
Collision Avoidance for Multiple Robots till Next
Waypoints through Collision Free Polygons

Satish Pedduri* K. Madhava Krishna*
* Robotics Research Center, International Institute of Information Technology, Hyderabad, India

 pedduri@research.iiit.ac.in mkrishna@iiit.ac.in

Abstract— Kinematically consistent paths for multiple
mobile robots that are collision free for the next T
steps are generated by forming collision free polygons
(CFP). The polygons can be generated in a
distributive fashion for each robot. All paths inside
CFP that are kinematically feasible for a certain robot
are collision free with all other robots in the same
collision cluster for the next T time samples and with
any other robot in the workspace in general. The
construction of CFP is through two log-linear
complex operations. The first one involves computing
the intersection of the path container polygon (PCP)
of a robot with PCP of other robots in the cluster. The
second involves computing the convex hull of
intersecting points arising from the intersection of
PCPs. Once CFP is computed for a robot it chooses a
point within the CFP (its next waypoint) that
minimizes a cost function and moves towards the
point. The process is repeated till the goal is reached.
The main advantage of this method is that the best
and worst-case times for finding a T-step ahead
collision free path is always log-linear. In many
randomized search methods, finding the paths till the
next waypoint results in a worst case complexity
exponential in number of robots. The efficacy of the
current method is well portrayed through
simulations. Comparative results show that the
following method finds a collision free path to next
way point much quicker.

1. INTRODUCTION

Multi robotic systems have been an active area of
research, where multiple robots perform a task in a
cooperative or individual fashion. While performing
multi robotic tasks, it is often desirable that the system is
collision free. Collisions can happen with the co-robots
or with the static and dynamic obstacles, and these
collisions also called as conflicts can be hazardous for the
robots. In order to overcome these conflicts, we devise an
algorithm, which can be used in various applications. The
main advantage and novelty of this method is that the
best and worst-case times for finding collision free path
till next waypoint is always log-linear. Any point on this
path cannot be accessed by any other robots for the next
T Steps. In many methods that involve a randomized

search for collision free paths the worst-case complexity
is exponential in the number of robots. The efficacy of
this method and its advantages are well portrayed through
simulations. Comparisons with other heuristics that are
used in randomized methods show that the following
method finds a collision free path to the next waypoint
much quicker than those heuristics.

The pivot of this algorithm is the computation of the
Collision Free Polygons (CFP) for a robot. The CFP
involves computing the intersection of Path Container
Polygon (PCP) of a robot with all other robots. The PCP,
a convex polygon can be considered as a container of a
number of kinematically feasible paths for the next T
instants. The vertices of the PCP (CP for short
henceforth) are the current position of the robot, the
coordinates that are reached with maximum linear
acceleration and maximum angular deceleration (if the
current angular acceleration is zero then that is
maintained), the coordinates obtained by maximum linear
and angular acceleration and those obtained by maximum
linear deceleration and angular acceleration. The
intersection of CPs of robots in collision gives rise to a
number of intersection points on the boundary of the PCP
as well as inside it for a robot. The convex hull of these
points is considered. Then all points that are outside the
hull but inside the CP are guaranteed to be collision free
for next T samples. The CFP is the boundary of all such
collision free points. The whole operation can be
performed in two log-linear operations.

Points within CFPs of all the robots that belong to a
collision cluster are chosen such that a cost function is
minimized. The search for a point within the CFP can be
made arbitrarily fast by choosing arbitrarily a small
number of points to minimize the cost function. In fact
choosing one point would suffice since any point in a
CFP and path to it is collision free for next T steps. The
robots belonging to a collision cluster are obtained
through the collision dependency graph. Robot A that
predicts a collision with another robot B within a certain
stipulated time is said to have a collision dependency
with that robot and is shown in the graph by a bi-
directional link between the two. The algorithm currently
operates in a semi-centralized fashion in that it is
centralized with respect to the robots in a cluster while
decentralized across clusters. However, a completely

decentralized implementation can also be achieved with
extra bandwidth, allowing for more exchange of
messages between the robots.

Multi-robotic navigation algorithms are traditionally
classified as centralized or decentralized approaches. In
the centralized planners [1, 2], the configuration spaces
of the individual robots are combined into one composite
configuration space, which is then searched for, to obtain
a path for the whole composite system. In case of
centralized approaches that compute all possible conflicts
over the entire trajectories, the number of collision
checks to be performed and the planning time tend to
increase exponentially as the number of robots in the
system increases. Complete recalculation of paths is
required even if one of the robot’s plan is altered or the
environment changes. However, centralized planners can
guarantee completeness and optimality of the method, at
least theoretically.

