordinated by assigning priorities to pathways1

based on the robot density and its rate of change. In this
method the robotic agent hailing from the pathway having
the highest agent density and lowest rate of change is allot-
ted the highest priority and the paths of agents with lower
priority are attuned to accommodate the paths of the robot
with higher priority. We compared our method with the pop-
ular method of reservation [5,6] which has been dovetailed to
the current situation. In this method, a robotic agent requests
for a space–time allocation at the intersection. The intersec-
tion agent allows passage for the robot till the point of no
conflict in the path of the vehicle through the intersection.
Extensive comparisons between the two methods have been
done and the performance gain of the proposed method is
well illustrated in the graphs and tables shown at the end of
the first part of the paper.

The second part of paper deals with the secondary layer
where routing of a robot from its initial position to its des-
tination in the best available path is done. Individually each
robot’s path in the environment is distributedly computed by
the network as a sequence of waypoints to the goal, each
successive waypoint one hop less than the previous. Here,
the waypoints are the intersections and a single hop-distance
is the distance between two intersections. In the proposed
method, intersection agents coordinate to propagate the robot
traffic density information to their neighbors so that at each
intersection, the agent guides a robot towards the next way-
point which promises minimum time delay. Simulations have
shown, by this method uniform traffic load is maintained at all
intersections and no particular intersection is overwhelmed
with robots while others are free of them. Theoretical analysis
apart from simulation show the advantages of load-balanced
traffic flow over uncoordinated allotment of robotic agents
to pathways.

In the area of multi-agent traffic control, the work reported
in [4,5] is relevant here. However, the difference being in the
current method coordination at intersections is achieved by
considering the density and rate of change of density along
the incoming pathways to an intersection while [4,5] relies
largely on a system of reservation of grids at an intersection
based on a first come first served like policy. In [6–8], a mech-
anism for coordination between various intersection agents
through an evolutionary agent paradigm was presented. The
chief advantage of this method over purely multi-agent-based

1 A pathway is a segment connecting two intersections.

traffic controllers is that the intersection agents have data that
can model more accurately the density and rate of change of it
along a pathway. This is because robotic agents interact with
intersection agents at a more basic and active level and hence
the obtained data can be used more profitably for reducing
time spent at intersections when compared with methods such
as [4,5] as the simulation section reveals. Moreover, in this
method of traffic control, the network takes care of the entire
routing of the robots with little involvement of the robots
themselves.

The paper is organized as follows. Section 2 deals with the
formulation of the problem with all the assumptions clearly
stated. Section 3 details the proposed strategy at primary
layer. All the comparisons, results and graphs related to the
primary layer are listed at the end of Sect. 3. Section 4
describes the secondary layer of the strategy along with the
simulation results.

2 Problem formulation

Given: A planar world embedded with a network of intersec-
tions agents. Robot agents crisscross this world. The map of
the environment is unknown to the robots.

Objective: Guiding the robots to their respective desti-
nations. During the process of navigation, they often cross
intersections. The objective is to have the intersection agents
coordinate the traffic such that the sum over the time spent
by each robotic agent to reach its destination is reduced.

Assumptions:

(a) Number of robotic agents is not fixed and they can be
introduced in any pathway till such time there is no place
to spawn any further due lo lack of space or congestion
in that pathway.

(b) The intersection agents are capable of localising robots
in their proximity based on the strength of signal
received from the robot.

(c) The motion of robot agents is modeled as integer mul-
tiple of the resolution of a cell for every time sample.
The cell distance is such that the agents can modify
their kinematics to move by that distance or multiple
of it between any two time samples. The time interval
between successive samples is the same throughout.

(d) Each intersection agent is programmed to store the IDs
and directions of its surrounding intersection agents
that are one hop count away from it, and the maximum
capacity in terms of robots of each of the pathways that
lead to it.

(e) Each intersection agent is programmed to store the esti-
mated freeway capacity (the number of robots that could
be accommodated), length of each pathway that lead
into it.

123



Intel Serv Robotics (2009) 2:81–93 83

Assumption (a) is often used in agent community [5,6]. It
serves as a yardstick for evaluating the control mechanism.
It is a welcome assumption more than anything.

Assumption (b) is routinely used in sensor network com-
munity [1,2] to detect the event, if the robot has come close
enough to a sensor mote to send the next action from the
mote.

Assumption (c) is used to reduce the search space over
the possible velocities of robots. It is once again a common
theme in several discrete time optimization problems that
involve discretizing a large state space in both multi-robotic
[9] and single robotic planning setting [10]. Moreover, it pro-
vides an easy way to test collision by looking for space–time
overlays in cells without compromising the original philos-
ophy of the coordination algorithm. Path discretization for
collision checking is not uncommon either [9,10].

Assumption (d) comes into picture, when a robot is to be
directed by the intersection agent to its next waypoint and
when the intersection agent should calculate the density of
robots coming its way.

Assumption (e) is used in the load-balancing algorithm.

3 Primary layer: reducing congestion at an intersection

3.1 Motivation

Consider vehicles approaching an intersection with maxi-
mum speeds and without respite/continuously. Clearly, such
a situation would lead to congestion at the intersections
(Fig. 1a, b) thus curbing the free flow of robots. It is an unde-
sirable situation, as the congestion at the intersection would
become a bottleneck for robot movement. The bottleneck at a
single intersection could spread to other intersections as more
and more robots keep getting delayed causing significant loss
in efficiency and productivity of the system. If the number
of robots approaching the intersection is large then there is
a possibility of the worst case scenario arising in which the
robots block the paths of each other and get trapped in a
deadlock and hence there would not be any movement in the
traffic at all. Clearly, the intersection agent needs to employ

a strategy by which robot movement at the intersection is
coordinated in an efficient way maximizing the throughput
of the intersection.

