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Abstract We envisage a multi robotic scenario where 
several robots are in ambiguity about their states and 
require help of other robots to overcome their 
ambiguity. Ambiguity here is used in the sense of more 
than one hypothesis of a robot’s state. In such a scenario 
the method presented here moves the robots to locations 
where probability of eliminating several ambiguous 
states among multiple robots is a maximum. For this 
purpose the best frontiers are identified and robots 
dispatched to those frontiers. The best frontiers are 
those that have the highest probability of realizing a 
unique hypothesis if the robots were to arrive there.  The 
method presented has been tested in both simulation and 
real-time on robots and its efficacy verified. Extensive 
comparative analysis portrays the advantage of the 
current method over others that do not perform active 
localization in a multi-robotic sense. 

  I. INTRODUCTION 

We consider a scenario of multiple robots navigating in a 
known map end up with multiple hypotheses of their states 
when attempting to globally localize in the given map. This 
is a pathological problem in global localization and is well 
documented [1,2]. This problem is attacked for the case of a 
single robot by moving to locations where they can best 
localize in [1,4] and the terminology active localization was 
introduced in [1]. This paper tackles the active localization 
problem for multiple robots. Specifically given a set of 
robots, each of them having more than one hypothesis of 
their states, we propose a method that moves robots to 
places such that a maximum number of such robots 
singularize to a unique state. Intuitively robots would want 
to move to places where a large number of them can detect 
one another. However mere detection of large numbers does 
not suffice unless the detection happened from locations 
where the measurements were unique and cannot be 
replicated elsewhere between robots. Since robots’ initial 
states are multi modal in nature it is not possible to 
enumerate places where unique measurements between 
robots occur. Hence a probabilistic framework is developed 
that finds the probability of reaching to places where unique 
measurements leading to unique hypotheses is maximum for 

a set of robots. These positions are frontiers in the sense 
used in [3]. The probabilistic framework also accounts for 
other constraints such as the detecting range of the sensors 
as well as presence of obstacles. These are detailed in 
section 3. For example Figure1a tries to globally localize the 
robot in a given map. The state of the robot is a uniform 
distribution portrayed by the dark cells. Each such cell is a 
possible pose of the robot. In Figure 1b after the robot 
acquires a scan the possible pose of the robot is multi modal 
in nature shown once again by the clusters of dark cells. 

Extensive comparative analysis portrays the 
advantage of the current method over others that do not 
perform active localization in a multi-robotic sense. The 
method presented here would find utility in several multi-
robotic applications where localization issues dominate. It is 
useful when robots brought alive need to estimate their 
initial state. It is useful when several robots tend to get 
confused about their states due to large localization errors 
and need to globally localize once in a while in the map 
provided or built so far. It is once again useful if one or 
more robots in a multi-robotic endeavor could get 
kidnapped by malicious agents. While the context 
mentioned here is resolving multiple hypotheses among 
multiple robots this effort can also be seen in the larger 

Figure1a tries to globally localize the robot in a given map. The state of 
the robot is a uniform distribution portrayed by the dark cells. 



context of cooperative localization where robots also serve 
the function of mobile landmarks and come together to 
estimate their state whenever required. The authors argue 
that the novelty of this work lies in that it is the first such 
work to be reported where multiple hypothesis states in 
more than one robot is resolved in an active localization 
sense.

II. RELATED WORK 

In general work on active localization has tended to be 
limited when compared with passive localization. The 
pioneering work in this area has been from [1] and [4]. In 
[1] a method of active localization based on maximum 
information gain was presented. Dudek and others [4] 
presented a method for minimum distance traversal for 
localization that works in polygonal environments without 
holes that they show to be NP-Hard. A randomized version 
of the same method was presented in [5]. In [6] an approach 
for guiding the robot to a target location is proposed when 
its current position is not known accurately while [11] 
presents a method of localizing a single robot in multiple 
states based on exploration and selecting best directions of 
motion. 

As far as authors knowledge goes there has been no 
reported work dealing active localization of several robots. 
In the context of multi robotic localization Fox and others 
extended their earlier global localization methods to a multi-
robotic setting in [7]. A cooperative localization approach 
was also presented based on Monte-Carlo methods in [8]. In 
[9] a method is presented in which team members carefully 
coordinate their activities in order to reduce cumulative 
odometric errors. However these methods did not consider 
active localization in a rigorous sense of guiding robots to 
positions. 

