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Abstract— We present a strategy for resolving multiple hy-
potheses of a robot’s state during global localization. The
strategy operates in two stages. In the first stage a unique
direction of the motion is sought that resolves or eliminates
maximum number of hypotheses. In the second stage, among
the frontier areas arising from the multiple hypotheses states,
that frontier is chosen which resolves the maximum number
of the hypotheses. The two stages are alternated till a unique
hypothesis emerges. Simulation and experimental results verify
the efficacy of this method. A comparison with other meth-
ods based on entropy minimization, and minimum distance
travel portrays the advantage of the current methodology.
A convergence proof for the algorithm is also presented.

Index Terms— Mobile Robotics, localization, frontier explo-
ration.

I. INTRODUCTION

This paper attacks the problem of how to navigate a mobile
robot to get rid of multiple conflicting hypotheses, within
a global localization framework. Global localization is the
problem of estimating the state (pose) of the robot in an
apriori known map without an initial estimate of its state.
It is inevitable that a global state estimation procedure will
lead to several hypotheses of the robot state in a symmetric
environment. Such a situation occurs commonly in indoor
navigation such as in corridors and office rooms. In this
context algorithms that move the robot to places where it
can uniquely localize itself gain prominence. In other areas
of AI(machine learning and heuristic search) the role of
active control during learning and problem solving is often
encountered [4], [5].

This paper presents a two-stage strategy for navigating the
robot to quickly come up with a single hypothesis of its state.
In the first stage a direction of motion is chosen along which
a cost function is maximized. The cost function is framed in
such a manner that the direction for which it is maximized is
that direction along which either (i) the robot travels minimum
distance to eliminate hypotheses, or (ii) maximum number
of the hypotheses get eliminated, or (iii)a combination of (i)
and (ii) by suitable setting of parameters. In the second stage,
among the frontier areas arising from the multiple hypotheses
states, that frontier is chosen which resolves the maximum
number of the hypotheses. The two stages are alternated till
a unique hypothesis emerges.

This approach is different and contrasts with other well
cited approaches [1]–[3] of active localization in the following
ways. The method of active localization presented in [1] is
based on the principle of maximum information gain. The
authors consider that for every potential relative movement,
the maximum expected information gain is traded off by
the expected path cost. However due to the problem being
exponential in the number of actions or movements (since
every action of the robot looks at only the 8 neighbouring
grids) the number of actions is limited to one, or a very small
number. Since the robot considers only 8 neighbouring grids
in advance at any instant the robot traversal tends to become
long often visiting cells that were previously visited. Also the
entropy calculation required for every grid is intensive. The
current approach is complete in that a path that can localize
the robot is formed if it exists and the computation at each
time step is much less as shown by the time comparisons
divulged in section 4.

The method presented by Dudek et.al. [2] offers a complete
solution for localizing a robot with minimum distance. Given
a world map in the shape of a simple polygon P and the
mobile robot’s visibility polygon V, seen by the robot from
its current location, their algorithm first finds a set of points
in P whose visibility polygon is congruent under translation
to V. This is the set of multiple hypothesis locations, denoted
by H. The algorithm then computes a minimum distance
strategy that is greedy and based on the distance to the new
probe position and the information to be gained at the new
location. Central to the algorithm is the computation of an
overlay arrangement and a visibility cell decomposition of the
arrangement. These computations have strong dependencies
that the environment is a polygon made of vertices and edges
with no holes inside. Hence, when the environment is a
polygon with holes (such as a room with a single table in
it) a variant of this method needs to be used that the authors
have not come across in literature.The room is the polygonal
environment. The tables are the obstacles that represent the
holes in the polygon. In other words the projection of tables
on the reference plane creates patches.

This method works with both these cases, since it relies
only on raw range reading and the ability to compute the
frontier in a generic environment.
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II. RELATED WORK

In general, work on active localization has tended to be
limited when compared with passive localization. The pio-
neering approaches include [1]–[3], which has been discussed
in detail in previous section. In [2], Dudek et. al. show that
minimum distance localization is NP-Hard. In [6], a method is
proposed for speeding up the implementation provided by [2].
An active localization method that models the environment
as a bounded geometric tree is formulated in [7]. In [8] an
approach for guiding the robot to a target location is proposed
when its current position is not known accurately.

