
 

 

 

  

 

Abstract— We present a method for finding paths for 

multiple Unmanned Air Vehicles (UAVs) such that the sum over 

their lengths is minimum as they cover a 3D terrain 

(represented as height fields). The paths are constrained to lie 

beneath an exposure surface to ensure stealth from enemy 

outposts. The exposure surface is also computed as a height 

field. The algorithm greedily clusters the terrain such that gain 

in visibility per distance would be higher for intra-cluster points 

than points across clusters. Paths generated on clusters formed 

by such a per distance visibility metric are reduced by more 

than 25% over other related decoupled methods. The method is 

extended to cover terrains with partial visibilities. The 

advantage of the coupled metric extends under constrained 

visibility also. We again show performance gain by comparing 

with an existing decoupled algorithm that solves a similar 

problem of minimum distance terrain coverage with 

constrained visibility. The paper reveals that decomposing the 

terrain based on visibility first and then distance is always 

better than the other way round to cover the terrain in shorter 

distances. 

I. INTRODUCTION 

HE paper attacks the following problem: Given a terrain 

T, represented as a height field and a set O of hostile 

outposts or towers, find paths for multiple UAVs such that, 

the terrain is covered, the overall sum of path lengths is 

minimized and none of the UAVs is visible from any 

outpost.  

We then, extend the algorithm to the case where the points 

in T are considered seen only if it is viewed from within a 

cone; the bisector of the cone is normal to the plane 

containing the point.  If the point is seen from outside the 

cone it needs to be seen once more, from another viewing 

angle to be considered as completely seen. The partial 

visibility constraint allows for more than one sighting of 

terrain points to compensate for viewing errors and blurred 

images that occur due to oblique viewing of the terrain. 

There have been no known approaches for the problem 

amongst the literature we surveyed. The original problem of 

seeking to place a minimum number of guards to cover the 

entire 3D terrain is NP hard and [10] presents the best 

approximate version with an upper bound that would be no 

worse than a logarithmic increase in the number of points 

over the optimal solution. The problem if attacked based on 

methods present in literature could take the following two 
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ways. In the first method, we find the number of points 

required to guard the terrain based on the dominating set 

(output points of [10]). The traveling salesman problem [8] 

extended to its multi-agent version would then partition the 

points output by [10] into clusters through a distance metric. 

The points in each cluster are visited through an 

approximation algorithm such that the sum of the path 

lengths is minimal. In the second method we adapt the 

traveling tourist [9] to the current scenario. The original set 

of terrain points is first clustered into the number of salesmen 

or UAVs based on a distance metric. For each of the clusters 

the points are visited by an implementation of the traveling 

tourist.  

Both these methods of hierarchically decomposing the 

terrain through visibility followed by distance or distance 

followed by visibility produced inferior results compared to 

the current method of partitioning, that couples both distance 

and visibility in a single metric. It is noted that, when we 

seek to maximize visibility along with minimizing distance 

simultaneously it is possible to visit more guard positions 

than that output by [10] yet reduce the actual distance 

traversed. Fig. 1 depicts this motivating example.  

 
Fig 1. A single dimension terrain with the minimum number of points to 

cover the terrain given by a, c and e. If we have two UAV to cover the 

terrain they can cover through a shorter distance by one of them visiting 

points a and b and other d and e. If we go purely based on minimum 

number of points to visit one UAV stays at a while other needs to visit c 

and e that takes longer distance. 

 

 Further, we show that the coupled decomposition extends 

its advantages to terrains even when visibility is constrained. 

We compare the current method with an approach [16] that 

attacks the problem of minimum distance coverage with 

constrained visibility and show performance gain. [16] first 

decomposes based on visibility to compute a set of guards 

that cover the terrain and further an optimal order to visit 

those guards. The method presented in [16] is for a single 

robot and uses a randomized version. To have fair 

comparisons, we compare paths due to the current method 

with that of [16] with its randomizations removed.   

II. RELATED WORK 

Coverage robotics has attracted a lot of attention in the 
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last half a decade and the literature is rich with several 

versions and themes of it. Some have focused on visiting 

every point in known or unknown maps [1, 2], others have 

attacked the problem that every point within a terrain is seen 

or explored [3, 4], while others have deployed sensor 

networks to maximize coverage over an area [5, 6].  