3.2 The methodology

3.2.1 Priority ordering

The intersection agent receives messages about the robots
which are approaching it from other intersection agents which
have been the previous waypoints of their route. The inter-
section agent thus knows the density of robots approaching
it in each of the pathways that lead to it. The intersection
agent maintains the list of robots corresponding to a path-
way; the list is updated every time a new robot comes its
way. The intersection agent also calculates the rate of change
in densities from the list of robots it has. Having aggregated
info from all the pathways, it assigns priorities to them. First
the pathways are clustered based on the density values as
high-density and low-density clusters. Among the clusters
with high density, the pathways are prioritised on increasing
order of rate of change of density with the pathway having the
slowest rate of change of density getting the highest priority.
This process is repeated for clusters classified as low-density
clusters. Thus, among all the pathways connecting the inter-
section, the pathway with highest density and lowest rate of
change of it gets the top most priority, since this is a situation
corresponding to congestion. Within a pathway the agents
are prioritised based on their closeness to the intersection.
The first na number of them are assigned priorities. All the
agents in a lower priority pathway have priorities lower than
those in a higher priority pathway.

The path of the agent with highest priority is left as such
for the next T time samples if it does not collide with those
already crossing the intersection. If within those T time sam-
ples, a collision is detected, say, at x th (x < T ) time sample
from the current time then path reservation is made only till
the next x − 1 time samples and then the path of the robot
from x +1 till T is tried to be reserved (pertaining to the same
collision restrictions). Similarly, one by one, the paths of all
robots are calculated in the order of their priorities. When the
robot traverses its reserved path then the intersection agent

Fig. 1 Multiples robots
approaching an intersection
continuously leading to
congestion

123



84 Intel Serv Robotics (2009) 2:81–93

re-calculates the path of the robots with the current set of pri-
orities. This process, of calculating priorities and assigning
them to the robots, is repeated every τ samples, τ > T by
the intersection agent. Computed path for the next T samples
is transmitted to the robots by the network agent. This kind
of prioritised multi-robot path planning could be efficiently
implemented using search algorithms for finding a solution
in the joint search space [9,11]. Algorithm 1, invoked every
τ samples, details how priorities are assigned. Algorithm 2,
invoked every T time samples of the robot’s movement, gives
the sequence of steps to calculate the path of robots.

Algorithm 1: Priority Assignment

1. Let d1, d2 . . . dm be the set of robots approaching in the
m pathways leading to the intersection respectively cur-
rently, at time t = t1.

2. Let dp1, dp2 . . . dpm be the set of robots in the pathways
at time t = t1 − τ .

3. Let β be the parameter used for segregating high density
pathways from low density pathways.

4. Repeat for every τ time samples.
5. Calculate the rate of change of density, rdi = cardinality

of (di ∩ dpi ), for i = 1, . . . m.
6. Group all pathways that have robot densities higher than

β and group the rest.
7. Assign Priorities to each of the pathways in the high den-

sity group based on their corresponding rate of change of
density, rdi . The pathways with the lowest rate of change
of density gets the highest priority. Repeat the process for
the low density group such that the priorities of the low
density group are lower than those of the higher density
group.

8. Assign priorities to robots according to the priority of
the pathways in which they are. Further, the robots of
the same pathway are prioritized based on their distance
from the intersection. The nearer a robot is to the inter-
section, the higher its priority is.

Algorithm 2: Path Calculation

1. Let a1, a2, . . . , an be the set of robots that are approach-
ing the intersection from all the pathways.

2. Let p(ai ) be the priority of the robot ai .
3. Sort [ai ]n

i=1 such that p(ai ) > p(ai+1)

4. for i = 1 to n do
Calculate the path of ai and reserve the space–time, till
next T samples, at the intersection to ai wherever there
are no collisions.

3.2.2 Reservation

The priority ordering method has been compared with the
popular reservation method, in which priorities are assigned

based on a first come first served basis. The intersection agent
receives requests for space reservation. The robot whose
request is first received is allotted the highest priority. The
robot whose request is received next becomes the second
highest and so on. Whenever a request is received, the inter-
section agent computes the path of that robot and sees if it
is collision free. If no collisions are detected it grants the
request, else it computes the path till the cell just ahead of
collision. The intersection agent thus computes collision free
paths based on this order and guides agents through the inter-
section.

3.3 Localization errors

Localization of the robots by an intersection agent is essen-
tial to the proposed methodology. However, at high speeds,
localization is a challenge and hence not accurate. To over-
come the risks of inaccurate localization, path reservation for
each robot at each step can be made for a larger space than
the robot’s size. The localized position of each robot is repre-
sented as a Gaussian probability distribution, whose param-
eters depend on how accurately the intersection agent can
localize. The values of these parameters can be set from trial
runs and also updated as the system is in use. The obtained
distribution determines how large a space should be reserved
for each robot. This method will lead to under-utilization
of the intersection area but would be successful in avoiding
collisions due to localization errors. Localization at regular
intervals, during the robots’ movement in the intersection,
makes sure large errors do not creep into the system.