There have been numerous approaches to passive local-
ization and many of them are archived in the scholarly
book by Borenstien [9]. Passive localization methods can be
broadly classified into global and local localization methods.
Probabilistic localization [1], [10] approaches have been the
flavor of the day in global localization. Local localization
approaches have generally adopted Kalman filter [11], or
estimate the state of the robot through error minimization
schemes such as the least-squares [12] or scan matching [13]
There is also a vast body of literature on SLAM that is beyond
the scope of this paper and not refered due to brevity of space.

III. METHODOLOGY

Given: A robot equipped with range sensor whose model is
known and a map which is symmetric.
Objective: To find out the pose of the robot by resolving
multiple hypotheses with minimum traversal of the robot.

A. Approach

In our approach Markov localization is used to find out
the pose of the robot, but it is well known that such global
localization methods result in conflicting hypotheses of the
pose in a symmetric world.

A two staged approach to resolve multiple hypotheses is
presented. The approach can quickly zero in on the actual
pose of areal robot and resolve hypotheses even in non
polygonal environment.

The global pose estimates are computed through the frame-
work of Markov localization and the beliefs updated accord-
ingly [1] For active localization this algorithm works in two
stages.

1) Stage 1: We use the concept of virtual robots and
sensors. We imagine a robot centered at each of the pos-
sible hypothetical poses returned by the global localization
algorithm in the form of a multimodal distribution. These
are the virtual robots , whose sensors are the virtual sensors.
The virtual sensors have an infinite sensing range, unlike real
sensors. One of the poses is closest to the actual robot pose.
Hence in a symmetric environment if the passive Markov
localization returns an m-model distribution of robot beliefs,
there are m-virtual robots. Each of these has n virtual sensors,
that fire in as many directions. As we know the map of the
environment, we can fire virtual sensors to determine the

TABLE I

COMPUTATION OF Ai AND Bi

For m virtual robots and n virtual sensor the following table illustrates how
Ai and Bi are computed.

Direction No. of same No. of different Sum of difference in

reading reading(Ai) reading (Bi)

1 m1 m-m1 d1 =
∑m

i,j=1
|si,1 − sj,1|

2 m2 m-m2 d1 =
∑m

i,j=1
|si,2 − sj,2|

. . . .

. . . .

. . . .

n mn m-mn d1 =
∑m

i,j=1
|si,n − sj,n|

direction for which the maximum value of M is obtained,
where M is

M = Max(α × Ai + β × Bi) (1)

Here Ai is number of distinct virtual sensor read-
ings along a particular direction across the m robots.
For example in Table 1 along direction 1, if there are
m1 identical readings across the m virtual robot then
A1=m − m1,as there are m − m1 different readings.

Bi is the sum of differences in readings across all robots
along direction i. In Table 1 si,j refers to the sensor
measurement for robot i along direction j. Choosing max
(Ai), we move along the direction that resolves the maximum
number of hypotheses. It is evident that, along the direc-
tion where the maximum number of virtual sensor readings
are different, the robot can be expected to come up with
a unique hypothesis easily. Non-uniqueness of hypotheses
arises because the robot sees the same in all directions at
more than one location in an environment. In other words if
the robot sees something unique along a direction that is not
seen anywhere else in the environment in principle the robot
should obtain a unique hypothesis of its state at that location.
Hence more the number of unique (different readings) more
is the probability of obtaining a unique hypothesis at that
location. In other words in the equation below p(s/l) increases
at locations where number of unique readings are more and
hence the belief that the robot is in that state Bel(Lt=l)
becomes singularly high for that location when compared with
others after normalization

Bel(Lt = l) ← p(s|l) B̂el(Lt = l)
p(s)

(2)

In equation (2) above the notations have the same connotation
as those in [1]. Also it is sometimes beneficial to move along
the direction where the difference in readings across robots is
large. This is monitored by the second term Bi.To avail of the
benefit of both Ai and Bi, we combine them using weights
α and β. In our simulations we set α = 0.95 and β = 0.05.

