When Does a Robot Perceive

a Dynamic Object?

K. Madhava Krishna* and Prem K. Kalra
Department of Electrical Engineering

Indian Institute of Technology
Kanpur, India 208 016

Robots operating in a real-time environment encounter both stationary and moving
objects that need to be negotiated using different schemes in general. Motion planning
in a dynamic environment entails tracking moving objects and predicting their future
positions. However, this requires as a first step the classification of the objects present
in the environment as static or dynamic objects, a step that somehow seems to have
been overlooked in the literature dealing with navigation in dynamic environments. Pre-
sented here are four schemes for perceiving the presence of dynamic objects in the robot’s
neighborhood. The first approach incorporates a network architecture that classifies the
robot’s experience of the environment in terms of spatio-temporal sensor patterns as an
experience of a static or dynamic object. The second method detects motion by observing
changes in the map of the environment it builds and updates. The remaining two ap-
proaches use a strategy for representing the objects in the environment through clusters;
inspecting the characteristics of the clusters reveals the dynamic objects. These meth-
ods are denoted as STA (spatio-temporal approach), MBA (model-based approach), and
CBAI and CBAII (cluster-based approach I and II), respectively. The methods have been
tested in environments that contain multiple dynamic objects amidst static ones and their
efficacy established. A brief comparison of these approaches in terms of criteria critical
for real-time collision avoidance has also been presented. © 2002 John Wiley & Sons, Inc.

Received 11 April 2001; accepted 5 September 2001

1. INTRODUCTION

Literature abounds with approaches for dealing with
collision avoidance in a dynamic environment. Some
of these approaches require prior knowledge of the

*To whom all correspondence should be addressed; e-mail:
kkrishna@iitk.ac.in.

position and trajectories of the objects.'? Other
approaches compute the robot’s path in a static en-
vironment using global strategies.>® The computed
path is replanned when dynamic objects are intro-
duced that crisscross the planned path. Later ap-
proaches that involve fuzzy inferencing or neuro-
fuzzy based control have also been reported.®” Recent
strategies have extended this to situations that involve

Journal of Robotic Systems 19(2), 73-90 (2002)
© 2002 by John Wiley & Sons, Inc.

74 .« Journal of Robotic Systems—2002

cooperative collision avoidance of multiple robots that
plan and execute a task.®

In all these approaches, either the exact position
or velocity information of the dynamic objects are
assumed to be available either before the path is
planned or during real time. However, it is difficult
to provide such information to the robot in real time.
Based on this information, the algorithms predict the
future position of the dynamic object and the collision
time. But the initial processing stage of classifying an
object as static or dynamic based on sensor readings
is not mentioned in these approaches. Only after the
robot classifies an object as static or dynamic does the
question arise of predicting its future position. Hence,
even with algorithms that perform real-time collision
avoidance in which no prior information regarding
the objects is available, there is a tacit assumption re-
garding whether the real-time data belongs to a static
or dynamic object. Recently, Song and Chang have
circumvented this problem implicitly by predicting
the future sensor readings based on the present and
past readings.”!° Their algorithm makes estimates of
the expected sensor readings in the subsequent sam-
ple based on prior observations. The estimates are
made for both static and dynamic objects and hence
there is no explicit classification regarding the na-
ture of the object with respect to its static or dynamic
attributes.

Presented in this paper are four explicit app-
roaches for detecting the presence of dynamic objects
in a robot’s vicinity. Such explicit detection obviates
the need for tracking and predicting the future posi-
tions of all the objects in the neighborhood, as only the
dynamic objects need to be tracked. In some sense it is
also more consistent with human intuition, as humans
are generally aware whether they are cognizing static
or dynamic objects and plan their paths accordingly.
The first approach (STA) uses a network architec-
ture that classifies a stream of sensor patterns as that
obtained from a static or dynamic object. It operates
directly on the range data obtained from sonar with-
out the necessity for a map-building affair. The other
three approaches involve representing the contents of
the environment on a map. In the first of these ap-
proaches (MBA), a dynamic object is perceived when
significant changes in the features of an object (as rep-
resented in the map) are observed over a time window.
The remaining two approaches (CBA-I and CBA-II)
partition the data into clusters. The clusters that are
formed indicate the number of objects present in the
neighborhood. The properties of the cluster determine
the nature of the object in terms of its static or dynamic
attribute. The first algorithm (CBA-I) self-organizes

and determines the number K of clusters or objects
in the neighborhood of the robot. The algorithm starts
with theinitial value of K at 1. For the second approach
we have used the Gustafson-Kessel (GK) algorithm!!
with the initial number of clusters fixed to a value
higher than the number of objects arobot generally en-
counters in five samples. The exact number of clusters
is then found through cluster merging procedures.

