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Abstract— Kinematically consistent paths for multiple 
mobile robots that are collision free for the next T 
steps are generated by forming collision free polygons 
(CFP). The polygons can be generated in a 
distributive fashion for each robot. All paths inside 
CFP that are kinematically feasible for a certain robot 
are collision free with all other robots in the same 
collision cluster for the next T time samples and with 
any other robot in the workspace in general. The 
construction of CFP is through two log-linear 
complex operations. The first one involves computing 
the intersection of the path container polygon (PCP) 
of a robot with PCP of other robots in the cluster. The 
second involves computing the convex hull of 
intersecting points arising from the intersection of 
PCPs. Once CFP is computed for a robot it chooses a 
point within the CFP (its next waypoint) that 
minimizes a cost function and moves towards the 
point. The process is repeated till the goal is reached. 
The main advantage of this method is that the best 
and worst-case times for finding a T-step ahead 
collision free path is always log-linear. In many 
randomized search methods, finding the paths till the 
next waypoint results in a worst case complexity 
exponential in number of robots. The efficacy of the 
current method is well portrayed through 
simulations.  Comparative results show that the 
following method finds a collision free path to next 
way point much quicker. 

1. INTRODUCTION 

Multi robotic systems have been an active area of 
research, where multiple robots perform a task in a 
cooperative or individual fashion. While performing 
multi robotic tasks, it is often desirable that the system is 
collision free. Collisions can happen with the co-robots 
or with the static and dynamic obstacles, and these 
collisions also called as conflicts can be hazardous for the 
robots. In order to overcome these conflicts, we devise an 
algorithm, which can be used in various applications. The 
main advantage and novelty of this method is that the 
best and worst-case times for finding collision free path 
till next waypoint is always log-linear. Any point on this 
path cannot be accessed by any other robots for the next 
T Steps. In many methods that involve a randomized 

search for collision free paths the worst-case complexity 
is exponential in the number of robots. The efficacy of 
this method and its advantages are well portrayed through 
simulations. Comparisons with other heuristics that are 
used in randomized methods show that the following 
method finds a collision free path to the next waypoint 
much quicker than those heuristics. 

The pivot of this algorithm is the computation of the 
Collision Free Polygons (CFP) for a robot. The CFP 
involves computing the intersection of Path Container 
Polygon (PCP) of a robot with all other robots. The PCP, 
a convex polygon can be considered as a container of a 
number of kinematically feasible paths for the next T 
instants. The vertices of the PCP (CP for short 
henceforth) are the current position of the robot, the 
coordinates that are reached with maximum linear 
acceleration and maximum angular deceleration (if the 
current angular acceleration is zero then that is 
maintained), the coordinates obtained by maximum linear 
and angular acceleration and those obtained by maximum 
linear deceleration and angular acceleration. The 
intersection of CPs of robots in collision gives rise to a 
number of intersection points on the boundary of the PCP 
as well as inside it for a robot. The convex hull of these 
points is considered. Then all points that are outside the 
hull but inside the CP are guaranteed to be collision free 
for next T samples. The CFP is the boundary of all such 
collision free points. The whole operation can be 
performed in two log-linear operations.  

Points within CFPs of all the robots that belong to a 
collision cluster are chosen such that a cost function is 
minimized. The search for a point within the CFP can be 
made arbitrarily fast by choosing arbitrarily a small 
number of points to minimize the cost function. In fact 
choosing one point would suffice since any point in a 
CFP and path to it is collision free for next T steps. The 
robots belonging to a collision cluster are obtained 
through the collision dependency graph. Robot A that 
predicts a collision with another robot B within a certain 
stipulated time is said to have a collision dependency 
with that robot and is shown in the graph by a bi-
directional link between the two. The algorithm currently 
operates in a semi-centralized fashion in that it is 
centralized with respect to the robots in a cluster while 
decentralized across clusters. However, a completely 



decentralized implementation can also be achieved with 
extra bandwidth, allowing for more exchange of 
messages between the robots. 

