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Abstract— In environments which possess relatively few fea- robots (robot-robot detections) as well as from robots to
tures that enable a robot to unambiguously determine its the local map structure at those places. It is worth noting
location, global localization algorithms can result in multiple that multiple hypotheses arise because there is no unique

hypotheses locations of a robot. In such a scenario the robot, t at th h th | fi that is able t
for effective localization, has to be actively guided to those measurement at those hypotheses locations that 1s able 1o

locations where there is a maximum chance of eliminating most discern that location from the other competing hypotheses
of the ambiguous states — which is often referred to as ‘active locations. Hence the search for frontiers that provide asyma
localization’. When extended to multi robotic scenarios where ynique measurerments as possible. Since the initial stétes
all robots possess more than one hypothesis of their position, e ropots are multiple a robot cannot hypothesize to reach
there is the opportunity to do bett_er by using robots apart from frontier | fi . v but Vi babitist
obstacles as ‘hypotheses resolving agents’. The paper present any frontier location “”'q‘{GY ut can only !n a probablgs
a unified framework accounting for the map structure as well Sense. Hence a probabilistic framework is developed that
as measurement amongst robots while guiding a set of robots finds the probability of reaching to places where unique
to locations where they can singularize to a unique state. The measurements leading to unique hypotheses is maximum
appropriateness of our approach is demonstrated empirically o 5 set of robots. Once shepherded to these positions
in both simulation & real-time (on Amigobots) and its efficacy in a probabilistic sense some of the robots could attain a
verified. Extensive comparative analysis portrays the advanige ) i )
of the current method over others that do not perform active  Unique hypothesis. This framework also accounts for other
localization in a multi-robotic sense. constraints such as the detecting range of the sensors and
| INTRODUCTION ?:C:%cnalmmap structure at the frontier locations detailed i
Among various aspects of the navigation task, the posi- gytensive comparative analysis portrays the advantage of
tioning problem is crucial and consists of maintaining iNpe current method over others that do not perform active
real-time a reliable estimate of the position of robots Withocalization in a multi-robotic sense. It also delineatbs t
respect to a reference frame in the environment [1]. Thgerformance gain by considering map structure and robot
problem of global localization is that of, from little or no piacement to actively localize over methods that consider
a priori pose information, estimating the correct pose of Bnly one of them or neither.
mobile robot with respect to some global reference frame. The quthors argue that the novelty of this work lies in that
In symmetric environments, local map could look the samg s the first such method where multiple hypotheses states
from multiple positions. So, global localization algoms iy more than one robot is resolved in an active localization
result in multiple hypotheses of robot location. In suchsense. The essential contribution apart from the methetf its
a scenario the robot navigates to places where the 10Gal the clear delineation that performing active localiaati
environment sensed is unique in the whole map to come Wiy multiple robots is advantageous than active locatizat
with a unique_ hypoth_esig of its position. This is Commonlyperformed singularly when other robots are present.
referred asactive localization. The method finds application when robots operate in
This paper presents a new approach to the problem gfnmetric environments with few distinguishable features
actively localizing a group of mobile robots, where all robots Thege can occur indoors in corridors with symmetric rooms
possess more than one hypothesis of their position, capalye eyenly spaced pillars, or outdoors in large open spaces
of sensing one another. The proposed method moves robistered with trees that are far apart. The essential motiv
with multiple hypotheses to places such that a maximufio, has been to develop a framework for active localization
number of such robots singularize to a unique state. Wgith multiple robots — to analyse the performance gain over

consider frontier locations [2] as good places to move 1g framework where active localization is done individually
localize since they are easy to compute and provide a

sufficient set of places to visit for convergence to a unique Il. RELATED WORK

hypothesis. The method presented considers the bestdrenti |, general work on active localization has tended to be
to move for a set of robots such that the probability of finding;mited when compared with passive localization. The pio-
a unique hypothesis for the set is maximum_. Intuitively t_h‘ﬁeering work in this area has been from [3] and [4]. In [3] a
best frontiers are those upon robots reaching them, givegethod of active localization based on maximum information
rise to a maximum number of unique measurements betweggin was presented. Dudek and others [4] presented a method
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NP-Hard. A randomized version of the same method was T
presented in [5]. In [6] an approach for guiding the robot to
a target location is proposed when its current position s no H1 H2
known accurately.