3.4 Lossy communication

In a realistic scenario, messages that an intersection man-
ager sends to the robots could be delayed or lost forever.
As discussed in Sect. 3.2.1, each robot gets its path for the
next few instants at regular intervals. We define a simple
protocol that a robot and the intersection agent have to fol-
low in the wake of a delayed or lost ‘path’ message. The
robots are equipped with a reactive navigation mechanism
such as in [12–14] which would make sure they avoid colli-
sions even when not being guided by the intersection agent.
The details of the scheme are not elaborated further for brev-
ity of space. A robot which does not receive its path from the
IA,2 sends a request to the IA for a path and starts moving in
the direction, in which it has to turn at the intersection, on its
own. The intersection agent after receiving the request, re-
localises the robot’s position, calculates its path and sends
the same to the robot. This method, detailed in Algorithms 3
and 4, makes sure that lossy communication does not drive
the system to a halt. Robots that are forced to move on their

2 Intersection agent.

123



Intel Serv Robotics (2009) 2:81–93 85

own obstruct other robots, causing the intersection agent to
process more requests resulting in delayed traffic and hence
lesser throughput.

Algorithm 3: Protocol that a robot follows when it doesn’t
receive the path it has to traverse for the next T instants

1. Send a request message to the IA, rq_msg = (RI D =
robot’s ID)

2. Travel in the direction of the ultimate destination (left,
right or straight)

3. If detect any collisions, stop and let other robots pass
4. Repeat till a new path message, r ply_msg = (P AT H,

CT ), CT = current time, is received from the IA

Algorithm 4: Protocol that an IA has to follow when it
receives an rq_msg = (RI D)

1. Re-localise the robot with ID = RI D.
2. Calculate the robot’s path for the next T instants and

broadcast the message, r ply_msg = (P AT H = path
for next T instants, CT = current time)

3.5 Simulation environment

3.5.1 The simulator

We have developed a simulator which can simulate the com-
munication between robots and intersection agents. Using
the assumptions mentioned in the earlier sections the sim-
ulator was built to model the discrete motion of the robots.
The robots move with different velocities. In the simulator,
the intersection area can accommodate up to 40 robot agents
at a time. This number is dependent upon the size of the inter-
section and the size of the robots. These parameters could be

accurately modeled in our simulator. For deriving the results
shown we have set the size of the intersection and robots such
that the number of robots which can be in an intersection is
40. However, it does not mean that 40 robots could always
move in a continuous manner at the intersection, it can be
done only with a proper traffic coordination policy.

When a robot’s path is blocked it has to be halted and the
robots that are dependent on the current robot’s movement
are halted as well. So the obvious metric for evaluating the
two policies is the average number of robots stopped over a
period of time. The more the number of robots stopped the
lesser is the efficiency of the policy. Statistics were collected
after a simulation of 10,000 time samples.

3.5.2 Multi-lane model

In addition to the single lane 4-way intersection simulator,
we also developed multi-lane models as shown in Fig. 1b.
In the multi-lane model, each pathway consists of multiple
lanes with each lane assigned to those robots which will turn
in the same direction at the intersection they are approaching.
Hence, if the intersection is connected by four pathways, as
in Fig 1a, then there would be three lanes in each pathway. If
the intersection is connected by five pathways, as in Fig 1b,
there would be four lanes in each of the pathway connect-
ing the intersection. The total number of robots that can be
accommodated in the intersection is increased significantly.
The algorithm is modified to assign priorities to each lane of
a pathway instead of the entire pathway.

3.6 Simulation results

Table 1 shows the statistics for the two policies for differ-
ent look-aheads. The ‘Avg’ column in this table shows the

Table 1 Results obtained for different look-ahead time samples T and for different number of robots approaching the intersection

(a) Robots (b) T = 1 (c) T = 3 (d) T = 5

Reservation Priority Reservation Priority Reservation Priority

Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max

10 0 1 0 1 0 1 0 1 0 1 0 1

20 0.4 4 0.4 4 0.3 4 0.2 4 0.26 4 0.18 3

30 8.3 12 5.1 8 6.2 10 2 6 5.3 8 1.76 5

40 15.7 20 7.5 16 10.8 15 3 10 9.5 13 2.5 8

50 30.1 40 15.2 25 20.8 32 8 20 15.2 28 5.9 15

60 DL DL 30.6 40 35 40 15.3 35 24.8 35 12 29

70 DL DL DL DL DL DL 25 50 39.2 52 18 40

80 DL DL DL DL DL DL 40 70 DL DL 35 60

The Avg column shows the average number of robots that were halted in their path to accommodate robots of higher priority. The Max column
shows the highest number of robots that were halted in a single time sample
DL deadlock

123



86 Intel Serv Robotics (2009) 2:81–93

average number of robots that were halted in their path per
sample to accommodate robots of higher priority when aver-
aged over 10,000 samples. The ‘Max’ column shows the
highest number of robots that were halted in a single time
sample over 10,000 samples. Column 1 shows the numbers
of robots approaching the intersection from the various path-
ways (here four) for which the ‘Avg’ and ‘Max’ values are
computed. It is evident from the statistics that the priority
ordering policy fares better than the reservation policy of
traffic control. The simulation tests have shown that the robot
density based priority ordering policy minimizes the conges-
tion at the intersection reducing considerably the possibility
of a deadlock.