Decentralized approaches, on the other hand, are less
computationally intensive as the computational burden is
distributed across the agents and, in principle, the
computational complexity of the system can be made
independent of the number of agents in it, at-least to the
point of computing the first individual plans. It is more
tolerant to changes in the environment or alterations in
the objectives of the agents. Conflicts are identified when
the plans or commands are exchanged and some kind of
coordination mechanism is employed to avoid the
conflicts. However, they are intrinsically incapable of
satisfying optimality and the completeness criterion.
Prominent among the decentralized approaches are the
decoupled planners [3], [4], [5]. The decoupled planners
first compute separate paths for the individual robots and
then resolve possible conflicts of the generated paths by a
hill climbing search [3] or by plan merging [4] or through
dividing the overall coordination into smaller sub
problems [5]. However many of these planners are not
viable in presence of non integrable constraints, moving
obstacles and fast replanning. There is a vast volume of
literature that addresses the problem of motion planning
in presence non integrable constraints by incorporating
the kinematics of the robot [6, 7] and their various
extensions that address the problem of fast replanning [8]
and moving obstacles [9] and multiple robots [10]. They
do so by making use of the existing roadmap of curves
constructed while computing the initial plan.

In the present method there is no initial plan for the robot
since there is no map available and is closer to reactive
collision avoidance approaches in this regard. It is
crucially different from others in that the focus has been
on computing a collision free path till the next waypoint
that has the same log-linear complexity irrespective of
the nature of the environment. The present approach can
be dovetailed with the methods cited above since finding
a path to the goal state through a sequence of paths till
the next waypoint is a recurring theme in all. Heuristics

are generally resorted to reduce the search in finding the
path for multiple robots in collision [10]. However it is
not guaranteed that these heuristics are efficient across
the board for various situations unlike the current
approach where a search for a collision free path is
equivalent to the computation of CFP. Being log-linear it
easily scales up gracefully over number of robots. It can
also be dovetailed with approaches that do not
incorporate a known map such as the Dynamic Window
[11] to a multi robotic setting, where the search for a
collision free path is for the next time sample only.

II PROBLEM FORMULATION

Given a set of robots nRRRR ,,, 21 , each
assigned a start and goal configuration, the objective is to
navigate the robot such that they reach the goal
configuration avoiding all collisions. While collisions
could occur with stationary and moving objects, in this
paper we focus primarily on how the robots could avoid
collisions that occur amongst them in a cooperative
fashion. For this purpose the following premises have
been made:

a. Each robot Ri is assigned a start and goal
location and it has access to its current state and
its current and aspiring velocities. The current
state of Ri is represented as

iiiii ncvnvc ,,, where vnvc,
represent its current and aspiring velocities and

nc, its current and aspiring angular
velocities.

b. Robots are capable of broadcasting their current
states to each other. They do so only to those
robots that are within a particular range of
communication.

c. Robots accelerate and decelerate at constant
rates that are same for all. Hence a robot Ri can
predict, when another robot Rj would attain its
aspiring velocity vn from its current velocity
vc if it does not change its direction.

Assumption ‘a’ is a standard assumption made in a
typical mobile robot system. In general sensor based
localization algorithms are used to correct discrepancies
between the expected estimate and the actual readings
reported by sensor. Current and future velocity estimates
obtained through such techniques have been used to
achieve desired results such as in [11], where the authors
report a successful real-time algorithm for fast
navigation. Assumption ‘b’ is also common to multi
robotic systems with successful implementations [10].
Assumption ‘c’ is done essentially to facilitate certain
simplicity in the approach to reduce the amount of data
transfer between robots. The algorithm’s performance
would not be affected if the rates of acceleration and
deceleration vary between robots provided they are
communicated to one another.

III METHODOLOGY

We consider a differential drive robot that move along
continuous curvature paths. We assume that for a small
interval t the linear and angular velocities are constant.
The path of a robot consists of piecewise circular arcs
(linear segment are made of radius). From the current
pose of the robot we get various curves corresponding to
different values of final angular and linear velocities
reached from the current state. These paths are generated
such that there is only one change in the direction of
acceleration, i.e. either the robot accelerates or
decelerates but does not do both. In essence for certain
T time steps into the future we get a set of reachable
poses. Among these we select the pose reached through
maximum linear and angular accelerations, along with
the current position we form a polygon from these points
that is convex and call it the PCP (figure 1). It can be
shown that the set of reachable positions inside the PCP
is much denser than those outside.