A similar problem is treated in [12], where it uses multi- \/\ LN
hypothesis Kalman filter based pose tracking combined with fb1 b2

ilicti ; i Fig. 1. Robot with two hypotheses states H1 & H2. There aretitoal
a probabllIStIC formUIatl.On of hypOthESIS Correcm.ess ¢0g fﬁ)ntiers (ft1, ft2) for every distinct frontier due to twoypotheses states.
erate and track Gaussian pose hypotheses on-line. It tracks
the multiple hypotheses of a mobile robot but method ig. Hypotheses and Frontiers
largely about the uncertainty representation and using of

feat . . t1 di biquity. H . The input for the problem being addressednisitiple
catures In enviroment to remove disamuliguily. FOWEVET Ifqqrg ith multiple hypotheses of their state. We compute
does not deal with actively localizing multiple robots an

q i i hepherdi hani ypotheses from the multi-modal belief of pose in Markov
"As far as authors knowledge goes there has been Scd) localization
) : ge 9o The notion of adistinct frontier is used while specifying
reported work deah_ng acﬂ_ve Ioca_llza'_uon of several r&bdt 0 girection to move the robot. The direction is always to
the context of multi robotic localization Fox et.al. extend one of the surrounding frontiers from a hypothesis location

their earlier global Iopallza'u?n TEth_OdS to a mﬁlt'romﬁ' These directions are distinct since the frontiers are rutigh
setting in [7]. A coordinated localization approach waals jointad with respect to a robot hypothesis.

presented based on Monte-Carlo methods in [8]. In [9] 0 ever since there are multiple hypotheses (sayin

a method is presented in which team members Carefu'h(umber), the robot reaches to one among #hefrontier
coordinate their activities in order to reduce C“mmativefocations while moving along a direction. Despite selagtin

odometric errors. _There has peen a class of methods trb"Hique direction, it reaches to one of thg possiblevirtual
make use of relative observations between robots to red”ﬁ%ntiers Hence forth when a robot move to a frontier it

absolute position errors by optimizing a objective funetio refers to one among the various virtual frontiers, the digti
such as in [10] or through a sensor fusion formulation usmﬂontier is used to refer to the direction choosen.

EKF [11]. Vision-based relative localization is used forima

taining formation in [14]. The robots however profess only @&. Computing Occupancy Probabilities

singular hypothesis while the uncertainty in their hypsike

is reduced through relative observations. The above me)thtz{:kiI

do not consider active localization in a definite sense ypotheses. If it decides to occupy the distinct frontiethie

guiding robots to positions from where they can obtain ?op it would end up reaching one of thosevirtual copies

unique hypothesis of their states from an initial multi mbdain 1/n ways. More formally if there is a set of robots R

situatiop. I-_lence .they cannot pe classifigd as agtive metho\g,ﬁh cardinality ng capable of occupying a set of frontiers
of localization while they certainly deal with multiple rots. F, with cardinalityn», the probability a particular k of those,
say fi1, fe, -+, fi of them gets occupied is given by

Imagine a map where there aresuch similar rooms as
Figure 1. Then a globally localizing robot would haxe

1. ACTIVE LOCALIZATION

"R Py x (nr—k) P(

. . _ 'rLR—k) .

Consider a workspace W populated by robots; in Po(np,nr,k) = wr p inr > k
number, each of them having multiple hypotheses of their — Onp<k e (1)