Multi-robotic navigation algorithms are traditionally 
classified as centralized or decentralized approaches. In 
the centralized planners [1, 2], the configuration spaces 
of the individual robots are combined into one composite 
configuration space, which is then searched for, to obtain 
a path for the whole composite system. In case of 
centralized approaches that compute all possible conflicts 
over the entire trajectories, the number of collision 
checks to be performed and the planning time tend to 
increase exponentially as the number of robots in the 
system increases. Complete recalculation of paths is 
required even if one of the robot’s plan is altered or the 
environment changes. However, centralized planners can 
guarantee completeness and optimality of the method, at 
least theoretically. 

Decentralized approaches, on the other hand, are less 
computationally intensive as the computational burden is 
distributed across the agents and, in principle, the 
computational complexity of the system can be made 
independent of the number of agents in it, at-least to the 
point of computing the first individual plans. It is more 
tolerant to changes in the environment or alterations in 
the objectives of the agents. Conflicts are identified when 
the plans or commands are exchanged and some kind of 
coordination mechanism is employed to avoid the 
conflicts. However, they are intrinsically incapable of 
satisfying optimality and the completeness criterion. 
Prominent among the decentralized approaches are the 
decoupled planners [3], [4], [5]. The decoupled planners 
first compute separate paths for the individual robots and 
then resolve possible conflicts of the generated paths by a 
hill climbing search [3] or by plan merging [4] or through 
dividing the overall coordination into smaller sub 
problems [5]. However many of these planners are not 
viable in presence of non integrable constraints, moving 
obstacles and fast replanning. There is a vast volume of 
literature that addresses the problem of motion planning 
in presence non integrable constraints by incorporating 
the kinematics of the robot [6, 7] and their various 
extensions that address the problem of fast replanning [8] 
and moving obstacles [9] and multiple robots [10]. They 
do so by making use of the existing roadmap of curves 
constructed while computing the initial plan. 

In the present method there is no initial plan for the robot 
since there is no map available and is closer to reactive 
collision avoidance approaches in this regard. It is 
crucially different from others in that the focus has been 
on computing a collision free path till the next waypoint 
that has the same log-linear complexity irrespective of 
the nature of the environment. The present approach can 
be dovetailed with the methods cited above since finding 
a path to the goal state through a sequence of paths till 
the next waypoint is a recurring theme in all. Heuristics 

are generally resorted to reduce the search in finding the 
path for multiple robots in collision [10]. However it is 
not guaranteed that these heuristics are efficient across 
the board for various situations unlike the current 
approach where a search for a collision free path is 
equivalent to the computation of CFP. Being log-linear it 
easily scales up gracefully over number of robots. It can 
also be dovetailed with approaches that do not 
incorporate a known map such as the Dynamic Window 
[11] to a multi robotic setting, where the search for a 
collision free path is for the next time sample only. 

II PROBLEM FORMULATION 

Given a set of robots nRRRR ,,, 21 , each 
assigned a start and goal configuration, the objective is to 
navigate the robot such that they reach the goal 
configuration avoiding all collisions.  While collisions 
could occur with stationary and moving objects, in this 
paper we focus primarily on how the robots could avoid 
collisions that occur amongst them in a cooperative 
fashion. For this purpose the following premises have 
been made: 

a. Each robot Ri is assigned a start and goal 
location and it has access to its current state and 
its current and aspiring velocities. The current 
state of Ri is represented as 

iiiii ncvnvc ,,,  where vnvc,
represent its current and aspiring velocities and 

nc,  its current and aspiring angular 
velocities.  

b. Robots are capable of broadcasting their current 
states to each other. They do so only to those 
robots that are within a particular range of 
communication. 

c. Robots accelerate and decelerate at constant 
rates that are same for all. Hence a robot Ri can 
predict, when another robot Rj would attain its 
aspiring velocity vn  from its current velocity 
vc  if it does not change its direction. 

Assumption ‘a’ is a standard assumption made in a 
typical mobile robot system. In general sensor based 
localization algorithms are used to correct discrepancies 
between the expected estimate and the actual readings 
reported by sensor. Current and future velocity estimates 
obtained through such techniques have been used to 
achieve desired results such as in [11], where the authors 
report a successful real-time algorithm for fast 
navigation. Assumption ‘b’ is also common to multi 
robotic systems with successful implementations [10]. 
Assumption ‘c’ is done essentially to facilitate certain 
simplicity in the approach to reduce the amount of data 
transfer between robots. The algorithm’s performance 
would not be affected if the rates of acceleration and 
deceleration vary between robots provided they are 
communicated to one another.