III. METHODOLOGY 

Consider a workspace W populated by robots, NR in number, 
each of them having multiple hypotheses of their states. The 
problem is to move these NR robots to frontier locations 
such that each of the robots localizes to a unique state with 
minimal number of frontiers visited.  

The problem is approached in the following fashion. 
i. Firstly we find the probability of robots reaching or 

occupying frontiers (occupancy probability) from 
where unique measurements between robots are 
possible. 

ii. Secondly the occupancy probability is modified 
incorporating visibility constraints to compute the 
actual probability of obtaining unique hypothesis for a 
robot if it reached those frontiers. 

iii. Since several combinations of robots occupying 
frontiers that gives rise to unique hypothesis is possible 
that combination is chosen that maximizes an objective 
function. 

A. Computing Occupancy Probabilities 
We introduce the notion of distinct and virtual frontiers 
here. Consider the map of figure 2 in the form of two almost 
identical rooms with two openings one in the top and one at 
the bottom. A globally localizing robot in this map finds 
two hypotheses locations in H1, H2 (figure 2). At each of 
these hypotheses position there are two frontiers for the 
robot, one in the top and other at the bottom, labeled ft1 and 
fb1 for H1. These frontiers at each hypothesis location are 
computed as in [3] and are called distinct frontiers. If a 
robot has nh possible hypotheses then each distinct frontier 
has nh such copies called virtual frontiers. In figure 2 each 
distinct frontier at top and bottom has two virtual frontiers 
ft1, ft2 and fb1, fb2. Henceforth the term frontier refers to a 
virtual frontier unless explicitly mentioned as distinct. 

Imagine a map where there are n such similar rooms as 
in figure 2. Then a globally localizing robot would have n
hypotheses. If it decides to occupy the distinct frontier in the 
top (we assume the robot’s orientation is known through a 
compass and only its coordinates are unknown) it would end 

Figure2: A robot with two hypotheses states H1 and H2. The distinct 
frontiers for each state are two one on top and other at bottom denoted 
as ft1 and fb1 for state H1 at the boundary of the visibility polygon. 
There are two virtual frontiers (ft1, ft2) for every distinct frontier due to 
two hypotheses states. 

Figure 1b after the robot acquires a scan the possible pose of the robot is 
multi modal in nature shown once again by the clusters of dark cells. 



up reaching one of those n virtual copies in n1 ways. More 

formally if there is a set of robots R with cardinality Rn
capable of occupying a set of frontiers F, with cardinality 

fn  the probability a particular k of those, say kfff ,,, 21

of them gets occupied is given by 
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Here the term knnP Rfo ,,  denotes the probability of 

occupancy of a particular k of the fn  frontiers by Rn
robots. The first term in the parenthesis denotes the number 
of frontiers, the second the number of robots and the third 
number of frontiers to be occupied. The notation yxPm ,
denotes the permutation of x things taken y at a time. 
Among the various possible arrangements of robots some of 
them give rise to unique measurements between robots. 
Specifically we look for a pair of frontiers that give rise to a 
unique measurement. A measurement between two frontiers 
is denoted by ,d  and measures the distance and angle 
between the two. A unique measurement is one that is 
unique in terms of either d or  between a pair among all 
pairs of frontiers considered. For example in a symmetric 
five room suite in figure 3 the initial global localization 
algorithm gives rise to five possible hypotheses for each of 
the robots, say two, in those rooms. The only pair of unique 
measurement between frontiers is when the end frontiers at 
the top get occupied (figure 3) since the frontier locations 
are equally spaced. The probability of occupancy of the two 
end frontiers from the two robots is the computation 
of 2,2,5oP . For measurements between any other pair of 
frontiers get replicated elsewhere. For example 
measurement between first and second frontiers is the same 
as between 2 and 3, 3 and 4 & 4 and 5 since they are spaced 
equally. Given a set of robots capable of occupying certain 
locations it suffices to look for locations that give rise to a 
unique measurement for obtaining a unique hypothesis. 
Once the robots at those locations are uniquely localized 
they can localize other robots in that set either directly (if 
they are visible) or through a chain of robots acting as 
intermediaries as explained below. 