Figure 2 is a comparison graph which plots the data
collected for priority ordering policy. Comparison is done
between the average number of robots halted when the look-
ahead time is 1, 3 and 5, respectively. Clearly the system
fares better, i.e. congestion is less when motion planning
is done for a higher look-ahead time. Figure 3 compares
the data collected for the two control policies for the same
look-ahead time. It is evident that the priority ordering policy
shows a much better performance than the reservation policy.
We compared the average time taken to cross the intersec-
tion by a robotic agent when the two policies are employed.
Figure 4 shows the comparison graph for the same. Because
of better management of congestion, the priority ordering
policy routes robots across the intersection faster. Figure 5 is
the comparison graph for the multi-lane 5-way intersection
model.

T = 2
T = 3

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10  20  30  40  50  60  70  80

A
ve

ra
ge

 N
um

be
r 

of
 R

ob
ot

s 
S

to
pp

ed

Number of Robots Approaching the Intersection

T = 1

Fig. 2 Graph showing the average number of robots stopped at the
intersection for different look-ahead time samples

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10  20  30  40  50  60  70  80

A
ve

ra
ge

 N
um

be
r 

of
 R

ob
ot

s 
S

to
pp

ed

Number of Robots Approaching the Intersection

Reservation
Priority

Fig. 3 Graph illustrating the efficiency of priority ordering based
policy over the reservation based policy (T = 3)

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 10  20  30  40  50  60  70

A
ve

ra
ge

 T
im

e 
ta

ke
n 

by
 a

 R
ob

ot
 to

 C
ro

ss
 th

e 
In

te
rs

ec
tio

n

Number of Robots Approaching the Intersection

Reservation

Priority

Fig. 4 Comparison of the average time taken by a robot in a 4-way
intersection model

All the results discussed till now have been taken assum-
ing ideal conditions with no errors in localization and no loss
in communication. Table 2a tracks the decrease in efficiency
of the system with increasing error in the localization of the
robots. The path of a robot is stored as the area of the inter-
section that it will occupy at each time instant and hence
variance in localization represents the extra area that would
be deemed occupied in addition to what it truly occupies. This

123



Intel Serv Robotics (2009) 2:81–93 87

 40

 50

 60

 70

 80

 90

 100

 20  40  60  80  100  120  140  160  180  200

A
ve

ra
ge

 T
im

e 
ta

ke
n 

by
 a

 R
ob

ot
 to

 C
ro

ss
 th

e 
In

te
rs

ec
tio

n

Number of Robots Approaching the Intersection

Reservation
Priority

Fig. 5 Comparison of the average time taken by a robot in a 5-way
intersection model

error-in localization is distributed around the robot, beyond
the area currently occupied by the robot, and not just in one
direction so that a realistic situation is simulated. In the sim-
ulator, the area occupied by a robot translates to the number
of pixels that the simulated robot occupies. A variance of
σ is then an excess of σ pixels in all directions beyond the
area actually occupied by the robot. The variance column of
Table 2a reflects the same. The size of a robot in our simu-
lator is around 10 pixels. Table 2b shows the throughput of
the system with increasing communication loss. The table
tracks the average time taken by robots to cross the intersec-
tion as the percentage of dropped messages increases. The
results were obtained over multiple simulation runs with the
intersection accommodating 50 to 60 robots at all time.

As the graphs and tables indicate, our methodology works
increasingly better with increasing traffic. This is because in
our algorithm we incorporate the current traffic situation for
assigning priorities and thus the algorithm makes sure that

the robots causing congestion at the intersection are moved
faster than the rest.

3.6.1 Emergency robots

Our algorithm assigns priorities to robots purely based on the
current traffic movement irrespective of the type of robots
that are being guided. A situation may arise when a particu-
lar robot needs to cross the intersection urgently. When such
emergency robots are approaching an intersection, the inter-
section agent assigns highest priority to them irrespective of
the priority of the pathway in which they are traveling. During
our simulations, over multiple runs, we found the reduction
in delay of an emergency robot to be approximately 45%,
i.e. emergency robots cross the intersection at nearly half
the average time taken by the rest of the robots to cross an
intersection.

3.6.2 Statistical significance

We used the Student’s t distribution to verify the statistical
significance of our results. We compared the two policies
by using the mean time taken by a robot to cross the inter-
section. The Research hypothesis is, ‘The time taken by a
robot to cross the intersection when reservation based policy
is used is more than the time taken when priority based pol-
icy is employed’ and thus the null hypothesis H0: ‘There is
no difference between the two policies’. Table 3 shows the
results used for testing the statistical significance. H0 was
rejected at a 0.001 level of significance. Thus, we conclude
the advantage gained by using priority ordering is significant.

4 Secondary layer: coordination for load-balanced
robot traffic

4.1 Motivation

A robot can be guided to its destination by intersection agents
using the hop-count distance method [1]. The algorithm in

Table 2 System performance in
non-ideal conditions (a) Localization error (b) Lossy communication

Variance (no. pixels) Mean time to cross Messages lost (%) Mean time to cross

Reservation Priority Reservation Priority

0 100 80 4 102 80

4 104 83 8 110 85

9 114 90 12 124 96

16 135 107 16 142 110

25 160 133 20 165 128

123



88 Intel Serv Robotics (2009) 2:81–93

Table 3 Statistical significance

Reservation Priority

No. of robots observed 1000 1000

Mean time to cross the intersection 100 80

SD 14.66 11.4

Variance 215 130

t = 34.07, d f = 1998, p < 0.001

Fig. 6 The path of a single robot guided from its starting position to
its goal by the network. The dots represent the deployed intersection
agents. The dashed-line represents robot’s path. The numbers displayed
on top of the intersection agents are the hop-count distances of them-
selves from the GOAL of the robot