states. The problem is to move thesg robots to frontier
locations such that each of the robots localizes to a uniqgueHere the termP,(nr,nr, k) denotes the probability of
state with minimal number of frontiers visited. By a state obccupancy of a particulak of the ny frontiers by nr
hypothesis we imply a positiofic, y) in @ map. We assume robots. The first term in the parenthesis denotes the number
the robot's orientation is known through a compass. of frontiers, the second the number of robots and the third
The problem is explained in the following fashion: Firstlynumber of frontiers to be occupied. The notatidR, denotes
the computation of probability of robots reaching or occuthe permutation of: things taken y at a time.
pying frontiers (occupancy probability) is depicted. Sadiy
the probability of obtaining at-least one unique measurgme
also denoted as UM, for a set of robots is shown. This Let there be a seR of np robots,ry, ro, ..., 7, . Let each
probability arises due to both the nature of local mapobotr;cR haven, distinct frontiers to move to, each distinct
structure and the placement of other robots. Both the caskentier havingn virtual frontier copies. The objective is
are discussed. Also the modifications in the probability du® come up with the right combination of robots moving
to sensing range limits and other visibility constraintsliso  to distinct frontiers such that the probability of obtaigin
presented. Thirdly how the probability of a unique hypothes a unique measurement is a maximum for the entire set.
is computed from UM probabilities is depicted. Lastly weThe unique measurements discern a frontier location from
show how the computations can be reduced by clusteriripe remainingn; — 1 for a robot and results in a unique
robots into what are called dmse-pairs. hypothesis. The unique measurements are of two kinds. They

C. Computing Unique Measurement Probabilities
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Fig. 3. Five equally spaced frontiers (circles). ThoughsrBriesent between
them, rl and r2 can localize to a unique state by mediating via r3

Fig. 2. A suite of 5 identical rooms with an opening on top. Quamcy of . .
the extreme frontiers by robots gives rise to a UM (longeshvaron top). When robots reach their alloted frontiers to detect one

another they may not due to presence of obstacles or due

are measurements between a pair of robots from fronties limited range of sensors. The probability of obtaining
locations that cannot be replicated from any other pair ad unique measurement then needs to account for these
frontier locations that can be reached by those robots. lniq situations and its done as follows.
measurements are also due to the local map structure at one ) o )
or more of then frontiers of a robotr; that does not occur D. Incorporating Msibility Constraints
in any of the remaining frontiers. While computing the probability of obtaining a unique

1) Unique Measurements Between Robots: A measure- measurement (UM) the implicit assumption has been that the
ment between two frontiers is denoted by the tupled) robots occupying the frontier pair are visible to one anothe
and measures the distance and angle between the two.In¢orporating visibility constraints takes into consiaons
uniqgue measurement between a pair of frontiers is a tuptbe situations when there are obstacles between the frontie
that is not measured between any other pairs. For examgigir and cases where they are not within sensing range of
in a symmetric five room suite in Figure 2 the initial globaleach other. Figure 4 captures a situation when UM cannot
localization algorithm gives rise to five possible hypotses be realized because of obstacle, but the same can realized
for each of the robots, say two, in those rooms. The only paieoking through other robots. Belief update between two
of unique measurement between frontiers is when the emdbots is done according to the Markov framework of [3].
frontiers at the top get occupied (Figure 2) since the femti Similarly, in figure 3 when the UM frontiers 1 & 5 are
locations are equally spaced. The probability of occuparicy not in sensing range we make use of robef, present at
the two end frontiers from the two robots is the computatiointermediate frontier 3. In these cases, computing pradipabi
of P,(5,2,2). For measurements between any other pair g¥f obtaining a particular UM needs more than two robots to
frontiers get replicated elsewhere. For example measuremedccupy the frontiers. How multiple robots update their éiksli
between first and second frontiers is the same as betwee@ween each other is not discussed here and we cite [13]
and 3, 3 and 4 & 4 and 5 since they are spaced equally. for this purpose.

Define an allocation of robots to distinct frontiers a

alloc; = (1 — fi,72 = fr,..,tnr — f;). The above ) ]
allocation moves robot; to frontier f1, r» to f; . The local map structure around the considered frontier

to f;. Denote byUM:, = the set that contains all the €an also provide a discerning measurement that discerns

possible pairs of virtual frontiers that result in a uniquehat frontier from all others. For example Figure 5 contains

measurement between them due to the allocatitinc;. four room suite with a robot inside having four hypotheses

