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Abstract— In environments which possess relatively few fea-
tures that enable a robot to unambiguously determine its
location, global localization algorithms can result in multiple
hypotheses locations of a robot. In such a scenario the robot,
for effective localization, has to be actively guided to those
locations where there is a maximum chance of eliminating most
of the ambiguous states – which is often referred to as ‘active
localization’. When extended to multi robotic scenarios where
all robots possess more than one hypothesis of their position,
there is the opportunity to do better by using robots apart from
obstacles as ‘hypotheses resolving agents’. The paper presents
a unified framework accounting for the map structure as well
as measurement amongst robots while guiding a set of robots
to locations where they can singularize to a unique state. The
appropriateness of our approach is demonstrated empirically
in both simulation & real-time (on Amigobots) and its efficacy
verified. Extensive comparative analysis portrays the advantage
of the current method over others that do not perform active
localization in a multi-robotic sense.

I. INTRODUCTION

Among various aspects of the navigation task, the posi-
tioning problem is crucial and consists of maintaining in
real-time a reliable estimate of the position of robots with
respect to a reference frame in the environment [1]. The
problem of global localization is that of, from little or no
a priori pose information, estimating the correct pose of a
mobile robot with respect to some global reference frame.
In symmetric environments, local map could look the same
from multiple positions. So, global localization algorithms
result in multiple hypotheses of robot location. In such
a scenario the robot navigates to places where the local
environment sensed is unique in the whole map to come up
with a unique hypothesis of its position. This is commonly
referred asactive localization.

This paper presents a new approach to the problem of
actively localizing a group of mobile robots, where all robots
possess more than one hypothesis of their position, capable
of sensing one another. The proposed method moves robots
with multiple hypotheses to places such that a maximum
number of such robots singularize to a unique state. We
consider frontier locations [2] as good places to move to
localize since they are easy to compute and provide a
sufficient set of places to visit for convergence to a unique
hypothesis. The method presented considers the best frontiers
to move for a set of robots such that the probability of finding
a unique hypothesis for the set is maximum. Intuitively the
best frontiers are those upon robots reaching them, gives
rise to a maximum number of unique measurements between
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robots (robot-robot detections) as well as from robots to
the local map structure at those places. It is worth noting
that multiple hypotheses arise because there is no unique
measurement at those hypotheses locations that is able to
discern that location from the other competing hypotheses
locations. Hence the search for frontiers that provide as many
unique measurerments as possible. Since the initial statesof
the robots are multiple a robot cannot hypothesize to reach
any frontier location uniquely but can only in a probabilistic
sense. Hence a probabilistic framework is developed that
finds the probability of reaching to places where unique
measurements leading to unique hypotheses is maximum
for a set of robots. Once shepherded to these positions
in a probabilistic sense some of the robots could attain a
unique hypothesis. This framework also accounts for other
constraints such as the detecting range of the sensors and
the local map structure at the frontier locations detailed in
Section III.

Extensive comparative analysis portrays the advantage of
the current method over others that do not perform active
localization in a multi-robotic sense. It also delineates the
performance gain by considering map structure and robot
placement to actively localize over methods that consider
only one of them or neither.

The authors argue that the novelty of this work lies in that
it is the first such method where multiple hypotheses states
in more than one robot is resolved in an active localization
sense. The essential contribution apart from the method itself
is the clear delineation that performing active localization
with multiple robots is advantageous than active localization
performed singularly when other robots are present.

The method finds application when robots operate in
symmetric environments with few distinguishable features.
These can occur indoors in corridors with symmetric rooms
or evenly spaced pillars, or outdoors in large open spaces
scattered with trees that are far apart. The essential motiva-
tion has been to develop a framework for active localization
with multiple robots – to analyse the performance gain over
a framework where active localization is done individually.

II. RELATED WORK

In general work on active localization has tended to be
limited when compared with passive localization. The pio-
neering work in this area has been from [3] and [4]. In [3] a
method of active localization based on maximum information
gain was presented. Dudek and others [4] presented a method
for minimum distance traversal for localization that worksin
polygonal environments without holes that they show to be



NP-Hard. A randomized version of the same method was
presented in [5]. In [6] an approach for guiding the robot to
a target location is proposed when its current position is not
known accurately.