[1] is modified to suit the current problem. Each IA3 is made
to store its hop-count distance from all the other IAs. Pack-
ets, sent from an IA are received by other IAs that are within
one hop away from the sender. The sender packet consists
of the IA’s ID and hop count. The receiver IA updates its
hop count if the hop count of the received packet is less than
its current hop value corresponding to the sender agent and
only then does it broadcast it to others after incrementing the
updated hop-count by 1. Thus each IA stores its hop count
distance from the sender. This routine is implemented by all
intersection agents. The robot when wanting to reach a desti-
nation sends a query message to the network, the intersection
agent which receives this query message guides the robot in
the direction of a surrounding network agent closest to the
robot’s destination. This process repeats till the robot reaches
its destination. This can be thought as akin to the method used
in motion planning to compute a global potential field that
has a minimum at the goal, so that a robot can reach its goal
by doing gradient descent [15]. Figure 6 shows the path of
a single robot from its starting position, START to its des-
tination, GOAL. Algorithm 5 gives the formal description
of the hop-count distance method. From Fig. 6, it is evident
that there are multiple paths from START to GOAL of equal
lengths. If all the robots, that have the same initial positions

3 Intersection agent.

and destinations, are routed through the same set of inter-
sections, a mismatch in traffic load would arise with some
intersections handling a large number of robots while others
have significantly lesser number of robots to cater to. Ideally,
all the paths of equal lengths must be exploited so that there
is uniform load of traffic over all the intersections. Clearly,
there is a need of a mechanism for routing the robots through
the best available intersections.

Algorithm 5: Hop-Count Distance Calculation

1. Let I A be the intersection agent initiating the hop-count
distance method.

2. I A broadcasts a message msg = (ID = IA, hop(IA) = 0)

3. for all intersection agents I Ai initialize hop count to
hopi I A = ∞

4. for all intersection agents I Ai do
5. for all received messages m = (mid , hops) do
6. if hops + 1 < hopi I A then
7. Broadcast msg = (mi , hopi I A = hopi I A + 1).

4.2 The methodology: pathway capacity estimation

We propose a method in which the intersection agents
exchange information, about the estimated number of robots
that could be accommodated, in addition to those already
present in that pathway, for the next time window. The time
window could be set to any number of time samples depend-
ing upon the length of the pathways. The exchanged infor-
mation is used by the intersection agents for making the
robot routing decisions. An intersection agent estimates the
remaining capacity of a pathway based on three parameters—
maximum capacity of the pathway, number of robots routed
from that particular pathway in the previous time window and
the current density of robots in that pathway. If in the current
time window ṅ robots have been cleared to move from the
pathway then there is maximum likelihood that in the next
time window also the number of robots cleared would be ṅ.
With this assumption, we can predict the number of robots
that can be accommodated in the pathway in the next time
window.

Let N1 be the set of robots present in the pathway at time
t1 and c(N1) be the cardinality of the set N1

Let N2 be the set of robots present in the path at time
t1 + ∆t , where ∆t is the duration of the time window

Let ṅ be the number of robots routed from the pathway
during the previous time window, from time t1 to t1 + ∆t

Let nc be the maximum capacity of the pathway
Let n f be the number of robots that can be accommodated

in the pathway in addition to those already present

ṅ = c(N1) − c(N1 ∩ N2) (1)

n f = nc − [c(N2) − ṅ] (2)

123



Intel Serv Robotics (2009) 2:81–93 89

This number n f is calculated by the intersection agent for
all the pathways that lead to it. At the end of each time win-
dow, the intersection sends messages containing n f to all its
neighbors. Each intersection agent, which receives this mes-
sage, stores this number and the ID of the sender. When a
robot has to be guided towards its next waypoint, the intersec-
tion agent has to choose between two or more intersections
which are at equal hop-count distance from the robot’s goal.
At such situation, the intersection agent chooses a neighbor
of it which sends the maximum value of n f , i.e. the intersec-
tion agent guides the robot towards the pathway which can
accommodate more number of robots.When an intersection
agent I A1 sends a robot towards another intersection agent
I A2, that has sent the maximum value of n f , I A1 accord-
ingly updates its data by decrementing the n f corresponding
to I A2 by 1. This ensures equal distribution of robots.

If suppose each n f of all the neighbors, which are at equal
hop-count distance from the GOAL of a robot that has to
be guided, is 0 which means no robots could be accommo-
dated then the current intersection agent should re-initiate the
hop-count distance algorithm by removing the intersection
agents, that have n f as 0, from the picture. Thus, the robot
is re-routed along another path, albeit a longer one.

4.2.1 Analysis

The objective of load balancing is to have traffic channeled
in pathways such that it is in proportion to the clearing/out-
going rates of those pathways provided the agents through
those pathways reach target with same amount of distance.
Through the following analysis we prove the utility of the
load-balancing mechanism (Fig. 7).

Let I1 be an intersection monitored by agent I A1.
Let I1 be connected by pathways to I2, I3, . . . , Im . Hence

there are m pathways coming in and out of I1. They are
denoted as pi1, . . . , pim for incoming and po1, . . . , pom for
outgoing.

Let the incoming and outgoing rates be ri1, . . . , rim &
ro1, . . . , rom . Without loss of generality let ro1 < · · · < rom .