For example in Figure 2 for the suite of 5 rooms let thdocations. If the robot manages to reach the two right most
distance between frontiers 2 and 3 Hidferent while all  Virtual frontiers at the top it will obtain at-least one uné

the distances between adjacent frontiers namely 1,2; 3 Aleasurement due to the local map, however if it reaches the
4,5 be same. Then the following pairs of frontiers gives bottom frontiers there are no unigue measurements. Then the

fise to unigue measurements between them namely 1,5; 2R§obability of obtaining at-least one unique measurentent i
& 3,5. They would belong to the sdfMi, _due to the MOVES to t.he top is thg probability of occupying the two right
allocationalloc; that sends all the robots in those five roomdnost frontiers and is given bi,(4,1,1)UF,(4,1,1). Let the

to the top distinct frontier. Denote biy (R — R, alloc;)  SEU My arap PE the set of all frontier locations that make
the probability of obtaining at-least one unique measurgme? Unique measurement onto the map due to allocatituy; .

due to robot-robot detections (measurements made betweBfen the probability of at-least one unique measurement

robots) through allocatiomlioc;. It is computed as

. Unigue Measurement due to Map Structure

1 rd
] y 4
Py (R - R, alloci) = U Poccupancy (p) (2) o
pEUA'{;Lzoc
The rightmost termP,.c.pancy (p) refers to the probability C5)

of occupancy of the pair of frontierseUM?,,,. and is of
the form P,(npr,ng,2) computed through (1). The above
equation merely finds the union of occupancy probabilities
of all those pair of frontiers that gives rise to a unique.. 4. Though robots rl and 12 at 2 and 6 cannot detect ondanttey

. ig.
measurement due to robot-robot detections between thoﬁ% could localize to a unique hypothesis if r3 and r4 ooguwo of the
frontiers. frontiers labeled 3, 4 & 5.
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Only the two right frontiers for the distinct frontier at thep can give a
unique measurement due to the local map structure there.

Fig. 5. shows four hypotheses for robot R with priors as pihlsters. |
| /ﬁ\
| O

through the allocationglloc;, from the local map is given AN
by (a) Robots with Multiple States.
Pyar(Map, alloc;) = U Proceupancy(m) — (3) = ® —
meUM? ;. ara 51|: I I I :l o S .
Map H ‘,‘GI—|
The rightmost ter®P, ccupancy (M) refers to the probability mC b E " E
of occupancy of the frontiersweU M. 1s,,, @nd this is of e Lo =
the form P,(ng,ng,1) computed through (1). The above
equation merely finds the union of occupancy probabilities st s Z N
of all those pair of frontiers that gives rise to a unique | .0 ] |
measurement due to measurements made on the local map| < H = SZE.I IE I‘]
structure at those frontiers. | o E E || |: I-I I-I :|
F. Choosing the Best Allocation L . N %

The overall probability of obtaining a unique hypothesis

. . . (b) All robots are localized.
due to an allocation is given by

Fig. 6. Snapshots of simulation demonstrating active loatibn.

Pyp(alloc;) = Pun (R — R, alloc;) U Puy (Map, alloc;)  (4)yymber of combinations to be considered while moving to

best frontier locations.
The equations 1, 2 and 3 are then dovetailed to address
allocpesy = arg(max Py g (alloc;)) (5) allocations of base pair robots to frontiers than individua
J robots to frontiers. In other wordsalloc; is now defined
When more than one allocation has the same probabiligs alloc; = (Ry — fi,Rs — fi,...Rn — [;), i.e.
of obtaining a unique hypothesis that allocation is chosesllocation of a robot setR; of the base pairfr; to a
that has the highest probability of eliminating a maximunfrontier than allocation of individual robots to frontiefShe

The best allocation is then chosen as

number of hypotheses. equations are then read with this modified understanding of
) ] an allocation. This is possible because the robots in a base
G. Clustering to Form Base-Pairs pair are indistinguishable in behaviour and hence wouldinee