We move along the direction for which M is maximum.
It is possible that after moving along the direction for
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the specified distance, the robot would be unable to
localize,or that several directions could have the same
maximum M . In this case, the next stage of the algorithm
comes into play : The distance to be moved along M is
given by the distance at which, the real robot sensor, sensing
along that direction, will be able to detect the closest obstacle.

2) Stage 2: Assume that we have m virtual robots ,and
that each virtual robot i has p frontiers. Each frontier j
denoted by fij where i ∈ [1,m] and j ∈ [1, p]. It is
to be noted that the number of frontiers is the same for
all robots, otherwise the pose estimate would be trivial.
By frontier, we mean the boundary between the unoccu-
pied and unknown areas [14] in the occupancy grid like
sense. Since the frontiers are identical for each of the i
virtual robot poses, the subscript i is redundant and removed.

The best frontier capable of eliminating the maximum
number of hypotheses, among the fj frontiers is selected ; let
this be denoted by fs . These are the children of the virtual
robot pose. The virtual robot pose forms the root node of
the tree and is denoted by fr. We choose that frontier fj ,
j ∈ [1, p] for which

∑n
i=1(Ai = m−mi) is maximum. If fs

turns out to be a unique robot hypothesis then the algorithm
exits. Otherwise, we apply stage 1 of the algorithm at fs.
If stage 1 fails to localize, a new set of child frontiers is
generated at fs. This process repeats as a depth first search
from the root node. The search along a particular child (here
fs) of the root terminates when the pose estimate is complete,
or there are no more child frontiers of fs to be visited. The
algorithm then branches to another child of fr and the process
is repeated till all hypotheses except one are eliminated.
The steps of the algorithm are given below.

B. Algorithm

1. A set H of possible poses is extracted by a clustering
algorithm, from the multimodal distribution of robots’ pose
beliefs returned by Markov passive localization.
2. If there is only one element in H ,then return the expected
value of robot and exit.
3. For all h in H

Fire the virtual sensor in n directions.
4. For all h in direction i where i ∈ [1, n] ,calculate Ai and
Bi as detailed before.
5. Calculate M = Max(α × Ai + β × Bi) for all n; denote
the direction corresponding to M by D.
6.If M is obtained for a single direction,

then move the robot in that direction.
7. If unable to localize after moving along D, or D is not
unique, goto step 8.
8. Find the frontier cell fij for all virtual robots i, and insert
these cells in a tree, with the root being the virtual robot pose
fr.
9. For all frontiers fj of fr, find the number of different sensor
readings in the kth direction for all 1 ≤ k ≤ n. Choose the
frontier cell fs that has the maximum number of different
sensor readings across all robots and directions.

Fig. 1. The robot action of moving towards right from i to ii does not
change the frontier grids or result in new frontier grids.

10.Perform a depth first search centered at fs, by alternating
steps 3-6 and 7-9. The cardinality of the hypothesis set H
changes at every child selected during the search. A search
along a particular child of fr,fs stops when there are no more
children of fs or there is only one element in H at a particular
child, in which case the algorithm exits.
11.Repeat step 10 for all children ,fj of fr, till the termination
condition is met.

C. A convergence proof for the active localization algorithm

Claim: The active localization algorithm presented will
find its actual pose if there exists a location in the given
map where the passive localization module would return a
unimodal distribution.