III METHODOLOGY 

We consider a differential drive robot that move along 
continuous curvature paths. We assume that for a small 
interval t  the linear and angular velocities are constant.  
The path of a robot consists of piecewise circular arcs 
(linear segment are made of  radius). From the current 
pose of the robot we get various curves corresponding to 
different values of final angular and linear velocities 
reached from the current state. These paths are generated 
such that there is only one change in the direction of 
acceleration, i.e. either the robot accelerates or 
decelerates but does not do both. In essence for certain 
T  time steps into the future we get a set of reachable 
poses. Among these we select the pose reached through 
maximum linear and angular accelerations, along with 
the current position we form a polygon from these points 
that is convex and call it the PCP (figure 1). It can be 
shown that the set of reachable positions inside the PCP 
is much denser than those outside.

     
A. Dominantly Inaccessible Areas 

We first find what we call as dominantly 
inaccessible areas within PCP of robot ir  with respect to 

all other robots jr ijnj ;1  with which it has a 

collision within next T  samples. Let PCP of  ir
constructed for the next t sample be t

iCP  we remove 

superscript t for ease of notation. Let iCPA  be the area 

enclosed by iCP . We extend the side vertices of jCP be a 

factor and form a new jCP called jCP . The factor 
further reduces the number of points accessible from 
current state of jr  that lie outside njCPA j 1 . We 

further grow all jCP  by radius of robot ir  and reduce ir

to a point. We denote the grown jCP as jPC~
. We 

find the following area iAFP  such that any point in 

iAFP  is almost inaccessible from the current state of jr
ijnj ;1 . We say “almost” in the sense that they 

are accessible only for extreme values of linear and 
angular acceleration or deceleration if at all. They can be 
made inaccessible by choosing an acceleration or 
deceleration slightly different from extreme value or by 
changing .

1
1 ji

n
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ji CPACPAAFP

(Figure 2) shows AFP  for robot A as the shaded region. 
PC~

 for robots B and C are also shown. 
    

     

B. Collision Free Paths 

While any point in AFP  for a robot is 
inaccessible from others it does not guarantee that the 
path reaching any such point from the current state is 
collision free. For this we compute the convex hull of the 
following points 

Point due to intersection of iCP  with jCP  and 

all points of jCP  inside iCP .

All point of iCP  except the current point 
corresponding to current pose of the robot. 

For (figure 2) the convex hull is plotted in (figure3). Let 
us call the convex hull as )( jCPHu . Then the collision 

free polygon of ir iCFP  is the polygon 

jii CPHuCPCFP . The shaded region in (figure 
3) is the CFP for robot A. The characteristics of CFP is 
that any point in the CFP when reached from current pose 
of ir , iCr  with not more than one change in direction of 

angular velocity of jir  will not intersect jCP  and is 
hence collision free from all paths emanating from 

ijnjCrj ;1; .

Fig. 5. Each robot’s current 
state contain the container
polygon of another robot. 

Fig. 4. Points chosen 
near V2 can pass the 
CP of B. 

Fig. 2. The shaded region shows AFP 
for robot A. Any point in the region is 
inaccessible from B or C if values of 
acceleration are slightly different from 
the extreme values.  

Fig. 3. CFP of the 
polygon A formed by 
convex hull. 

Fig. 1. The PCP and the Paths and set of reachable positions 
contained inside. 



C. Tough cases: 

Case 1: When choosing the next waypoint of 
robot ir  within it’s CFP  at times the curve joining the 

current pose to the waypoint can cut jCP  of another 
robot. This happens if the point is chosen on the 
boundary of CFP, close to one of the vertices of 
theCP of ir , usually when only one robot is intersecting 

ir  and the angle of approach is acute. This is shown in 
(figure 4). 
However the probability of collision is negligible since 

The path even when it intersects the CP of other 
robot does it such that the length of the path 
inside the CP is very small. 
Since the other robot also chooses its next 
waypoint within its CFP the actual probability 
of paths colliding is zero.