Let the net rate at which robotic agents enter I1 be ri

& the outgoing rate be ro. ri = (ri1 + · · · + rim) & ro =
(ro1 + · · · + rom)

Lemma 1 If the net incoming rate exceeds outgoing rate,
ri > ro, then there will be congestion in at least the slowest
outgoing pathway if the trend continues for n f 1/nr1 time
when agents are sent out sequentially into the pathways.

Where n f i is the current number of free slots in i th pathway
and nri = the rate of accumulation of robots in i th pathway

Proof roi is the outgoing rate on the i th pathway and rii is
the incoming rate into the i th pathway.

rii = ri/m = ri1, ri2, . . . , rim

Now, ro = �roi

⇒ ro > ro1

⇒ ro/m = �(roi/m) > ro1

⇒ ri/m > ro/m > ro1

⇒ ri > m × ro1

∴ In the slowest outgoing pathway, the net increase in
robots per unit time or the rate of accumulation of robots,
nri = rii − roi

⇒ the time taken for i th pathway to fill up is n f i/nri .
Hence, in the slowest pathway congestion occurs in n f 1/

nr1 time.

In load balancing, the objective is to have the net rate
at which a pathway gets filled or cleared equal or balanced
across pathways. Hence pathways with fast clearing time
have faster rates at which agents enter than pathways with
slower clearing time.

Mathematically, this translates for any two outgoing
poi , poj as rii − roi = ri j − roj

Lemma 2 With input rates > output rates, the time for any
pathway to congest with load balancing is always longer
than the time for the slowest clearing pathway when agents
are added sequentially.

Proof Consider the case where rii − roi = ri j − roj = ri1 −
ro1

ti = 1/ri is the time interval between arrival of two agents
in incoming pathway.

Let nrib be the rate of accumulation of robots in a path-
way when using the load-balancing schema and nris be its
counterpart when using the sequential allotment.

Now, ri1 < ri/m
Hence, the rate at which robots enter the slowest outgoing

pathway is slower than in sequential case.
∴ the net rate of accumulation of robots in slowest path-

way, (nr1b = ri1−ro1) is less than in the sequential allotment,
i.e. nr1b < nr1s .

Hence the time taken to congest the pathway n f 1/nr1b =
n f ib/nrib < n f 1/nr1s .

Fig. 7 A brief overview of the
load-balancing methodology

123



90 Intel Serv Robotics (2009) 2:81–93

Lemma 3 The onset of congestion is always delayed by
adapting load balancing than a naiver sequential allotment
procedure.

Proof Follows from Lemmas 1 and 2.

Lemma 4 When the net input rate at an intersection is lesser
than the net output/clearing rate, load balancing ensures that
there will be no congestion on any of the pathway.

Proof Consider the case where rii − roi = ri1 − ro1 = nrib

or nrb

∴ �m
j=1(ri j − roj ) = m × nrb

But �m
j=1ri j = ri < �m

j=1roj = ro

∴ m × nrb < 0 and hence the net rate of accumulation in
any pathway in load-balanced scheme, nrb < 0, since m is a
positive integer.

Thus, there is no accumulation of traffic in any of the
pathways and hence no congestion either.

Lemma 5 Whereas even if incoming rate is less than outgo-
ing rate, sequential allotment can still result in congestion in
the slowest pathway if to1 > mti i.e. ro1 < ri/m

Proof Follows from Lemma 1.
The outcome of the above lemmas is to prove that load bal-

ancing is better than a naive sequential allotment procedure
of outgoing traffic. It guarantees delayed onset of congestion
than sequential allotment when incoming traffic is greater
than outgoing. It guarantees no congestion when incoming
traffic is lesser than outgoing, which can never be guaranteed
with the sequential procedure.

The sequential allotment can be seen as the determinis-
tic counterpart of random allotment. The advantages of load
balancing over random allotment can be shown on similar
lines by invoking probability calculus.In this paper the out-
going traffic is load-balanced between pathways that have the
same hop-count distance to the goal and not over all path-
ways. Nonetheless the above result are equally valid for such
a scenario as well.

4.3 Simulation environment

The proposed method has been simulated for a planar envi-
ronment which has 20 intersection agents. Figure 8 shows
a snapshot of the simulator in action. The robots are being
introduced continuously and are being routed to their respec-
tive destinations. The following section shows the results
obtained. We also simulated the proposed algorithm in a non-
symmetric environment as shown in Fig. 9. The algorithm
was modified to take into account the difference in lengths
of pathways, the number of free slots (n f ) is normalized
by dividing it with the length of the corresponding pathway.
Also, auxiliary agents are introduced at places that are in the

Fig. 8 Multiple robots being guided by the network

Fig. 9 A non-symmetric map used for simulation

middle of long pathways, even though there are no intersec-
tions at those places. These auxiliary agents help in main-
taining the hop-count distance metric as a true reflection of
the actual distance between intersections. Figure 9 has two
such agents.