A similar problem is treated in [12], where it uses multi-
hypothesis Kalman filter based pose tracking combined with
a probabilistic formulation of hypothesis correctness to gen-
erate and track Gaussian pose hypotheses on-line. It tracks
the multiple hypotheses of a mobile robot but method is
largely about the uncertainty representation and using of
features in enviroment to remove disambiguity. However it
does not deal with actively localizing multiple robots and
does not provide a shepherding mechanism.

As far as authors knowledge goes there has been no
reported work dealing active localization of several robots. In
the context of multi robotic localization Fox et.al. extended
their earlier global localization methods to a multirobotic
setting in [7]. A coordinated localization approach was also
presented based on Monte-Carlo methods in [8]. In [9]
a method is presented in which team members carefully
coordinate their activities in order to reduce cumulative
odometric errors. There has been a class of methods that
make use of relative observations between robots to reduce
absolute position errors by optimizing a objective function
such as in [10] or through a sensor fusion formulation using
EKF [11]. Vision-based relative localization is used for main-
taining formation in [14]. The robots however profess only a
singular hypothesis while the uncertainty in their hypothesis
is reduced through relative observations. The above methods
do not consider active localization in a definite sense of
guiding robots to positions from where they can obtain a
unique hypothesis of their states from an initial multi modal
situation. Hence they cannot be classified as active methods
of localization while they certainly deal with multiple robots.

III. ACTIVE LOCALIZATION

Consider a workspace W populated by robots,nR in
number, each of them having multiple hypotheses of their
states. The problem is to move thesenR robots to frontier
locations such that each of the robots localizes to a unique
state with minimal number of frontiers visited. By a state or
hypothesis we imply a position〈x, y〉 in a map. We assume
the robot’s orientation is known through a compass.

The problem is explained in the following fashion: Firstly
the computation of probability of robots reaching or occu-
pying frontiers (occupancy probability) is depicted. Secondly
the probability of obtaining at-least one unique measurement,
also denoted as UM, for a set of robots is shown. This
probability arises due to both the nature of local map
structure and the placement of other robots. Both the cases
are discussed. Also the modifications in the probability due
to sensing range limits and other visibility constraints isalso
presented. Thirdly how the probability of a unique hypothesis
is computed from UM probabilities is depicted. Lastly we
show how the computations can be reduced by clustering
robots into what are called asbase-pairs.

Fig. 1. Robot with two hypotheses states H1 & H2. There are twovirtual
frontiers (ft1, ft2) for every distinct frontier due to two hypotheses states.

A. Hypotheses and Frontiers

The input for the problem being addressed ismultiple
robots with multiple hypotheses of their state. We compute
hypotheses from the multi-modal belief of pose in Markov
global localization.

The notion of adistinct frontier is used while specifying
the direction to move the robot. The direction is always to
one of the surrounding frontiers from a hypothesis location.
These directions are distinct since the frontiers are distinctly
oreinted with respect to a robot hypothesis.

However since there are multiple hypotheses (saynh in
number), the robot reaches to one among thenh frontier
locations while moving along a direction. Despite selecting a
unique direction, it reaches to one of thenh possiblevirtual
frontiers. Hence forth when a robot move to a frontier it
refers to one among the various virtual frontiers, the distinct
frontier is used to refer to the direction choosen.

B. Computing Occupancy Probabilities

Imagine a map where there aren such similar rooms as
in Figure 1. Then a globally localizing robot would haven
hypotheses. If it decides to occupy the distinct frontier inthe
top it would end up reaching one of thosen virtual copies
in 1/n ways. More formally if there is a set of robots R
with cardinality nR capable of occupying a set of frontiers
F, with cardinalitynF , the probability a particular k of those,
sayf1, f2, · · · , fk of them gets occupied is given by

Po(nF , nR, k) =
nRPk ×(nF−k) P(nR−k)

nF PnR

;nR ≥ k

= 0;nR < k (1)

Here the termPo(nF , nR, k) denotes the probability of
occupancy of a particulark of the nF frontiers by nR

robots. The first term in the parenthesis denotes the number
of frontiers, the second the number of robots and the third
number of frontiers to be occupied. The notationxPy denotes
the permutation ofx things taken y at a time.