In this paper we attack the problem of finding paths for 

multiple UAVs such that they cover the terrain with 

minimum sum over distance paths. Other pertinent 

approaches [11, 12] attack the problem of stealth navigation 

in presence of known observers albeit for a 2D terrain for a 

single robot. In [13] a multi robot approach to the problem 

was presented. [17] presents a robust (fault tolerant) method 

for multi-robot coverage in 2D. It however uses a decoupled 

metric (cellular decomposition) and pertains to exhaustive 

geographical search (sweeping). There have been approaches 

that have tackled coverage and formation under constraints 

for UAV [14, 15] but the visibility information has been 

neglected or simplified as circles beneath the UAV. In other 

words they fail to take into account the rich terrain 

information that comes from a height map or a terrain map. 

III. METHODOLOGY 

A. Problem definition 

Given a terrain T, described as a set of points 

{ }NpppT ,,2,1 K= , where each { }ihiyixip ,,=  with 
ih  

denoting the terrain height at { }ii yx , , a set of outposts 

{ }pooO ,,1 K=  and a set { }mrrrR ,,2,1 K=  of m UAV, find 

m paths that cover T, such that sum of the path lengths is as 

reduced as possible and none of the paths is visible from any 

Ooi ∈ .  

Due to presence of outposts it may not be possible to see 

every point of T. We first delineate the points that can 

actually be covered and then see all those with as reduced 

sum of path lengths as possible. We find the exposure 

surface E of T as the set of points { }neeeE ,,, 21 K= , where 

each { }iiii zyxe ,,= . E characterizes the maximum height 

iz  above the given point ip that an UAV can reach without 

being seen by any outpost [7]. E, at times, may be composed 

of isolated regions qEEE ,,, 21 K such that no point in iE  is 

connected to any point in jE  unless they pass through a 

point seen by at-least one outpost. For example, Fig. 2 shows 

an exposure surface partitioned into multiple isolated 

regions.  

 

 

 

                   
Fig.2  : Partitions in the exposure surface. Due to the presence of the 

outposts, the exposure surface need not always be contiguous. The green 

square indicates the outpost. The blue regions are the areas not visible to 

the outpost. UAV from one blue region cannot move into another blue 

region without becoming visible to the outpost 

 

If the number of such partitions is more than the number 

of UAVs, some partitions would not be visited and points 

seen from them left uncovered. This inability to cover all 

points seen by E arises only because of the inability of an 

UAV to move into an isolated region without being watched 

by an outpost. We assume the UAV takes snapshots at 

discrete locations to cover the terrain. Piecewise linear paths 

in 3D are used to simulate UAV motion that can be executed 

by aerial vehicles like choppers. This may not be 

kinematically feasible for UAVs that move along continuous 

curvature paths. This however does not affect the main 

motivation of this work that by visiting more points the 

UAVs can cover the terrain in shorter distances and the 

advantages of a coupled metric over decoupled one.  

B. The algorithm 

The algorithm itself consists of two phases. In the first step, 

starting points for the UAVs are determined on a contiguous 

exposure surface, E, such that they are sufficiently far apart 

and afford high visibility. In the second step, the paths are 

built using a resource allocation mechanism. A point 

becomes a UAV’s next point of visit when the gain in 

visibility for distance traveled is the maximum for that point-

UAV pair over all other point-UAV pairs. It is to be noted 

that the UAVs move on E to cover Sc, the set of terrain 

points visible from E, TSc ⊂ , The algorithm is described in 

Listing 1. 

 

1) The spread out phase: 

Let at some instant in this phase, the points of the set 

{ }peeeEA ,,2,1 K= , EEA ⊆  be assigned to one of the 

UAVs in the set, { }srrrsR ,,2,1 K= , RsR ⊆ . In other 

words every UAV in sR has exactly one point from EA 

allotted to it. A point ae EEe −∈  then becomes the starting 

point for any 
sr RRr −∈  provided the factor 

ββ
VdSo

−
∆=

1 evaluates to a maximum for ee . The factor, 

So, is called the spread out factor, V is the amount of terrain 

visibility at ee  and d∆ is the change in length of the path by 

adding ee  to EA. Let the original length of the path due to 

points in EA  be pd , then the path due to addition of ee  

evaluates to ed  through the edge breaking rule. This rule 

adds ee  to EA by connecting at one of the endpoints of the 
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path or by breaking one of the p-1 edges, whichever of these 

possibilities gives the least path length increment. 