Case 2: In this case we have a situation of each 
robot’s current state contained in the container polygon 
of another robot. This is shown in (figure 5). 
The situation can be overcome by continuing the robot 
along current motion direction for a few more samples. If 
the situation continues to persist the polygon size can be 
reduced for a lower time period T. This method of 
reducing polygon size can be applied for the previous 
case as well. It must be emphasized that the above 
situations are extremely rare and have been noticed not 
more than a few time in several runs.  

 D. Objective Function Minimization 

We choose sample points for all robots within a 
cluster. These sample points for a robot is on the 
boundary that coincide with CFP  of that robot and the 
convex hull. We take the point space of sample points of 
the robots in the cluster that minimizing the objective 
function 
                 

jk
jkik

i
i PCpObj /

Here ip  is the perpendicular dropped on to the line 
joining the robots’ current pose to the goal from the 
sample point. 1jkC  for any pair of robots jr , kr  that 

are in collision in the cluster jkP  is the distance between 

jr , kr  at the respective sample point considered. The 
first term in the objective function prevents large 
deviations from the line joining the current pose to the 
target, the second increases spacing between the robots. 

It is to be noted again that the objective of evaluating 
Obj is only to obtain better shape over trajectories for the 
robot. The search space can be reduced as small as 
possible by choosing arbitrarily small number of sample 
points without affecting the ability of the method to 

chose a collision free trajectory for that is guided based 
on the theme discussed in the subsections A,B.  

E. Dependency Graph and Collision Cluster 

Robots that have a collision amongst them is 
shown by a bidirectional link in the dependency graph. 
For a snapshot shown in figure 6a, robot pairs (R1, R2), 
(R1, R3), (R4, R5), (R5, R6) detect collisions amongst 
them within a stipulated time. The dependency graph for 
such a situation is shown in figure 6b. All robots that are 
in the same connected component of the dependency 
graph belong to the same collision cluster. Hence for the 
graph of figure 6b there are two clusters once consisting 
of robots (R1,R2,R3) and the other (R4, R5, R6). 

             
Thus the algorithm for collision avoidance on the robot 
takes the form shown below 

ALGORITHM: Collision Avoidance  

1. Until all robots reach their goals, do steps 2 to 3
2. Find the dependency graph of robots yet to reach their 
goals and form clusters 
3. For each cluster iC do step 4  

4. For all robots jR in iC  do steps 5 to 7 
5. Compute the CFP and obtain sample points. 
6. Evaluate Obj  and find the collision free point for each 
robot from the sample points obtained in 5 that 
minimizes Obj .
7. Traverse to the point obtained in 6 for each robot until 
one or all the robots reach to their obtained points while 
checking for the below conditions. 

i)If Robot from other cluster finds collision with 
  the current cluster, go to step 1. 
ii) If goal is reached, go to step 1. 

F. Complexity 

The current algorithm complexity: 
For the r robots, each container polygon for the 

robot has 4 points. Hence there are n = 4r points to be 
considered. So when done in a distributed way a robot ir

Fig. 6a. Robots R1, R2 
and R1, R3 are in 
collision and included 
in one cluster. 

Fig. 6b. Robots R4, R5 
and R5, R6 are in 
collision and included 
in another cluster. 



finds intersection with remaining (r-1) polygons; it does 
so in 1cnnLogO time [12]. Indeed [12] presents an 

3/4nO algorithm that for large n is quicker than 
nnLogO  computation. If there are m  intersection 

points of the r-1 polygons with the current one, the 
convex hull of those m points can be found in 

mmLogO . Hence the overall complexity 
is cmmLognnLogO . Here c is a constant 
compensating the time taken for growing the polygons 
and the constant 1c  from the intersection computations. 

Complexity for choosing next waypoint by exhaustive 
search tempered with heuristics: 

Among r robots each robot searches along m 
paths for the next waypoint or milestone. There are 

rmO  searches for finding a milestone that is collision 
free with all others in worst case. Each path to such a 
mile stone is divided into k sub locations and collisions 
are checked at each of those k locations. Hence in the 
worst case the computation time is rkmO . If the first 
path integral to the new milestone is a collision free path, 
if that is the case for all the robots, for the k sub divisions 
of r robots’ first paths the numbers of collision checks 
that were performed, is krO . This is the best case 
scenario, where the first path searched for all the robots 
were collision free. While efficient heuristics can 
certainly make things better than  rkmO  they can never 
guarantee krO  except in very exceptional situations of 
robot configurations. However the time complexity of the 
present method is always the same. 