A proof for the above claim is delineated through the
following steps. These steps are briefly stated without elabo-
ration to conserve space.
1. A multimodal distribution of robots belief occurs because
the sensors see the same in all directions.
2. The robot needs to move to a location where it sees
something different than what it is seeing now.
3. This is achieved by extending the robot’s vision beyond
what is currently seen(accomplished through virtual sensors)
and finding a direction of motion that reduces the number of
hypotheses.
4. Alternatively, this is best achieved by moving to that
frontier capable of reducing the multiple hypotheses to a
minimum.
5. An action that does not lead to seeing something different
than what has been seen so far does not reduce the number
of hypotheses, or the number of modes, in a multimodal
distribution.
6. An example of the action described in step 5 is one that
does not lead to the addition of an existing frontier gird. For
example in figure 1, the robot action of moving towards the
right does not change the frontier grids, or the result in new
frontier grids.
7. In a bounded environment, frontier exploration guarantees
that all parts of the environment will be explored eventually.
8. Step 7 guarantees that the algorithm would halt.
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9. Steps 3 and 4 guarantee that a pose that results in a
unimodal belief will be found if one exists.
10. The current algorithm makes sure that steps 3 and 4 are
always achieved and 5 never occurs. Hence by steps 8 and 9
the convergence of the algorithm is guaranteed.

The gist of the above delineation is as follows. Firstly
exploration is a converging process and is well understood.
For example in a bounded environment all frontiers get
eventually explored. This guarantees the algorithm halts.
Secondly the robot needs to move to such a position where
it has something new to see from the current location. This
happens by choosing an action that leads to addition of new
frontier grids. The question is there could be several such
actions that lead to seeing of new areas or addition of new
frontier grids. But the sum of all the new areas that can
be seen is achieved by recursively visiting the frontiers. In
other words all the new areas that can be seen as a result
of reaching new positions from a given hypothesis location
is contained in the new areas seen by moving to frontier
locations from that position. Thus frontiers are a sufficient
set for discerning an unique hypothesis state. Hence the
algorithm would converge to a unique state since frontiers are
a sufficient set to discern a new hypothesis and all frontiers
can be visited. We admit that this could possibly explained
better through figures. But then brevity of space constrains us
from doing so. In comparison with the method of choosing
random positions we state the following. All the new areas
seen from the random positions is eventually contained in the
new areas seen from frontiers. Hence frontiers are a sufficient
subset of the random positions generated in the UAL method
[4] to generate a unique hypothesis. They are fewer in number
and easily generated. The tradeoff however is that frontiers
are farther away than the average candidate point generated
by UAL.

IV. SIMULATION RESULT

Figure 2(a) shows the multimodal distribution returned by
passive localization algorithm. The thick black dot in the third
cluster from the left on the top row is the actual position
of the robot and is labeled R. Figure 2(b) illustrates the
firing of the virtual sensors, from the various hypothesized
positions of the robot or the virtual robots. The direction of
motion D resulting from the first stage of the algorithm is
shown by a dark line with an arrow for the third virtual robot
alone. Evidently this is the direction of motion for the actual
robot. The actual robot is not moved immediately; it moves
only after the algorithm finds the overall path that results in
localization from the application of stages 1 and 2. Figure 2(c)
shows an intermediate stage in localization and 2(d) shows
the robot having localized by breaking all other ties. In this
case stage 2 was not required since the algorithm computed
that, by moving along direction D, till the nearest obstacle in
that direction, complete localization would occur.

Figure 3 shows active localization for the same initial
robot pose in figure 3(a) by method of entropy minimization.
Figures 3(b)-3(d) show the robot visiting previous positions

TABLE II

COMPARISON BETWEEN METHODS.

S.No. Position With entropy Current Algorithm
(in sec) (in sec)

1. 235,255 0.299 0.063
2. 400,225 0.319 0.042
3. 350,250 1.608 0.060
4. 150,250 0.255 0.156

Comparison of time taken by entropy minimization and the current
algorithm (columns 3 and 4) for the best action at various robot positions

(column 2).

as it localizes. This happens because often an earlier visited
position becomes the position of maximum information gain
at the new location. A possible way to avoid this is to
choose the best possible path over several actions instead of
choosing the best possible next action. However that makes
the search expensive in space and time and even for a single
step computed as Table 2 shows, the time taken by entropy
minimization is far greater than the present scheme. Table
2 compares the time taken by active localization through
entropy minimization and the current algorithm for computing
the best action at a given position. As columns 3 and 4
depict, the current algorithm is at least 3 time faster on an
average. While the table is shown only for 4 robot positions
due to space constraints, similar comparisons were the norm
for several positions across several runs. These comparisons
were done on a Pentium-3 machine running the Fedora Core
2 version of Linux, with kernel 2.4.10.