Then, pe ddd −=∆ . Distance between any two points on E 

is computed by moving along E or under it or both, 

whichever is shortest. Essentially the motivation of this 

phase is to obtain good guesses from where the UAVs can 

takeoff. Intuitively we want the UAVs to be far apart and at 

locations that have large visibility. This is done by first 

measuring the proximity of a chosen point to the already 

allotted points by the edge breaking rule, by computing d∆ . 

The points that maximize So (proximity along with visibility) 

are selected and assigned to  UAVs as their starting points.  

 While the performance of the algorithm is dependent on 

the initial guess of the starting points, the motivation is not. 

In other words even if the UAVs are constrained to start off 

from starting points not computed by the algorithm, paths 

obtained by the coupled metric are invariably shorter than 

those obtained in a decoupled manner.  

 

2) Resource allocation: 

In order to decide where each UAV moves next, we define a 

metric ‘M’ to quantitatively describe the feasibility of a point 

EAEeq −∈  as the next point from which a terrain snapshot 

is taken. The metric MPDV , (PDV signifying per distance 

visibility) for any such point, qe , is defined as:    

( )
( )( ) α

α

−∆
=

1
qr

q

PDV
ed

eV
M                                                  (1) 

Here ( )qeV is the visibility of point qe  and ( )qr ed∆  is the 

difference in distance due to incorporation of qe  in the path 

of r. That is, ( )qr ed∆  computes the difference in path 

distances after and before insertion of qe in the path of r. The 

insertion itself takes place through the edge breaking rule 

mentioned in the previous subsection. ( )qeV , the visibility of 

point qe , is the total number of unseen points in Sc seen 

by qe . We allocate the next point to that UAV for which (1) 

is the maximum among all point-UAV pairs. This is 

determined as: 

( ) ( ) sjijiPDVjiuq RrEAEereMre ∈∀−∈∀= ,;,maxarg, ,  

C.  Choice of the Metric and Parameters: 

The central idea of the metric MPDV is that it should choose 

terrain points that give as high a gain in visibility for as less a 

distance traveled. In other words the algorithm seeks points 

on the terrain that maximizes the visibility gained per 

distance or per-distance visibility, PDV. The term 

dV captures the notion of per distance visibility well. As 

with all objective functions or metrics there are weighing 

constants. If the objective function or metric is additive the 

constants are multiplicative while metric that are ratios have 

constants in their powers. Hence 
αα −1

dV  is a good choice 

for the metric, with α  being the weighing constant, termed 

the coupling parameter in the current context. 

The coupling parameter α  determines the amount of 

relative preference given to visibility over distance traveled. 

When α=1, the exposure surface is decomposed or clustered 

based on terrain visibility alone. When α=0 the terrain is 

clustered based on distance. The effects of α  on the results 

obtained and a suitable value for it are further discussed in 

the Section IV based on empirical data obtained through 

extensive testing. 

Similarly for the spread out phase the requirement is to 

have a high visibility and distance. Hence the multiplicative 

metric dV∆ . The coupling parameter β  determines the 

importance of these factors through the metric ββ
Vd

−
∆

1
. A 

good choice of β  was found to be ]25.0,2.0[∈β  based on 

empirical data. Parameter β  facilitates to choose points that 

are far off from each other as well as possessing high 

visibility 

D. Incorporating partial visibility 

In this section, we outline the changes to the algorithm 

that we need to incorporate a restricted viewing angle for the 

sensors. For this section, we define the following: 

1) A point p is said to be normally visible from q if and 

only if q is in the central cone of p. (i.e. the segment 

pq should subtend an angle less than 0θθ <  with the 

terrain’s normal at p) 

2) A point p is said to be partially visible from q if and 

only if q is in the intermediate cone of p. (i.e. the 

segment pq should make an angle  max0 θθθ <<  with 

the terrain’s normal at p) 

3) A point p is considered seen if it has been viewed 

normally by some point q or if it has been viewed 

partially by two opposite points  a,b ( the projection 

of line segment ab on surface S subtends an angle of 

more than 120 degrees at p). 

The notion of partial visibility is introduced for two 

reasons, firstly, the sensors should not pick up the surface at 

too grazing an angle and secondly, the data sensed should 

provide sufficient detail for inspection. Hence it is justifiable 

that points that are normally viewed need not be viewed 

again but points viewed partially may be considered seen if 

they are viewed partially from two opposite points. The 

original problem remains unchanged, except for the kind of 

visibility relations that are considered for terrain coverage. 