B. Unique Hypothesis Probabilities and Visibility 
Constraints
For a set of robots occupying a set of frontiers unique 
measurements can be obtained for more than a pair of 
frontier locations. For example in figure 3 for the suite of 5 
rooms let the distance between frontiers 2 and 3 be different 
while all the distances between adjacent frontiers namely 
1,2; 3,4; 4,5 be same. Then the following pairs of frontiers 
gives rise to unique measurements between them namely 

1,3; 1,4; 1,5; 2,3; 2,4; 2,5 & 3,5 that are the objects of the 
set UP that contain all the pairs of frontiers with unique 
measurements. The probability of obtaining a unique 
measurement between frontiers 1,3 is merely the probability 
of occupancy of those two frontiers as computed in previous 
section. The probability of obtaining a unique hypothesis for 
any robot in the set is the union over all those probabilities 
of occupancies that give rise to unique measurements.  

More formally given a set of robots R and a set of 
frontiers F denote the probability of obtaining a unique 
hypothesis for any robot in this set by FRPUH  given that 
there are no frontiers that are outside of this set that will be 
occupied by a robot in R. F, R denotes the frontier and robot 
sets for which the computation is done. Also denote by 

pPUM  the probability of obtaining a unique measurement 
due to a pair of frontiers p belonging to the set UP.

pPUM  is nothing but the probability of occupancy of that 
pair of frontiers as computed in the previous section. Then 

UPp
UMUH pPFRP 2 .

While computing the union the intersections are dealt till 
order five since terms of order greater than five are 
insignificant upon extensive experimentation.  

C. Incorporating Visibility Constraints 
While computing the probability of obtaining a unique 

measurement the implicit assumption has been the robots 
occupying the frontier pair are visible to one another (there 
are no obstacles between) and are within sensing range of 
each other. When two frontiers are within sensing range the 
presence of a robot in between the two occupied frontiers 
does not in any way change any of the above probability 
computations. When robots detect each other through a 
unique measurement they get localized to a unimodal 
distribution of their states. The presence of other robots in 
between does not prevent this as explained through figure 4 
that shows a set of five frontiers equally spaced and 
abstracted as circles. The only unique measurement is when 
the extreme frontiers are occupied. Consider a third robot 
occupying frontier three. After belief update according to 
the Markov framework of [1] between robots r1 and r3, r1’s 

Figure 3: A suite of 5 identical rooms with an opening at the top. 
Occupancy of the extreme frontiers by robots gives rise to a unique 
measurement that does not get replicated elsewhere. This is shown by 
the longest arrow at the top. Occupancy of adjacent frontiers however 
gets replicated for four other placements as shown by the shorter arrows



possible positions are at frontiers 1 and 3, while that of r3 
are at 3 and 5. After belief update between r2 and r3, r2 gets 
localized at location of frontier 5 and r3 at 3. Another belief 
update between r2 and r1 localizes r1 at 1. This is equivalent 
to the situation when r1 and r2 detected each other directly. 
How multiple robots update their beliefs between each other 
is not discussed here and we cite [10] for this purpose. In 
short visibility constraints need to be looked into only when 
robots at two frontiers are not within sensing range of each 
other or presence of an obstacle in between. We discuss 
both these cases through simple examples. 

Visibility constraints due to obstacle presence
Consider figure 5 which shows 6 frontiers abstracted as 

circles and numerically labeled. We want to find the 
probability of obtaining a unique measurement between 
frontiers 2 and 6 due to occupancy of those frontiers by 
robots r1 and r2. The presence of an obstacle between 
frontiers 2 and 5 prevents a unique measurement. However 
a unique measurement between the two that leads to a 
unimodal state for both is possible if the remaining robots r3 
and r4 occupy any two of the three frontiers 3, 4 and 5. Thus 
the probability of obtaining a unique measurement between 
2 and 5 is the union of the following occupancy 
probabilities: (i) The probability of 2,3,4 and 6 being 
occupied (ii) The probability of 2,3,5 and 6 being occupied 
and (iii) The probability of 2,4,5 and 6 being occupied. Each 
of the above probabilities is of the form 4,4,6oP  and can 
be computed as before. Thus the effect of visibility 
constraints invokes placement of other robots in various 
positions such that the robots at the considered frontier pair 
are still able to localize to a unimodal state by propagating 
beliefs through others. More formally each term in (2) that 
considers the probability of obtaining a unique measurement 
due to a pair of frontiers is now further decomposed to a 
union of terms. Each term in this union denotes the 
placement of other robots at frontiers apart from the 
considered pair such that the considered pair of robots 
localize.