Figure 4 shows, active localization by the current approach,
using the second stage. Figure 4(a), shows the initial hypothe-
ses position of the robot (the root of the tree). Among the two
frontiers f1 and f2, the algorithm chooses f2. The frontier
locations are also shown by frontier grids along the lines
representation reported in [14]. From f2, five more frontiers
are formed (which are labeled once again as f1-f5) in figure
4(b). Among these frontiers, f3 was chosen as the frontier
capable of eliminating maximum number of hypotheses. This
is because the number of sensor readings being identical
for the two possible virtual robot positions is the least at
f3 as shown in fig 4(c). A path to f3 is planned and the
robot localized at position P while nearing f3. In the figure
the frontiers are marked for only one of the virtual robot
positions, but it is evident that they are the same for all other
virtual robot positions.

It is to be noted that both figures 2 and 4 are not simple
polygons. Figure 4 is distinctly nonpolygonal due to curvature
and figure 2 is not a simple polygon due to the presence of
the long wall at top that is disconnected from the rest of
environment.This wall is shown labled W in figure 2.

V. EXPERIMENTAL RESULTS

In this section we present the experimental results ob-
tained with Active Media’s Amigobot, equipped with 8 range
sonars. A symmetric environment was constructed by lining
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(a) (b) (c) (d)

Fig. 2. 2(a): Multimodal distribution of belief returned by the passive Markov localization. W is a wall at the top disconnected from the rest of the
environment. The actual robot position is shown by a thick black dot and labeled R. 2(b): Firing of virtual sensors from the virtual robot position and D
represent the best direction for localization is shown by a thick line,with arrow for the 3rd virtual robot pose from the left on the top. 2(c): An intermediate
stage where several hypotheses have been eliminated. 2(d): The final localized position.

(a) (b) (c) (d)

Fig. 3. 3(a): Multimodal distribution of belief returned by the passive Markov localization.3(b)-3(d) shows the the robot visiting previous positions as it
localizes through entropy minimization.

(a) (b) (c) (d)

Fig. 4. 4(a): Initial hypotheses position of the robot with frontier f1 and f2 shown by the frontier grids. 4(b): Next five frontiers f1-f5 from f2. The
algorithm selects f3 4(c): Virtual sensor readings from frontier f3. 4(d): The final localization on nearing f3 at location P shown by an arrow.
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up cardboards between the walls of a corridor (Fig 5(a)).
Figures 5,6 and 7 depicts the various stages of an experimental
run where localization was achieved by involving first stage
alone. The left half of the figure shows the actual robot
in the environment and the right its corresponding position
returned by the localization algorithm running on client PC.
Figure 5(a)and 5(b) shows the initial pose of the robot
and the corresponding hypothesis location calculated by the
algorithm. Figures 6(a) and 6(b) depict the directions in which
the robot decide to move based on application of stage 1. This
is shown by the arrow in figures 6(a) and by a dark line in
6(b). Figures 7(a) and 7(b) show the final localization position
of robot.

VI. CONCLUSION

This paper presents an active localization algorithm based
on two stages. The first stage of the algorithm chooses the best
possible direction that can that can eliminate the maximum
number of hypotheses and the second stage chooses the
best frontier to visit that does the same. Simulation and
experimental results confirm the efficacy of the algorithm.
Comparison with other popular method of active localization
clearly point out the benefits of the current method. A future
scope of this work is to extend it to a multi-robotic setting.
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(a) (b)

Fig. 5. Multi modal distribution of belief returned by the passive Markov
localization.

(a) (b)

Fig. 6. Choosing direction D for wich M is maximum and move.Shown by
arrow in left figure and as thick line in right figure.

(a) (b)

Fig. 7. Final localized position.
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