C. Computing Unique Measurement Probabilities

Let there be a setR of nR robots,r1, r2, ..., rnR
. Let each

robotriǫR havend distinct frontiers to move to, each distinct
frontier havingnf virtual frontier copies. The objective is
to come up with the right combination of robots moving
to distinct frontiers such that the probability of obtaining
a unique measurement is a maximum for the entire set.
The unique measurements discern a frontier location from
the remainingnf − 1 for a robot and results in a unique
hypothesis. The unique measurements are of two kinds. They



Fig. 2. A suite of 5 identical rooms with an opening on top. Occupancy of
the extreme frontiers by robots gives rise to a UM (longest arrow on top).

are measurements between a pair of robots from frontier
locations that cannot be replicated from any other pair of
frontier locations that can be reached by those robots. Unique
measurements are also due to the local map structure at one
or more of thenf frontiers of a robotri that does not occur
in any of the remaining frontiers.

1) Unique Measurements Between Robots: A measure-
ment between two frontiers is denoted by the tuple〈d, θ〉
and measures the distance and angle between the two. A
unique measurement between a pair of frontiers is a tuple
that is not measured between any other pairs. For example
in a symmetric five room suite in Figure 2 the initial global
localization algorithm gives rise to five possible hypotheses
for each of the robots, say two, in those rooms. The only pair
of unique measurement between frontiers is when the end
frontiers at the top get occupied (Figure 2) since the frontier
locations are equally spaced. The probability of occupancyof
the two end frontiers from the two robots is the computation
of Po(5, 2, 2). For measurements between any other pair of
frontiers get replicated elsewhere. For example measurement
between first and second frontiers is the same as between 2
and 3, 3 and 4 & 4 and 5 since they are spaced equally.

Define an allocation of robots to distinct frontiers as
alloci = (r1 → f1, r2 → fk, ..., rnR

→ fj). The above
allocation moves robotr1 to frontier f1, r2 to fk, ..., rnR

to fj . Denote by UM i
alloc the set that contains all the

possible pairs of virtual frontiers that result in a unique
measurement between them due to the allocationalloci.
For example in Figure 2 for the suite of 5 rooms let the
distance between frontiers 2 and 3 bedifferent while all
the distances between adjacent frontiers namely 1,2; 3,4;
4,5 be same. Then the following pairs of frontiers gives
rise to unique measurements between them namely 1,5; 2,3;
& 3,5. They would belong to the setUM i

alloc due to the
allocationalloci that sends all the robots in those five rooms
to the top distinct frontier. Denote byPUM (R − R, alloci)
the probability of obtaining at-least one unique measurement
due to robot-robot detections (measurements made between
robots) through allocation,alloci. It is computed as

PUM (R − R, alloci) =
⋃

pǫUMi
alloc

Poccupancy(p) (2)

The rightmost termPoccupancy(p) refers to the probability
of occupancy of the pair of frontierspǫUM i

alloc and is of
the form Po(nF , nR, 2) computed through (1). The above
equation merely finds the union of occupancy probabilities
of all those pair of frontiers that gives rise to a unique
measurement due to robot-robot detections between those
frontiers.

Fig. 3. Five equally spaced frontiers (circles). Though r3 is present between
them, r1 and r2 can localize to a unique state by mediating via r3.

When robots reach their alloted frontiers to detect one
another they may not due to presence of obstacles or due
to limited range of sensors. The probability of obtaining
a unique measurement then needs to account for these
situations and its done as follows.