IV. Simulation Results 

Below are the simulations of 7 and 12 robots in different 
scenarios, where each robot having its goal location 
marked as asterisk. Figure 7a to 7d depicts the 7 robots 
case with each robot encountering collision with few 
other robots sequentially. Initially there are five robots in 
the environment, in which the two robots in top left have 
immediate collision and started avoiding each other. 
Figure 7b depicts a state where the robot at top left while 
avoiding the collision with a robot encountered 

previously, had detected collision with a robot coming 
towards it, and the total cluster of three started avoiding 
the collisions cumulatively. Figure 7d depicts the robots 
having reached their final goals through continuous 
curvature paths after avoiding each other. 
       Figures 8a-8c depicts 12 robots case with multiples 
of four robots colliding simultaneously, and reaching 
toward the respective goals. Figure 7a depicts the initial 
polygons computed immediately after finding the 
collisions. Figure 7b shows an intermediate stage during 
the collision avoidance maneuver. Figure 7c shows the 
robots reaching the goals and their respective paths of the 
robots. It must be noted that in both the scenarios the 
paths of the robots respect the kinodynamic constraints of 
the robot. 

A. Comparison with heuristics: 

  Table 1 depicts the time consumed by the 
presented algorithm and the different heuristics, for 
cluttered and scattered cases. We compared with three 
different heuristics the time taken to find a collision fee 
path to the next waypoint, on a Pentium-3 processor with 
256MB memory, through MATLAB simulations. First 

Fig. 7d. Robots in 7a with smooth curvature paths 
reached their respective goals. 

Fig. 7c. Intermediate state of robots in 7a. 

Fig. 7b. The 3 robots in top forming collision cluster.

Fig. 7a. Initially five robots arriving in to the scenario.



heuristic chooses the next way point based on the 
following order: extreme left with maximum 
accelerations, extreme right with maximum accelerations, 
extreme left with average velocities, extreme right with 
average velocities, immediate deceleration to either left 
or right. Similarly in the second heuristic we have the 
priority order: extreme left with maximum acceleration, 
extreme right with average velocities, and immediate 
deceleration. The third heuristic simply decelerates to 
either left or right. The first row shows the comparison 
for cluttered case, and the second row shows the results 
for robots which are far enough before detecting the 
collision. 

      

It can be seen that in all the cases except for the third 
heuristic, the presented algorithm performed well. The 
performance gain of the current algorithm is more 
pronounced in a cluttered than a scattered environment. 
This is indeed expected since the search begins to grow 
exponentially in heuristic approaches when clutter is 
more. Note that the third heuristic is utterly trivial as it 
simply stops all the robots and hence has negligible 
utility. Also it is observed that these heuristics perform 
well for certain cases only, for the rest of the cases the 
computation time grows exponentially. The comparisons 
are reported in seconds. The time for each operation for 
all methods would have been much faster had they been 
done in  C/C++ rather than MATLAB. 

V.CONCLUSIONS 

A method for collision avoidance among multiple robots 
through collision free polygons has been presented.. The 
essential contribution of this paper has been the 
computation of a collision free path till the next way 
point in a sequence of two log linear operations. Heuristic 
approaches that compute a collision free path to the next 
waypoint in randomized search methods invariably tend 
to become exponential in the number of robots in 
cluttered scenarios howsoever good the heuristics are 
designed. The method has shown to be useful for online 
collision avoidance and goal reaching maneuvers that 
respect the kinodynamic constraints of the robot. 
Extensive comparisons with carefully designed heuristics 
show the performance gain of this method over such 
heuristics. 

Scenario Present 
algorithm 

H1 H2 H3 

cluttered 0.185 0.713 0.384 0.093 
scattered 0.127 0.342 0.273 0.093 

Fig. 8c. Robots in 8a reaching their goals, along the 
continuous smooth paths. 

Fig. 8b. Robots in 8a at intermediate collision avoidance. 

Fig. 8a. 12 Robots in cluttered situation forming four clusters, the 
initial polygons are shown in green, and sample points in blue. 

Tab. 1. Comparison between presented method and various heuristics 
in scattered and cluttered environments. All values shown in seconds. 
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