A. Dominantly Inaccessible Areas

We first find what we call as dominantly
inaccessible areas within PCP of robot ir with respect to

all other robots jr ijnj ;1 with which it has a

collision within next T samples. Let PCP of ir
constructed for the next t sample be t

iCP we remove

superscript t for ease of notation. Let iCPA be the area

enclosed by iCP . We extend the side vertices of jCP be a

factor and form a new jCP called jCP . The factor
further reduces the number of points accessible from
current state of jr that lie outside njCPA j 1 . We

further grow all jCP by radius of robot ir and reduce ir

to a point. We denote the grown jCP as jPC~
. We

find the following area iAFP such that any point in

iAFP is almost inaccessible from the current state of jr
ijnj ;1 . We say “almost” in the sense that they

are accessible only for extreme values of linear and
angular acceleration or deceleration if at all. They can be
made inaccessible by choosing an acceleration or
deceleration slightly different from extreme value or by
changing .

1
1 ji

n

ij
ji CPACPAAFP

(Figure 2) shows AFP for robot A as the shaded region.
PC~

 for robots B and C are also shown.

B. Collision Free Paths

While any point in AFP for a robot is
inaccessible from others it does not guarantee that the
path reaching any such point from the current state is
collision free. For this we compute the convex hull of the
following points

Point due to intersection of iCP with jCP and

all points of jCP inside iCP .

All point of iCP except the current point
corresponding to current pose of the robot.

For (figure 2) the convex hull is plotted in (figure3). Let
us call the convex hull as)(jCPHu . Then the collision

free polygon of ir iCFP is the polygon

jii CPHuCPCFP . The shaded region in (figure
3) is the CFP for robot A. The characteristics of CFP is
that any point in the CFP when reached from current pose
of ir , iCr with not more than one change in direction of

angular velocity of jir will not intersect jCP and is
hence collision free from all paths emanating from

ijnjCrj ;1; .

Fig. 5. Each robot’s current
state contain the container
polygon of another robot.

Fig. 4. Points chosen
near V2 can pass the
CP of B.

Fig. 2. The shaded region shows AFP
for robot A. Any point in the region is
inaccessible from B or C if values of
acceleration are slightly different from
the extreme values.

Fig. 3. CFP of the
polygon A formed by
convex hull.

Fig. 1. The PCP and the Paths and set of reachable positions
contained inside.

C. Tough cases:

Case 1: When choosing the next waypoint of
robot ir within it’s CFP at times the curve joining the

current pose to the waypoint can cut jCP of another
robot. This happens if the point is chosen on the
boundary of CFP, close to one of the vertices of
theCP of ir , usually when only one robot is intersecting

ir and the angle of approach is acute. This is shown in
(figure 4).
However the probability of collision is negligible since

The path even when it intersects the CP of other
robot does it such that the length of the path
inside the CP is very small.
Since the other robot also chooses its next
waypoint within its CFP the actual probability
of paths colliding is zero.

Case 2: In this case we have a situation of each
robot’s current state contained in the container polygon
of another robot. This is shown in (figure 5).
The situation can be overcome by continuing the robot
along current motion direction for a few more samples. If
the situation continues to persist the polygon size can be
reduced for a lower time period T. This method of
reducing polygon size can be applied for the previous
case as well. It must be emphasized that the above
situations are extremely rare and have been noticed not
more than a few time in several runs.

 D. Objective Function Minimization

We choose sample points for all robots within a
cluster. These sample points for a robot is on the
boundary that coincide with CFP of that robot and the
convex hull. We take the point space of sample points of
the robots in the cluster that minimizing the objective
function

jk
jkik

i
i PCpObj /

Here ip is the perpendicular dropped on to the line
joining the robots’ current pose to the goal from the
sample point. 1jkC for any pair of robots jr , kr that

are in collision in the cluster jkP is the distance between

jr , kr at the respective sample point considered. The
first term in the objective function prevents large
deviations from the line joining the current pose to the
target, the second increases spacing between the robots.

It is to be noted again that the objective of evaluating
Obj is only to obtain better shape over trajectories for the
robot. The search space can be reduced as small as
possible by choosing arbitrarily small number of sample
points without affecting the ability of the method to

chose a collision free trajectory for that is guided based
on the theme discussed in the subsections A,B.