D. Incorporating Visibility Constraints

While computing the probability of obtaining a unique
measurement (UM) the implicit assumption has been that the
robots occupying the frontier pair are visible to one another.
Incorporating visibility constraints takes into considerations
the situations when there are obstacles between the frontier
pair and cases where they are not within sensing range of
each other. Figure 4 captures a situation when UM cannot
be realized because of obstacle, but the same can realized
looking through other robots. Belief update between two
robots is done according to the Markov framework of [3].
Similarly, in figure 3 when the UM frontiers 1 & 5 are
not in sensing range we make use of robot,r3, present at
intermediate frontier 3. In these cases, computing probability
of obtaining a particular UM needs more than two robots to
occupy the frontiers. How multiple robots update their beliefs
between each other is not discussed here and we cite [13]
for this purpose.

E. Unique Measurement due to Map Structure

The local map structure around the considered frontier
can also provide a discerning measurement that discerns
that frontier from all others. For example Figure 5 contains
four room suite with a robot inside having four hypotheses
locations. If the robot manages to reach the two right most
virtual frontiers at the top it will obtain at-least one unique
measurement due to the local map, however if it reaches the
bottom frontiers there are no unique measurements. Then the
probability of obtaining at-least one unique measurement if it
moves to the top is the probability of occupying the two right
most frontiers and is given byPo(4, 1, 1)∪Po(4, 1, 1). Let the
setUM i

alloc,Map be the set of all frontier locations that make
a unique measurement onto the map due to allocation,alloci.
Then the probability of at-least one unique measurement

Fig. 4. Though robots r1 and r2 at 2 and 6 cannot detect one another they
still could localize to a unique hypothesis if r3 and r4 occupy two of the
frontiers labeled 3, 4 & 5.



Fig. 5. shows four hypotheses for robot R with priors as pink clusters.
Only the two right frontiers for the distinct frontier at thetop can give a
unique measurement due to the local map structure there.

through the allocation,alloci, from the local map is given
by

PUM (Map, alloci) =
⋃

mǫUMi
alloc,Map

Poccupancy(m) (3)

The rightmost termPoccupancy(m) refers to the probability
of occupancy of the frontiersmǫUM i

alloc,Map and this is of
the form Po(nF , nR, 1) computed through (1). The above
equation merely finds the union of occupancy probabilities
of all those pair of frontiers that gives rise to a unique
measurement due to measurements made on the local map
structure at those frontiers.

F. Choosing the Best Allocation

The overall probability of obtaining a unique hypothesis
due to an allocation is given by

PUH(alloci) = PUM (R − R, alloci) ∪ PUM (Map, alloci) (4)

The best allocation is then chosen as

allocbest = arg(max
j

PUH(allocj)) (5)

When more than one allocation has the same probability
of obtaining a unique hypothesis that allocation is chosen
that has the highest probability of eliminating a maximum
number of hypotheses.

G. Clustering to Form Base-Pairs

Since the number of combinations of robots with frontiers
is exponential in the number of robots, the original set
of robots R is now partitioned intoN mutually exclusive
subsetsR1, R2, · · · , RN where the cardinality of setRi is
nRi

and
∑

i nRi
= nR. The partition is done in a manner

such that all robots in the partition share the same set of
hypotheses and frontiers. By sharing we mean for every
virtual frontierfvi for robotrm ∈ Ri there exists exactly one
virtual frontier fvj for every other robotrn ∈ Ri, rm 6= rn

that is close tofvi in a Euclidean sense, their distance less
than a threshold. If such frontiers are not found among other
robots thenrm is the only member ofRi. We call each such
partition of robots as a base pair – denoting the pairing of
the set of frontiers with the set of hypotheses. The number of
base pairs equals the number of mutually exclusive subsets.
We denote base pairi asfri, f indicates the frontiers shared
by the robots in that base pair. The partitioning reduces the

(a) Robots with Multiple States.

(b) All robots are localized.

Fig. 6. Snapshots of simulation demonstrating active localization.

number of combinations to be considered while moving to
best frontier locations.