Since the number of combinations of robots with frontiersame action. Hence allocation can be talked in terms of the
is exponential in the number of robots, the original sewhole set of robots than individual robots.
of robots R is now partitioned intoN mutually exclusive
subsetsR;, Ry, ---, Ry where the cardinality of seR; is
ng, and) . ngr, = ng. The partition is done in a manner Figure 6(a) shows the map with 16 robots arranged in 7
such that all robots in the partition share the same set sfiites named S1, S2, ..., S7. The robots are labeled R1,
hypotheses and frontiers. By sharing we mean for evefg2, ..., R16 which are placed as shown and the blue lines
virtual frontier f,; for robotr,,, € R; there exists exactly one show the initial scan of the sensors obtaining mutli-modal
virtual frontier f,; for every other robot-,, € R;, r,,, # 7,  probability distribution for the 16 robots. The hypotheses
that is close tof,; in a Euclidean sense, their distance lesgositions thus computed as the expectation of the prior is
than a threshold. If such frontiers are not found among othehown as pink cluster (with a mean). Robots in suites S1,
robots therr,, is the only member of?;. We call each such S6 & S7 have two distinct frontiers - one at top and one at
partition of robots as a base pair — denoting the pairing dhe bottom, while those in the remaining suites have distinc
the set of frontiers with the set of hypotheses. The number ffontiers to left and right.
base pairs equals the number of mutually exclusive subsetsFigure 6(b) captures the situation after the robots have
We denote base pairas fr;, f indicates the frontiers shared moved to the frontiers choosen by best allocation given
by the robots in that base pair. The partitioning reduces thgy equation (5). The robots in S1 are moved to bottom

IV. SIMULATION RESULTS
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Fig. 7. Graph showing number of iterations versus number obtolvith  Fig. 8. Graph showing number of robots in a given map versus nuofbe
multiple hypotheses (robots remaining to be localized) forxadinumber iterations for each method to localize all the robots in thap reveraged
of robots, 18, averaged over different maps. over a large no: of maps).

frontiers because the local map structure provides mog$t Of comparison. It essentially shows the performance gai

unique measurements at the bottom than at the top frontief, taking into account the placement of robots and the local
The unique measurements due to robot-robot detection dfé@P Structure together over methods that take into account
same either at top or bottom frontiers. Thus in computing (49Nly one or neither. _ o _
moving bottom has a higher probability due to predominance Figure 7 plots the number of frontiers visited or equiva-
of the term due to the map given by (3). The robots in suitdgntly the number of |terat|ons.of the algorithm on the xsaxi _
S2 & S3 are guided to frontiers on right & left respectively@nd the number of robots with more than one hypothesis
as (4) evaluates high due to predominance of probabili@n the ordinate. Method 1 (orange & circles), the current
due to robot-robot detections (2) on doing so. Robots in gpethod localizes all the robots to a unique state with thetlea
& S5 have more unique measurements due to robot-robBtmber of frontiers visited. Method 4 (pink & open squares)
detections if they move towards right & left whereas movin%hat allots frontiers randomly visits the highest number of
left & right results in more unique measurements due tiontiers to localize all and comes last. Method 2 (blue &

local map structure. Since the probability due to equation Alléd squares) that considers only robot measurements in
is more than that by equation 2 the robots from S4 moveeciding the allocation perfoms the second best while nietho

to left and robots in S5 to their right. In the case of suites (Prown & crosses) that considers only local map structure
S6 & S7 the probability given by equation 2 dominates th@erforms third best. Graphs are the results of simulations
probability due to equation 3 by allocating robots in S6 tgrerformed over several maps and averaged over.several runs,
bottom frontiers and the robots in S7 to their top frontiersaCh map having the same number of robots, eighteen.
This is due to higher probability of localizing due to unique Figure 8 captures the trend of increasing number of robots
measurements between robots than by local map structur&iSiting the same area across methods. It plots number of
It is to be noted that robots start from exactly the samgPbots on the abscissa and number of iterations of the
relative positions so as to demonstrate the basepair dhugte algorithm or numb'er of frontiers to visit to localize _aII the
Otherwise robots could start from any position resulting ifobots on the ordinate. As the number of robots increase
more robot-frontier combinations (more basepairs for sani®e number of iterations to localize all the robots decrsase

number of robots) to be considered. across all the methods as all of them do consider detections
_ _ between robots at the time of localizing their beliefs. The
A. Comparative Analysis current method takes the least number of iterations toiloeal