E. Dependency Graph and Collision Cluster

Robots that have a collision amongst them is
shown by a bidirectional link in the dependency graph.
For a snapshot shown in figure 6a, robot pairs (R1, R2),
(R1, R3), (R4, R5), (R5, R6) detect collisions amongst
them within a stipulated time. The dependency graph for
such a situation is shown in figure 6b. All robots that are
in the same connected component of the dependency
graph belong to the same collision cluster. Hence for the
graph of figure 6b there are two clusters once consisting
of robots (R1,R2,R3) and the other (R4, R5, R6).

Thus the algorithm for collision avoidance on the robot
takes the form shown below

ALGORITHM: Collision Avoidance

1. Until all robots reach their goals, do steps 2 to 3
2. Find the dependency graph of robots yet to reach their
goals and form clusters
3. For each cluster iC do step 4

4. For all robots jR in iC do steps 5 to 7
5. Compute the CFP and obtain sample points.
6. Evaluate Obj and find the collision free point for each
robot from the sample points obtained in 5 that
minimizes Obj .
7. Traverse to the point obtained in 6 for each robot until
one or all the robots reach to their obtained points while
checking for the below conditions.

i)If Robot from other cluster finds collision with
 the current cluster, go to step 1.
ii) If goal is reached, go to step 1.

F. Complexity

The current algorithm complexity:
For the r robots, each container polygon for the

robot has 4 points. Hence there are n = 4r points to be
considered. So when done in a distributed way a robot ir

Fig. 6a. Robots R1, R2
and R1, R3 are in
collision and included
in one cluster.

Fig. 6b. Robots R4, R5
and R5, R6 are in
collision and included
in another cluster.

finds intersection with remaining (r-1) polygons; it does
so in 1cnnLogO time [12]. Indeed [12] presents an

3/4nO algorithm that for large n is quicker than
nnLogO computation. If there are m intersection

points of the r-1 polygons with the current one, the
convex hull of those m points can be found in

mmLogO . Hence the overall complexity
is cmmLognnLogO . Here c is a constant
compensating the time taken for growing the polygons
and the constant 1c from the intersection computations.

Complexity for choosing next waypoint by exhaustive
search tempered with heuristics:

Among r robots each robot searches along m
paths for the next waypoint or milestone. There are

rmO searches for finding a milestone that is collision
free with all others in worst case. Each path to such a
mile stone is divided into k sub locations and collisions
are checked at each of those k locations. Hence in the
worst case the computation time is rkmO . If the first
path integral to the new milestone is a collision free path,
if that is the case for all the robots, for the k sub divisions
of r robots’ first paths the numbers of collision checks
that were performed, is krO . This is the best case
scenario, where the first path searched for all the robots
were collision free. While efficient heuristics can
certainly make things better than rkmO they can never
guarantee krO except in very exceptional situations of
robot configurations. However the time complexity of the
present method is always the same.

IV. Simulation Results

Below are the simulations of 7 and 12 robots in different
scenarios, where each robot having its goal location
marked as asterisk. Figure 7a to 7d depicts the 7 robots
case with each robot encountering collision with few
other robots sequentially. Initially there are five robots in
the environment, in which the two robots in top left have
immediate collision and started avoiding each other.
Figure 7b depicts a state where the robot at top left while
avoiding the collision with a robot encountered

previously, had detected collision with a robot coming
towards it, and the total cluster of three started avoiding
the collisions cumulatively. Figure 7d depicts the robots
having reached their final goals through continuous
curvature paths after avoiding each other.
 Figures 8a-8c depicts 12 robots case with multiples
of four robots colliding simultaneously, and reaching
toward the respective goals. Figure 7a depicts the initial
polygons computed immediately after finding the
collisions. Figure 7b shows an intermediate stage during
the collision avoidance maneuver. Figure 7c shows the
robots reaching the goals and their respective paths of the
robots. It must be noted that in both the scenarios the
paths of the robots respect the kinodynamic constraints of
the robot.

A. Comparison with heuristics:

 Table 1 depicts the time consumed by the
presented algorithm and the different heuristics, for
cluttered and scattered cases. We compared with three
different heuristics the time taken to find a collision fee
path to the next waypoint, on a Pentium-3 processor with
256MB memory, through MATLAB simulations. First

Fig. 7d. Robots in 7a with smooth curvature paths
reached their respective goals.

Fig. 7c. Intermediate state of robots in 7a.

Fig. 7b. The 3 robots in top forming collision cluster.