4.4 Simulation results

Three graphs have been plotted to demonstrate the effective-
ness of the second layer of the proposed strategy. The data
obtained, through the implementation of the proposed strat-
egy of coordination between intersection agents, have been
compared with the data obtained when there is no coordina-
tion. Figure 10 is a graph plotting the number of robots wait-
ing to be routed at various intersections during the course
of simulation. The graph reflects the advantage gained by
coordination as the robot traffic load across multiple inter-
sections is uniform compared to the load when there is no
coordination. Figure 11 is a graph indicating the amount of
congestion that is being caused, in terms of the average num-
ber of robots halted at an instant, as the number of robots
being introduced increases. Figure 12 compares the average
time taken by a robot to reach its destination which is lower
in the case of coordination. To obtain the data for this case,
a robot trying to reach the farthest intersection has been cho-
sen. Thus, the delay in reaching its destination reflects the
entire congestion in the system. Both the comparison graphs
were generated from data obtained through the four cases
possible—when coordination mechanism is implemented at
secondary layer while at the primary layer priority ordering

123



Intel Serv Robotics (2009) 2:81–93 91

 0

 5

 10

 15

 20

 25

 30

 0  2  4  6  8  10  12  14  16  18  20

N
um

be
r 

of
 R

ob
ot

s 
W

ai
tin

g 
at

 th
e 

In
te

rs
ec

tio
n 

W
ai

tin
g 

to
 b

e 
R

ou
te

d

Intersection Agent IDs

WITHOUT Coordination
WITH Coordination

MEAN

Fig. 10 Graph plotting the robot traffic load at various intersections

 0

 50

 100

 150

 200

 250

 300

 350

 400

 50  100  150  200  250  300  350  400

N
um

be
r 

of
 R

ob
ot

s 
H

al
te

d

Total Number of Robots

WITHOUT Coordination (Reservation)
WITHOUT Coordination (Priority)
WITH Coordination (Reservation)

WITH Coordination (Priority)

Fig. 11 Graph plotting the average number of robots halted due to
congestion

policy or reservation policy is used and the remaining two
cases when there is no coordination at the secondary layer.
Simulation on a non-symmetric environment yielded simi-
lar results with a little degradation in performance which is
expected.

4.4.1 Turning overhead

It is to be noted that the cost of turning a robot is more than
the cost of sending it in a straight path. In order to balance
robot traffic, the coordination mechanism sends robots into
pathways that need turning on part of the robot, thus increas-
ing the time taken by a robot to reach its destination This
increase in time for some of the robots is a trade-off for

 200

 250

 300

 350

 400

 450

 500

 550

 600

 50  100  150  200  250  300  350  400

A
ve

ra
ge

 T
im

e 
ta

ke
n 

by
 a

 R
ob

ot
 to

 R
ea

ch
 It

s 
D

es
tin

at
io

n

Total Number of Robots

WITHOUT Coordination (Reservation)
WITHOUT Coordination (Priority)
WITH Coordination (Reservation)

WITH Coordination (Priority)

Fig. 12 Graph plotting the average time taken by a robot to reach its
destination

the overall decrease in congestion of traffic across multiple
intersections. Let tr be the minimum time taken by a robot
to take a right turn, assuming no other robot intercepts its
path, and ts , tl for going straight and left, respectively. With-
out any loss of generality it can assumed that tl < ts < tr .
Consider Fig. 6 which shows nine intersections numbered as
I1, . . . , I9. A robot starting from I6 to reach I9 can be routed
through any of the six routes possible with each route having
a different number of right and left turns. We have simulated
our algorithm for various values of tr , ts and tl and from the
results obtained we observed the variance between the time
duration taken by robots treading those six different routes
is insignificant. Table 4 reflects the same where we show the
standard deviation, of time taken to reach destination, among
robots taking different routes but reaching the same destina-
tion ultimately is very less. A straighter route has a higher
probability of having better clearance rate, in which case, the
load-balancing mechanism would prefer the straighter route
anyway.

Table 4 Columns 2, 3 and 4 show the time taken by robots to complete
a turn in the right, straight and left directions respectively.

No. tr ts tl SD (%)

1 1 0.80 0.40 3

2 1 0.60 0.40 7

3 1 0.40 0.40 8

The values have been normalised with ts and tl expressed as fractions
of tr . Column 5 shows the standard deviation between the time dura-
tion taken by those robots that travelled to the same destination but in
different routes

123



92 Intel Serv Robotics (2009) 2:81–93

5 Communication

5.1 Messages passed

Pertaining to the algorithms we described in this paper, there
are three types of messages that are passed between the
agents—the messages between two intersection agents, mes-
sages sent by an intersection agent to a robot and finally the
messages sent by a robot to an intersection agent. The fol-
lowing are the list of messages.

5.1.1 Intersection agent → intersection agent

(a) Incoming robot. Whenever an intersection agent sends
a robot towards one of its neighbors, it follows up by
sending a message containing the robot’s ID and the ID
of the eventual destination of the robot.

(b) Hop-count calculation. These messages are passed
whenever the hop-count distance algorithm is initiated.
Message includes the ID of the intersection agent from
whom the distance is being calculated, the ID and the
hop-count distance from the GOAL of the neighbor
which has sent the current message.

(c) Free slots. This message containing n f is sent by an
intersection agent to all its neighbors at periodic inter-
vals.

5.1.2 Intersection agent → robotic agent

(a) Path. An intersection agent calculates the path of each
robot and sends the same to the respective robot.

5.1.3 Robotic agent → intersection agent

(a) Destination intimation. Whenever a robot is about to
start it sends a message containing its destination to the
nearest intersection agent.

(b) Emergency. Before it starts, an emergency robot sends
its status to its nearest intersection agent so that it gets
highest priority whenever it approaches an intersection.