Here we compare the current method (Method 1 in thacross all number of robots considered (2 to 24). The method
graphs) with three other methods of active localizatione Ththat allots randomly (Method 4) takes the maximum number
second method (Method 2) actively localizes by computingf iterations to localize. Method 3 is faster than method 2
the best allocation based on uniqgue measurements betwedmen number of robots is lesser since the map measurements
robots alone and not due to the map structure. The thidominate, while 2 is faster than 3 when number of robots
method (Method 3) computes the best allocation baseite more since measurements between robots become more
on unique measurements due to the local map structupgominent. Fractional number of iterations on the ordinate
neglecting measurements between robots. The fourth methisda result of average taken over a large number of runs for
decides upon an allocation randomly. All the methods upoevery robot considered on the abscissa, {2.4,6, - - - , 24}.
reaching their alloted frontiers do take measurements en th
robots and the local map to localize faster. Its only while V. IMPLEMENTATION
deciding the allocation some of these measurements are nofThe method was verified on a pack of Amigobots equipped
considered. Graphs of Figures 7 and 8 correspond to the fingtth 8 sonar transducers. External hardware in the form of



range and the presence of obstacles that prevent robots from
detecting each other by a unique measurement leading to a
unique hypothesis. The algorithm shepherds robots to those
locations where probability of localizing the robots to a
unique hypothesis is maximum.

Simulation results and real experiments confirm the effi-
cacy of the method. Extensive comparisons establish the per
formance gain of the current method that considers botH loca
map structure and placement of robots in deciding where to

(a) Real Setup with 4 Amigos. (b) Simulator Counterpart.
Fig. 9. Setup for the real-time implementation of Active Lozation.
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] move over those methods that consider only one of them
= or neither. It also clearly delineates that performing \ati

- localization with multiple robots is always advantageduet

] active localization performed singularly when other rabot

are present.

This method finds utility in several multi-robotic scenaxio
where robots are not clear about their state, have multiple
hypotheses and require the assistance of other robots to
IR transceiver circuit was interfaced to the serial buffér oresolve conflicts as well as to refine their states to precise
the Amigobot’s controller board to facilitate easy deteati coordinates.
of one robot by other. Each transceiver transmitted a unique The future work would address the active localization with
pulse code corresponding to a particular robot. It also renultiple robots when the robot state includes orientation
ceived similar codes corresponding to other robots. Thd-harand is represented by the tupte x,y,6 >. The role for
ware apart from detecting a robot was capable of measurimgulti robot active localization is expected to be enhanced i
the bearing between the detected and detector robot. Sosaich scenarios since the inclusion of orientation increase
sensors are then fired along the detected direction to measthe possibility of multiple hypotheses dramatically. Our
distance between the two. immediate focus is on devloping a decentralized mechanism

Figure 9(a) shows a placement of work desks in oufor the proposed framework.
lab that is naturally symmetric. It contains two orthogonal
columns, the longer containing five desks and the smaller
three. These are referred as suites S1, S2 in figure 9(b}!
that captures the same lab map in a graphics simulat
as in section IV. There are three Amigos in S1 and one
in S2. For those in S1 there is only one distinct frontier
to the bottom and for those in S2 there are two distinct
frontiers one to the left and other to the right. There are fou
virtual frontiers for the only distinct frontier correspoimg (4]
to four hypothesis for each Amigo in S1. There are two g
virtual frontiers for each distinct frontier for the Amigo
in S2. Amigos in S1 and their distinct frontiers form one [6]
base-pair and the Amigo in S2 forms the other. The best
allocation is one that moves Amigos in S1 down and the7)
Amigo in S2 to left to maximize their chances of attaining
a unique hypothesis. Figure 10(a) shows the situation Whehs]
the Amigos have reached their alloted frontiers. Figureéd)0( [9]
shows the simulator counterpart with the robots having
localized to a unique hypothesis, posterior distributiams [10]
green.

(a) On moving to frontiers.
Fig. 10. Snapshots after active localization algorithmcexien.

(b) Simulation counterpart.
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