The equations 1, 2 and 3 are then dovetailed to address
allocations of base pair robots to frontiers than individual
robots to frontiers. In other wordsalloci is now defined
as alloci = (R1 → f1, R2 → fk, ..., RN → fj), i.e.
allocation of a robot setRi of the base pairfri to a
frontier than allocation of individual robots to frontiers. The
equations are then read with this modified understanding of
an allocation. This is possible because the robots in a base
pair are indistinguishable in behaviour and hence would need
same action. Hence allocation can be talked in terms of the
whole set of robots than individual robots.

IV. SIMULATION RESULTS

Figure 6(a) shows the map with 16 robots arranged in 7
suites named S1, S2, . . . , S7. The robots are labeled R1,
R2, . . . , R16 which are placed as shown and the blue lines
show the initial scan of the sensors obtaining mutli-modal
probability distribution for the 16 robots. The hypotheses
positions thus computed as the expectation of the prior is
shown as pink cluster (with a mean). Robots in suites S1,
S6 & S7 have two distinct frontiers - one at top and one at
the bottom, while those in the remaining suites have distinct
frontiers to left and right.

Figure 6(b) captures the situation after the robots have
moved to the frontiers choosen by best allocation given
by equation (5). The robots in S1 are moved to bottom



Fig. 7. Graph showing number of iterations versus number of robots with
multiple hypotheses (robots remaining to be localized) for a fixed number
of robots, 18, averaged over different maps.

frontiers because the local map structure provides more
unique measurements at the bottom than at the top frontiers.
The unique measurements due to robot-robot detection are
same either at top or bottom frontiers. Thus in computing (4)
moving bottom has a higher probability due to predominance
of the term due to the map given by (3). The robots in suites
S2 & S3 are guided to frontiers on right & left respectively
as (4) evaluates high due to predominance of probability
due to robot-robot detections (2) on doing so. Robots in S4
& S5 have more unique measurements due to robot-robot
detections if they move towards right & left whereas moving
left & right results in more unique measurements due to
local map structure. Since the probability due to equation 3
is more than that by equation 2 the robots from S4 move
to left and robots in S5 to their right. In the case of suites
S6 & S7 the probability given by equation 2 dominates the
probability due to equation 3 by allocating robots in S6 to
bottom frontiers and the robots in S7 to their top frontiers.
This is due to higher probability of localizing due to unique
measurements between robots than by local map structure.

It is to be noted that robots start from exactly the same
relative positions so as to demonstrate the basepair clustering.
Otherwise robots could start from any position resulting in
more robot-frontier combinations (more basepairs for same
number of robots) to be considered.

A. Comparative Analysis

Here we compare the current method (Method 1 in the
graphs) with three other methods of active localization. The
second method (Method 2) actively localizes by computing
the best allocation based on unique measurements between
robots alone and not due to the map structure. The third
method (Method 3) computes the best allocation based
on unique measurements due to the local map structure
neglecting measurements between robots. The fourth method
decides upon an allocation randomly. All the methods upon
reaching their alloted frontiers do take measurements on the
robots and the local map to localize faster. Its only while
deciding the allocation some of these measurements are not
considered. Graphs of Figures 7 and 8 correspond to the first

Fig. 8. Graph showing number of robots in a given map versus number of
iterations for each method to localize all the robots in that map (averaged
over a large no: of maps).

set of comparison. It essentially shows the performance gain
of taking into account the placement of robots and the local
map structure together over methods that take into account
only one or neither.

Figure 7 plots the number of frontiers visited or equiva-
lently the number of iterations of the algorithm on the x-axis
and the number of robots with more than one hypothesis
on the ordinate. Method 1 (orange & circles), the current
method localizes all the robots to a unique state with the least
number of frontiers visited. Method 4 (pink & open squares)
that allots frontiers randomly visits the highest number of
frontiers to localize all and comes last. Method 2 (blue &
filled squares) that considers only robot measurements in
deciding the allocation perfoms the second best while method
3 (brown & crosses) that considers only local map structure
performs third best. Graphs are the results of simulations
performed over several maps and averaged over several runs,
each map having the same number of robots, eighteen.