5.2 Communication complexity

Multiple kinds of messages are exchanged constantly lead-
ing to a fairly complex communication. However, the cur-
rent method succeeds in making the number of messages
that a robot sends negligible because the entire computation
of paths, directions etc are done by the intersection agents.
This means there is less pressure on the robots to have robust
communication devices. We can fairly assume that the inter-
section agents, which are fewer in number, are fitted with
communication devices capable of sending thousands of mes-

Table 5 No. of messages sent by an intersection agent

No. of robots No. of messages

10 30

20 62

30 105

40 141

50 208

60 301

70 393

80 589

sages in a specified time. The intersection agents exchange
messages of two kinds—one, that are independent of the
number of robots and the other(free slots calculation,
hop-distance calculation), that are dependent on the num-
ber of robots approaching them (path calculation, incoming
robot intimation). The major contribution to the communica-
tion complexity is by the second category as the first category
messages are negligible in number. Table 5 gives the average
number of messages sent by an intersection agent to route a
particular number of robots that are approaching the inter-
section when the simulation is run with τ = 10 and T = 5.

6 Conclusion

A two-layered hierarchical strategy has been proposed for
coordinating robotic agent traffic by a network of intersec-
tion agents. Figure 13 shows the overview of the proposed
system. The primary layer tackles the challenge of efficiently
guiding the robots across an intersection using a method of
allotting priorities to pathways depending on the density of
robotic agents and rate of change of it in those pathways. This
method coordinates traffic flow better and reaches deadlock
situations for a far higher number of robots in the pathways
over the existing method of reservation adapted to network
framework. Robots take significantly less time to cross inter-
sections in the current method consistently over several runs
of simulation. Also, the number of robots need to be halted at
the intersection is also lesser. The Secondary layer addresses
the challenge of routing robots through intersections such that
the traffic load is uniform all over. This has been achieved by
estimating the number of robots that could be accommodated
in a pathway for the next few time samples. Multiple runs over
simulations have shown that our method achieves the goal of
traffic load balancing. The paper describes a complete system
in which multiple robots are guided to their respective des-
tinations while minimizing the congestion. No topological
map of the environment is used in the system by the robots

123



Intel Serv Robotics (2009) 2:81–93 93

Fig. 13 An overview of the
proposed system

to navigate and no intersection agent knows about the global
picture of the distribution of other intersection agents.

References

1. Li Q, DeRosa M, Rus D (2003) Distributed algorithms for guid-
ing navigation across a sensor network. In: Proceedings of the 2nd
international workshop on information processing in sensor net-
works

2. Batalin M, Sukhatme GS, Hattig M, Robot M (2004) Navigation
using a sensor network. In: Proceedings of the IEEE international
conference on robotics and automation

3. Corke P, Peterson R, Rus D (2005) Localization and navigation
assisted by cooperating networked sensors and robots. Int J Robot
Res 24(9):771–786

4. Dresner K, Stone P (2004) Multiagent traffic management:
a reservation-based intersection control mechanism. In: Proceed-
ings of the third international joint conference on autonomous
agents and multiagent systems

5. Dresner K, Stone P (2005) Multiagent traffic management: an
improved intersection control mechanism. In: Proceedings of the
fourth international joint conference on autonomous agents and
multiagent systems

6. Bazzan ALC (2005) A distributed approach for coordination of
traffic signal agents. Autono Agents Multi-Agent Syst 10(2):131–
164

7. Roozemond DA (1999) Using intelligent agents for urban traffic
control control systems. In: Proceedings of the international confer-
ence on artificial intelligence in transportation systems and science,
pp 69–79

8. Trail Research School, Architecture of an Agent Based Urban Inter-
section Control System, Report (1999)

9. Bennewitz M, Burgard W, Thrun S (2002) Finding and optimizing
solvable priority schemes for decoupled path planning techniques
for teams of mobile robots. Robot Auton Syst 41(2):89–99

10. LaValle S, Kuffner J (2001) Randomized kinodynamic planning.
Int J Robot Res 20(5):378–400

11. Sveska P, Overmars M (1995) Coordinated motion planning for
multiple car-like robots using probabilistic roadmaps. In: Proceed-
ings of the IEEE international conference on robotics and automa-
tion

12. Madhava Krishna K, Hexmoor H, Chellappa S (2005) Reactive
navigation of multiple moving agents by collaborative resolution
of conflicts. J Robot Syst 22(5):249–269

13. Minguez J, Montano L (2004) Nearness diagram (ND) navigation:
collision avoidance in troublesome scenarios. IEEE Trans Robot
Autom 20(1):45–59

14. Borenstein J, Koren Y (1989) Real-time obstacle avoidance for fast
mobile robots. IEEE Trans Syst Man Cybernet 19(5):1179–1187

15. Latombe J-C (1991) Robot motion planning. Kluwer Academic,
Dordrecht

123


	Towards load-balanced de-congested multi-robotic agent traffic control by coordinated control at intersections
	Abstract
	1 Introduction
	2 Problem formulation
	3 Primary layer: reducing congestion at an intersection
	3.1 Motivation
	3.2 The methodology
	3.3 Localization errors
	3.4 Lossy communication
	3.5 Simulation environment
	3.6 Simulation results

	4 Secondary layer: coordination for load-balanced robot traffic
	4.1 Motivation
	4.2 The methodology: pathway capacity estimation
	4.3 Simulation environment
	4.4 Simulation results

	5 Communication
	5.1 Messages passed
	5.2 Communication complexity

	6 Conclusion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