Visibility constraints due to farness of frontiers 
The effect of a frontier pair being far away for robots to 

detect is dealt in the same vein as before. Consider figure 4 
again with the added constraint that the maximum detection 
range for any robot is three times the distance between the 
two adjacent of the equally spaced frontiers. Albeit r1 and r2 

unable to detect one another if r3 occupies frontier 3 then r1 
and r2 would still be able to localize through a unique 
measurement with the help of r3. Thus the probability of 
obtaining a unique measurement between frontiers 1 and 5 
is identical to the probability of frontiers 1, 3 and 5 being 
occupied when there are 3 robots. This computation is of the 
form 3,3,5oP

D. Choosing the Best Combination 
Since the number of combinations of robots with 

frontiers is exponential in the number of robots, the original 
set of robots R is now partitioned into n mutually exclusive 
subsets R1, R2,…, Rn where the cardinality of set Ri is Rin

and
i

RRi Nn . The partition is done in a manner such 

that all robots in the partition share the same set of distinct 
and hence virtual frontiers. By sharing we mean for every 
virtual frontier rif  for robot ii Rr  there exists exactly one 
virtual frontier rjf  for every other robot 

ijij rrRr , that is close to rif  in a Euclidean sense, 
their distance less than a threshold. If such frontier is not 
found among other robots then ir  is the only member of iR .
We call each such partition of robots as a base pair. The 
number of base pairs equals the number of mutually 
exclusive subsets. We denote base pair i as ifr , f indicates 
that all robots in the base pair share the same frontiers and r
indicates the robots themselves. The partitioning reduces the 
number of combinations to be considered while moving to 
best frontier locations. It then suffices to take a decision of 
where to move next for just one robot in the base pair, 
which is then replicated for all others in that base pair.  

Each such base pair has a list of distinct frontiers as 
possible locations to visit and localize. We denote by set 

d
iiii frfrfrDF ,,, 21  the d distinct frontiers for the base 

pair fri. The superscript refers to the index of the distinct 
frontier for the base pair ifr . The list of all possible 
combinations is enumerated through the 
operation 11;1 niDFDF ii . For each combination 

Figure 4: Five equally spaced frontiers numbered 1 … 5 and abstracted as 
circles. If robots r1 and r2 occupy the extremes and detect each other 
through a unique measurement they localize to unimodal states. The 
presence of a third robot r3 at 3 does not in any way affect the result despite 
r1 and r2 unable to detect each other directly

Figure 5: Though robots r1 and r2 at 2 and 6 cannot detect one another 
due to the presence of the obstacle, the occupancy of r3 and r4 at any of 
the locations 3, 4 and 5 would have the same effect of r1 and r2 
detecting each other directly. If r1 and r2 would have localized through a 
unique measurement in the absence of the obstacle, they still could if r3 
and r4 occupy of two of the frontiers 3, 4 and 5. 



we compute the probability of obtaining a unique hypothesis 
based on the frontiers and robots that constitute the base 
pairs of that combination. The combination that has the 
highest probability of obtaining a unique hypothesis is 
considered and the robots are dispatched to frontiers 
accordingly. The computations are based on equation (2) 
slightly modified to handle combinations of base pairs than 
combination of robots. We don’t report for the sake of 
brevity.  

IV. SIMULATION RESULTS 

Figure 6a shows five suites labeled S1, S2… S5. Each 
suite is composed of three or more rooms. The initial 
positions of the robots are more or less at the center of the 
rooms. There is one robot r1 in S1, r2 and r3 in S2, r4 and r5 
in S3, r6, r7 and r8 in S4 and r9, r10 and r11 in S5. All the 
robots shown have multiple hypotheses of their states 
initially. The hypotheses states of robots are shown as 
darkened cells (the clusters of dark points). Robot r1 has 2 
hypotheses, r2, r3, r4, r5 have 4 hypotheses and r9, r10, and 
r11 have 5 while the remaining robots have 3 hypotheses. 
All of them possess two distinct frontiers one at the top and 
one at the bottom for robots in S1, S2, S3 and S5 while the 
robots in S4 have distinct frontiers on left and right at each 
of their hypothesis position. Each of the two distinct 
frontiers has as many copies of virtual frontiers 
corresponding to the number hypotheses states. 