Figure 8 captures the trend of increasing number of robots
visiting the same area across methods. It plots number of
robots on the abscissa and number of iterations of the
algorithm or number of frontiers to visit to localize all the
robots on the ordinate. As the number of robots increase
the number of iterations to localize all the robots decreases
across all the methods as all of them do consider detections
between robots at the time of localizing their beliefs. The
current method takes the least number of iterations to localize
across all number of robots considered (2 to 24). The method
that allots randomly (Method 4) takes the maximum number
of iterations to localize. Method 3 is faster than method 2
when number of robots is lesser since the map measurements
dominate, while 2 is faster than 3 when number of robots
are more since measurements between robots become more
prominent. Fractional number of iterations on the ordinate
is a result of average taken over a large number of runs for
every robot considered on the abscissa, i.e.,{2, 4, 6, · · · , 24}.

V. IMPLEMENTATION

The method was verified on a pack of Amigobots equipped
with 8 sonar transducers. External hardware in the form of



(a) Real Setup with 4 Amigos. (b) Simulator Counterpart.

Fig. 9. Setup for the real-time implementation of Active Localization.

(a) On moving to frontiers. (b) Simulation counterpart.

Fig. 10. Snapshots after active localization algorithm execution.

IR transceiver circuit was interfaced to the serial buffer of
the Amigobot’s controller board to facilitate easy detection
of one robot by other. Each transceiver transmitted a unique
pulse code corresponding to a particular robot. It also re-
ceived similar codes corresponding to other robots. The hard-
ware apart from detecting a robot was capable of measuring
the bearing between the detected and detector robot. Sonar
sensors are then fired along the detected direction to measure
distance between the two.

Figure 9(a) shows a placement of work desks in our
lab that is naturally symmetric. It contains two orthogonal
columns, the longer containing five desks and the smaller
three. These are referred as suites S1, S2 in figure 9(b),
that captures the same lab map in a graphics simulator
as in section IV. There are three Amigos in S1 and one
in S2. For those in S1 there is only one distinct frontier
to the bottom and for those in S2 there are two distinct
frontiers one to the left and other to the right. There are four
virtual frontiers for the only distinct frontier corresponding
to four hypothesis for each Amigo in S1. There are two
virtual frontiers for each distinct frontier for the Amigo
in S2. Amigos in S1 and their distinct frontiers form one
base-pair and the Amigo in S2 forms the other. The best
allocation is one that moves Amigos in S1 down and the
Amigo in S2 to left to maximize their chances of attaining
a unique hypothesis. Figure 10(a) shows the situation when
the Amigos have reached their alloted frontiers. Figure 10(b)
shows the simulator counterpart with the robots having
localized to a unique hypothesis, posterior distributionsin
green.

VI. CONCLUSION

The paper is about guiding several robots who are in
ambiguity of their states to locations where as many of
them can get rid of their ambiguities by localizing to a
unique hypothesis state. It presents a unified probabilistic
framework that takes into account the role of measurements
between robots as well as the measurement made on the local
map structure in deciding the best locations to move. It also
tackles within this framework the constraints due to sensing

range and the presence of obstacles that prevent robots from
detecting each other by a unique measurement leading to a
unique hypothesis. The algorithm shepherds robots to those
locations where probability of localizing the robots to a
unique hypothesis is maximum.

Simulation results and real experiments confirm the effi-
cacy of the method. Extensive comparisons establish the per-
formance gain of the current method that considers both local
map structure and placement of robots in deciding where to
move over those methods that consider only one of them
or neither. It also clearly delineates that performing active
localization with multiple robots is always advantageous than
active localization performed singularly when other robots
are present.

This method finds utility in several multi-robotic scenarios,
where robots are not clear about their state, have multiple
hypotheses and require the assistance of other robots to
resolve conflicts as well as to refine their states to precise
coordinates.

The future work would address the active localization with
multiple robots when the robot state includes orientation
and is represented by the tuple< x, y, θ >. The role for
multi robot active localization is expected to be enhanced in
such scenarios since the inclusion of orientation increases
the possibility of multiple hypotheses dramatically. Our
immediate focus is on devloping a decentralized mechanism
for the proposed framework.
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