In the previous section, the visibility of a point was 

considered to be the number of points to which line of sight 

visibility could be established. This is modified to include 

only those points which fall in the viewing cone of the point 

being viewed. The visibility of a point is considered to be 

noOfPointsSeenNormally + 0.5 *noOfPoints SeenPartially 
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Listing 1. Pseudocode for the algorithm of section IIIB 
 

The original algorithm remains unchanged except for the 

computation of ( )qeV∆ . The weight 0.5 assigned to partially 

visible points is to bias the metric in favor of normally 

visible points. It also indicates that point needs to be seen 

from one more viewing direction and hence the weighing 

factor. 
 

 

 

 

 

 

 

 

 

 

Fig. 3. Visibility cones for a point: observers in the central cone can view 

the point completely whereas observers in the intermediate cone can only 

view the point partially. The point is assumed to be invisible to observers 

outside the intermediate cone.  

IV. SIMULATION AND RESULTS 

A. The standard case 

We have carried out our simulations in 3D environments, 

although the method is equally advantageous in planar 

coverage too. 

Table 1 compares the current method ‘C ‘(with 7.0=α )  

with two decoupled methods, A and B. As mentioned in 

section I, method A first finds the minimum number of 

points required to guard the terrain and visits these guard 

points by multiple UAVs such that the overall path length is 

reduced. 
 

 

Table 1:  Comparison of the average total path lengths and their       

standard deviation for different methods and different number of UAV 

 

For method B, the given terrain is partitioned into k 

clusters (where k is the number of UAVs) based on a 

distance metric. For each of the clusters the dominating set 

of points to see terrain points viewable from that cluster, is 

found from [10]. Paths are computed that visit the points in 

each cluster, such that the sum of their path lengths is 

approximately minimal. An approximate version of the 

Christophedes algorithm [11] is used to compute these paths. 

For C, the clustering process itself gives the path lengths at 

the end through the edge breaking procedure. Since the paths 

are better than those obtained by methods A and B 

consistently, no path refinement algorithm was used after the 

clusters were formed. 

The first column of the table denotes the method used, the 

2
nd

 the number of UAVs. The third reports the average 

distance taken by the methods to cover a terrain based on 

simulation runs over 45 terrains. The last column reports the 

standard deviation of the runs. The terrains were selected 

such that they had all kinds of features like hills, valleys, 

ridges, flat surfaces and undulations.  

The tabulations clearly show that the current method 

performs better by giving path lengths that are at-least 25% 

shorter on an average than method A and by a much larger 

values with method B. The large standard deviations indicate 

the high non uniformity in the set of terrains chosen in the 

runs. 

Experimental results show that the performance of the 

methods A and C generally improves when the number of 

UAVs is increased whereas it reduces drastically when 

method B is used. Figure 3 depicts this trend where distances 

decrease with robots for methods A and C, while it increases 

for method B. This indicates that method B may not be a 

suitable approach to solving this problem. 

Method No Of UAV Mean Distance Std. Dev 

A 350.13 111.25 

 

B 

380.43 109.74 

C 

 

 

2 

271.32 117.64 

A 290.56 118.02 

B 429.34 131.87 

C 
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235.19 115.15 

A 220.19 133.38 

B 450.72 118.51 

C 
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A 183.67 116.63 
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The counterintuitive results of B are attributed to the fact 

that when terrain is decomposed or clustered first based on 

distance, the visibility relations between inter terrain points 

are lost. When clusters are formed based on distance first 

and visibilities considered only within the cluster, points 

chosen in another cluster, say c2, may see several points 

(sometimes all) points within cluster c1. Yet in this process 

one still ends up finding a tourist path for points in c1 by 

decomposing it based on visibility. This results in lot more 

redundancy in visibility among the points visited and this 

redundancy increases as more clusters are formed or when 

the number of UAVs increases, resulting in increasing 

distance. 
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 Fig.  4: Behavior of methods as number of UAV is increased. The 

blue line (circles) is for method A, pink line (squares) for method B and 

yellow line  (triangles) is for  method C. 

 

The only increase in computation time over other methods 

is the use of edge breaking that requires breaking of the 

edges of the path computed so far to come up with the best 

path length. This is done every time a point needs to be 

allocated to a cluster. Due to the competitiveness of edge 

breaking the path refinement at the end of clustering process 

is only optional, this is not the case in methods A and B. 

B. The effect of α  

Fig 5.  Variation of results with α  

 

Fig. 5 shows how often a given value of alpha performs 

better than other values of alpha. For example, when 7.0=α , 

it is better than all other values ofα , 43% of the time. 