There are five base pairs 521 ,, frfrfr with the 
superscript t(l) and b(r) indicating the top(left) and 
bottom(right) distinct frontiers in each base pair. Robots r1 
constitute the base pair 1fr , r2 and r3 form 2fr , r4 and r5 

with 3fr , r6, r7 and r8 in 4fr and r9, r10 and r11 in 5fr .

Figure 7 tabulates some of the combinations for the 
figures in 6. The corresponding number of unique 
measurements between frontier pairs and the probabilities of 
unique hypotheses for each combination is also shown. The 
combination tltbb frfrfrfrfr 54321 ,,,,  has the highest 
probability. The arrows show the direction in which each 
robot moves as they reach the frontiers corresponding to the 
best combination. Upon reaching their respective frontiers 
and performing a sensor update only r9 got localized 
because of the nature of the obstacle configuration seen by it 
locally while r2… r5 had their number of hypotheses states 
reduced from 4 to 3. The situation corresponding to 

this is shown in figure 6b. However when robots detected 
one another and performed updates all of them localized to a 

Figure 6(c) shows the scenario after the robot-robot detection and 
updates. All the robots in the map got localized i.e. they have 
unique hypothesis now. 

Figure 6(b) shows the scenario after the robots moving to the 
corresponding frontiers selected. Once they reach those frontiers 
motion and sensor updates take place which could localize only robot 
r9. For other robots the numbers of hypotheses have reduced.

Figure 6(a) shows 5 suites of rooms labeled S1, S2, S3, S4 and S5 
with robots r1, r2 - r3, r4 - r5, r6 - r8, r9 - r11 respectively.    It 
also shows the hypotheses for each robot. Arrows show the 
movement of robots to corresponding frontiers.



unique hypotheses state preventing any further entailment to 
explore and localize (figure 6c). This shows that robots 
reaching specific locations and performing updates based on 
their detections helps a long way in quick localization.  

A. Generic Trends
Figure 8 shows the graph of probability of obtaining a 

unique hypothesis versus number of unique measurement 
pairs for a fixed number of frontiers (here 12) for various 

number of robots occupying those frontiers. The probability 
increases as the number of unique measurement pairs 
increase for a given number of robots. Also across the 
robots the probability increases as more number of robots 
occupies the same space. This graph sums up the essence of 
this effort; it gives a bird’s eye view of where the robots 
should move to maximize probabilities of obtaining a 
unique hypothesis. Figures 9 also capture the same trend for 
different maps. 

B. Comparative Analysis
We compare our method with three different methods. 

In the first method robots move randomly and do not detect 
each other, in the second robots move according to the 
method given in [11] that selects best frontiers to move from 
a single robotic perspective but neglects robot-robot 
detections. In third robot-robot detections are considered but 
chose frontiers randomly. The graphs of figure 10 and 11 
portray the comparisons. In both the graphs method 1 is the 
method proposed in this paper. Method 2 is the one which 
chooses frontiers randomly to move to with robot-robot 
detection and updates. Method 3 is the method given in [11] 
that selects best frontier to move from a single robotic 
perspective but neglects the robot-robot detections. In 
Method 4 robots move randomly and do not detect each 
other. 

Figure 10 plots the number of explorations (frontiers to 
be reached) on the abscissa and the number of robots that 
haven’t localized to a unique state on the ordinate. Graphs 
are the results of simulations performed over several maps 
and averaged over several runs, each map having the same 
number of robots, 11, at start initially. Clearly our method 
has all the robots localized with least number of 
explorations or frontiers to visit while the methods that do 
not incorporate robot-robot detection at all take a long time 
to converge or sometimes do not converge at all depending 
on the given map. The method that takes into account robot-

Figure 9: Graph showing probability of obtaining a unique 
hypothesis versus number of unique measurements for a fixed 
number of frontiers for different numbers of robots

Figure 8: Graph showing probability of obtaining a unique 
hypothesis versus number of unique measurements for a fixed 
number of frontiers for different numbers of robots

Figure 7: Tabulation of the some of the base-pair combinations for the 
map shown in figures 6.  



robot detection but chooses frontiers randomly also takes a 
much longer time, in comparison with our method, to 
localize all robots to a unique state. 