Fig. 7a. Initially five robots arriving in to the scenario.

heuristic chooses the next way point based on the
following order: extreme left with maximum
accelerations, extreme right with maximum accelerations,
extreme left with average velocities, extreme right with
average velocities, immediate deceleration to either left
or right. Similarly in the second heuristic we have the
priority order: extreme left with maximum acceleration,
extreme right with average velocities, and immediate
deceleration. The third heuristic simply decelerates to
either left or right. The first row shows the comparison
for cluttered case, and the second row shows the results
for robots which are far enough before detecting the
collision.

It can be seen that in all the cases except for the third
heuristic, the presented algorithm performed well. The
performance gain of the current algorithm is more
pronounced in a cluttered than a scattered environment.
This is indeed expected since the search begins to grow
exponentially in heuristic approaches when clutter is
more. Note that the third heuristic is utterly trivial as it
simply stops all the robots and hence has negligible
utility. Also it is observed that these heuristics perform
well for certain cases only, for the rest of the cases the
computation time grows exponentially. The comparisons
are reported in seconds. The time for each operation for
all methods would have been much faster had they been
done in C/C++ rather than MATLAB.

V.CONCLUSIONS

A method for collision avoidance among multiple robots
through collision free polygons has been presented.. The
essential contribution of this paper has been the
computation of a collision free path till the next way
point in a sequence of two log linear operations. Heuristic
approaches that compute a collision free path to the next
waypoint in randomized search methods invariably tend
to become exponential in the number of robots in
cluttered scenarios howsoever good the heuristics are
designed. The method has shown to be useful for online
collision avoidance and goal reaching maneuvers that
respect the kinodynamic constraints of the robot.
Extensive comparisons with carefully designed heuristics
show the performance gain of this method over such
heuristics.

Scenario Present
algorithm

H1 H2 H3

cluttered 0.185 0.713 0.384 0.093
scattered 0.127 0.342 0.273 0.093

Fig. 8c. Robots in 8a reaching their goals, along the
continuous smooth paths.

Fig. 8b. Robots in 8a at intermediate collision avoidance.

Fig. 8a. 12 Robots in cluttered situation forming four clusters, the
initial polygons are shown in green, and sample points in blue.

Tab. 1. Comparison between presented method and various heuristics
in scattered and cluttered environments. All values shown in seconds.

REFERENCES

[1]J. Barraquand and J. C. Latombe., “A monte-carlo algorithm for path
planning with many degrees of freedom”. Proceedings of the IEEE
International Conference on Robotics & Automation (ICRA),, 1990.

[2]Svetska P. and Overmars M, “Coordinated motion planning for
multiple car-like robots using probabilistic roadmaps” Proceedings
of the IEEE International Conference on Robotics & Automation
(ICRA), 1995

[3]Bennewitz M., Burgard W. and Thrun S., “Finding and Optimizing
Solvable Priority Schemes for Decoupled Path Planning Techniques
for Teams of Mobile Robots”, Proceedings Robotics and
Autonomous Systems, 41 (2), pp 89-99, 2002

[4]F. Gravot and R. Alami, “An extension of the plan-merging
paradigm for multi-robot coordination”, Proceedings of the IEEE
International Conference on Robotics & Automation (ICRA), 2001.

[5]S. Leroy, J. P. Laumond, and T. Simeon, “Multiple path coordination
for mobile robots: A geometric algorithm”, Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI),
1999.

[6] O. Brock and L. Kavraki, “Decomposition-based motion planning: a
framework for real-time motion planning in high-dimensional
configuration spaces,” Proceedings of IEEE International
Conference on Robotics and Automation, vol. 2, 2001.

[7] S. LaValle and J. Kuffner, “Randomized kinodynamic planning,”
International Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, May 2001.

[8] J. Bruce and M. Veloso, “Real-time randomized path planning for
robot navigation,” Proceedings of International Conference on
Intelligent Robots and System (IROS), October 2002

[9] M Zucker, J Kuffner and M Branicky, “Multipartite RRTs for Rapid
Replanning in Dynamic Environments”, ICRA 2007 to appear.

[10] C.M. Clark and Stephen M. Rock and J.C. Latombe , “Motion
Planning for Multiple Mobile Robots using Dynamic Networks”
Proceedings of IEEE International Conference on Robotics and
Automation, ICRA 2003: 4222-4227.

[11] Fox D, Burgard W, and Thrun S., “The Dynamic Window
Approach to Collision Avoidance”,
IEEE Robotics & Automation Magazine, 4(1). 1997

[12] P. Gupta, R. Janardan and M. Smid, "Efficient algorithms for
counting and reporting pairwise intersections between convex
polygons'', Proceedings of Information Processing Letters, (69), pp.
7--13, 1999.