Clearly the trend in the results suggest that the most suitable 

value of α  is 0.7. It is to be noted that this does not mean 

7.0=α is the optimum value. But rather that 7.0=α  

performs better more often than other values for this set of 

terrains.  

The amount of error introduced by fixing the value of α is 

described in Fig. 6. Since we have fixed the value of α  at 

0.7, there might be some cases in which some other value of 

α would have yielded better results. Fig.6 shows the 

percentage increase in the distance, caused when some other 

value of α performs better, and the percentage of the cases it 
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Fig 6.  % Increase in distance due to choosing 7.0=α over the α that 

yielded the least distance 

 

happens. For example, the first bar of the graph shows that 

the increase in distance is merely between 0% and 5 %, 73% 

of the time. This justifies our choice of 7.0=α . 

The optimum value of α is dependent on terrain 

parameters such as mean and standard deviation of terrain 

visibility. This underlines the need for a coupled metric, 

since this degree of coupling is lost in a decoupled search. 

Finding the optimum value of α for a given terrain is the 

subject of ongoing research. 

C. The effect of starting position 

The method is susceptible to start positions of UAVs. 

Typically the spread out phase gives a good initial guess of 

the starting points. However when the starting points are 

provided by the user, the main motivation of this paper still 

holds ;  that is, with arbitrary starting points , paths generated 

by a coupled decomposition are always better than paths 

generated by decoupled decomposition. For a separate set of 

simulations, the coupled decomposition with 7.0=α  showed 

paths lengths reduced by 18 % over method A and more than 

40% for method B .  

D. The case of partial visibility 

When the visibility of the point was constrained (as 

described in section III), the overall path lengths increased, 

though the coupled metric still performed better than the 

decoupled methods. The results are tabulated in Table 2. 

Table 2 shows the results for different number of UAVs 

and their corresponding improvements. Here the 

comparisons are shown only between methods A and C, 

since the method B was observed to be an unsuitable 

approach. The first column of the table denotes the method 

used, the 2nd the number of UAV. The third reports the 

average distance taken by the methods to cover a terrain 

based on simulation runs over 45 terrains. 

 The case when 1=α and a single UAV corresponds to the 

method described in [16] with the modification to the 

manner in which the guards are chosen. In the method A as 

implemented here, the points (equivalent of guards in [16]) 

are chosen from a sample set that constitutes all the unchosen 

points in the exposure surface, whereas in [16] the   
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Table 2:  Comparison of the average total path lengths for different 

methods and different number of UAV when the visibility is restricted 

 

guards are chosen from a randomly generated subset of all 

the remaining points. Both in [16] and the adapted version of 

[16], the method A, the guard is chosen from the sample set 

greedily.  

As the results show, the use of the coupled metric clearly 

gives an improvement of 10% over the use of decoupled 

metric. Fig.7 shows a sample set of paths obtained. Imposing 

the restriction on visibility causes the visibility information 

to be less rich at any point on the exposure surface leading to 

reduction in the improvement of coupled method over the 

decoupled method to 10% from the earlier 25%, nonetheless 

the advantages of the coupled metric is evident. 

V. CONCLUSION 

This paper has attacked the problem of covering a 3D 

terrain specified as height fields with multiple UAVs with 

minimum sum over path lengths and with stealth from hostile 

outposts. The problem has been extended to the case where 

terrain points are partially visible depending on view angle. 

The principal motivation is that by visiting more points than 

the number output by the best terrain guarding algorithms 

one can cover the terrain with shorter path lengths. A metric 

that couples distance and visibility captures this motivation. 

The path lengths obtained with this metric were shorter by 

at-least 25% than the methods that use a decoupled metric. 

Further this work reveals if hierarchical clustering or 

decomposition of the terrain is resorted, it is better to 

decompose first based on visibility and then on distance 

rather than the other way round. Unlike these methods that 

need to hierarchically decompose the terrain based on 

visibility followed by distance or vice versa the current 

method using the coupled metric does a one time 

decomposition of the terrain.  

 

 

 
Fig.  7. Paths obtained when partial visibility is considered. Outward 

projecting surface normals at the terrain edges cause the generated paths to 

be close to the edges. The restriction on visibility causes paths to zigzag 

over the terrain’s features to cover it.   

 

Further the advantage of the coupled metric over the 

decoupled methods was seen for cases where the terrain data 

set was restricted by visibility constraints. This confirms that 

the advantages of coupled decomposition can be generalized 
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