Figure 11 captures the trend of increasing number of 
robots visiting the same area across methods. It plots 
number of robots on the abscissa and number of 
explorations on the ordinate. As the number of robots 
increase the number of explorations decrease for methods 
that make use of robot-robot detection updates. 

Evidently the current method localizes faster than the 
method 2 (which chooses randomly frontiers to move to). 
Since methods 3 and 4 do not incorporate robot-robot 
detection and update, increasing the number of robots does 
not have a prominent effect. Figure 11 reinforces the trends 
of figures 8 and 9. 

On extensive simulations it is observed that the 
localization of robots depends on the factors like sensor 
range, visibility range, number of robots present in the 
environment and also on the initial states of the given robots 
in the given map. Depending on the sensor range and the 
visibility range the current method takes 1-2 explorations 
(iterations) to localize all the robots. The dependency of 
each method on these factors grows stronger as we go from 
method 1 to method 4. In other words the method suggested 
here proved to be most robust to the initial states of the 
robots in a given map. It is also observed that in the event 
the current method can not localize all the robots for a given 
exploration it ends up with a lesser number of hypotheses 
for the robots which are not localized than the other 
methods. This is expected because the theoretical frame 
models the probabilistic nature of the initial states of the 
robots (all robots have multiple hypotheses initially) and 
gives direction based on where the probability of arriving at 
unique hypothesis is maximum. As expected the results 
show that increase in number of robots in the same 
environment hardly has any effect on the methods which do 
not use robot-robot detection and updates. 

V. IMPLEMENTATION

The method was verified on a pack of Amigobots 
equipped with 8 sonar transducers. External hardware in the 
form of IR transceiver circuit was interfaced to the serial 
buffer of the Amigobot’s controller board to facilitate easy 
detection of one robot by other. Each transceiver transmitted 
a unique pulse code corresponding to a particular robot. It 
also received similar codes corresponding to other robots. 
The hardware apart from detecting a robot was capable of 
measuring the bearing between the detected and detector 
robot. Sonar sensors are then fired along the detected 
direction to measure distance between the two.  Figure 12 
shows the external hardware interfaced to the controller on 
the Amigo. 

Figure 13a shows a corridor studded with cardboards 
somewhat akin to situations in warehouse with two Amigos. 
Figure 13b shows the hypotheses returned by the global 
localization procedure resulting in two distinct frontiers (one 

Figure 11: Graph showing number of robots in a given map versus 
number of iterations for each method to localize all the robots in   
that map (averaged over a large no: of maps).

Figure 11: The external hardware interfaced to the 
controller on the Amigo. 

Figure 10: Graph showing number of iterations versus number of 
robots with multiple hypotheses (robots remaining to be localized) 
for a fixed number of robots averaged over different maps.



at the top and one at bottom) for each robot. Each frontier 
has two copies of virtual frontiers corresponding to the two 
hypotheses states for a robot. The number of base pairs is 
thus two and the combination tb frfr 21 , yielded the 
maximum probability. The robots are dispatched to the 
corresponding frontiers and upon reaching detect one 
another in figure 13c. The unique hypothesis states 
corresponding to figure 13c is shown in 13d for the two 
robots. It is to be noted however that the robots localized 
before detecting one another due to the nature of the 
asymmetries present in the environment. 

VI. CONCLUSION 

This paper has presented a novel method of 
shepherding robots to locations for rapid elimination of 
multiple hypotheses among them. A set of robots iR  with 
cardinality Rin  and sharing the same frontier set iF  is 
represented by the base pair ifr in the paper. A combination 
of several such base pairs is considered and the combination 
with the highest probability of localizing to a unique state 
chosen and the robots shepherded to those locations to 
eliminate maximum number of conflicting hypotheses. The 
strategy has been tested both in simulation and real robots 
and its efficacy verified. Comparative analysis clearly 
portrays the advantage of the current method vis-à-vis 
others that do not incorporate the current strategy. This 
method finds utility in several multi-robotic scenarios, 
where robots are not clear about their state, have multiple 
hypotheses and require the assistance of other robots to 
resolve conflicts as well as to refine their states to precise 
coordinates.  
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