The rest of the paper is organized as follows:
Section 2 deals in detail with the four approaches
employed for perceiving the existence of dynamic
objects; Section 3 analyzes the performance of these
approaches through simulations; and Section 4 winds
up the paper with concluding remarks.

2. PERCEIVING THE DYNAMIC OBJECT

The problem of ascertaining the presence of dynamic
objects in a robot’s vicinity becomes all the more
obscure when information about the environment
is obtained from range sensors. In vision-based detec-
tion and tracking systems a single snapshot can fur-
nish the essential details and a holistic representation
of the environment can be obtained. Data obtained
from range sensors on the other hand are nothing
but discretized spatial samples, which represent those
parts of the local environment that have reflected
the beam emitted by these sensors. To obtain a uni-
fied picture of the environment based on a temporal
sequence of such spatially discrete samples becomes
problematic, especially if the environment is nonsta-
tionary and the sensors are themselves subjected to
translation and rotation. In spite of these difficulties,
range sensors (especially lasers) have been popular
and found suitable for real-time navigation purposes.
In the subsequent sections we present four algorithms
that offers a feasible solution for perceiving dynamic
objects based on range data.

2.1. Spatiotemporal Approach (STA)

Figure 1 depicts the sensor arrangement used
while navigating in a dynamic environment. The

Figure 1. Numbering of the sensors placed on the circum-
frence of the robot.

Krishna and Kalra: When Does a Robot Perceive a Dynamic Object? « 715

Temporal
order
extractor y.

2

W Spatial classifier

Figure 2. Network architecture for
perception.

dynamic object

arrangement consists of a ring of 24 sensors placed on
the circumference of the robot. The robot is modeled
as a circle and the sensors are 15 degrees apart with
respect to the robot’s center. Each sensor transmits a
beam with a conical spread of 10 degrees. It is assumed
that the objects are of such size that none of them falls
completely within the blind zone of a sensor. In other
words, an object that is within the detecting range of
the sensor ring shall not go undetected.

The network architecture used for dynamic object
perception is shown in Figure 2. This architecture is
an extension of the architecture introduced in an ear-
lier paper for detecting local minimum traps.!? The
first block in Figure 2 is the fuzzy spatial classifier and
the second block is termed the temporal order extrac-
tor. The outputs of the second block feed to a resilient
propagation network (RPROP),'? a variant of the ubig-
uitous back propagation algorithm.'* The functions of
these blocks will be clarified shortly.

The problem is one of classifying an experience
of a stream of sensor patterns as an experience of
either a static or dynamic object. The difficulties men-
tioned earlier can be resolved to a considerable extent
through an artificial neural network (ANN) model.
ANN is specially suited for instances where the
development of mathematical models is difficult, un-
certain, and error prone. The objective is, given the
average robot velocity v, and a temporal sequence of
range readings obtained by a sensor, for the RPROP
network to learn to classify the sequence as an expe-
rience of a static or a dynamic object. However, the
number of range measurements that are required for
an appropriate classification cannot be ascertained.
This depends on the angular separation of the ob-
ject’s direction of approach and the robot’s heading
direction. For objects whose direction of approach
is more or less parallel to the robot’s direction of
motion, a history of three or four measurements
would be sufficient to discern the presence of a dy-
namic object. For objects whose motion direction is
more transverse, a longer temporal sequence is re-

e

()

—_
=
=

(©)

Figure 3. (a) Acquiring patterns froma transverse dynamic
object. (b) Acquiring patterns from a parallel dynamic object.
(c) Acquiring patterns from a static obstacle.

quired. The differences are due to the decrease in
the relative velocity of the object with respect to the
robot as its direction of approach varies from par-
allel to transverse. Objects whose motion direction
is almost perpendicular to the robot’s own direction
(Fig. 3(a)) are classified as dynamic, not based on the
philosophy of relative velocity but through a sudden
decrease in the range measurements when a sensor
suddenly detects the object at near ranges. These are
depicted in Figures 4(a) and (b), where sensor 11 de-
tects an object suddenly at a near range. In order to
train the network with a fixed number of range read-
ings as input, the following procedure is adopted.
The robot is made to approach static and dynamic
objects at various orientations and velocities, as shown
in Figures 3(a—c). The range data is processed as fol-
lows. For any sample of the environment, the range
data acquired by each sensor forms an input to the
fuzzy spatial classifier. The spatial classifier classifies
the reading into one of the four classes (far, medium,
near, and very near). The fuzzy membership function
that does this classification is shown in Figure 5. A
temporal sequence of classes is formed for each sensor
with every sample, the fuzzy classifier appending the
class for that sensor. A typical sequence for a sensor

[« |

!

(b)

[+ |
(@)

Figure 4. (a) Ataninstant prior to detection, sensor 11 mea-
sures a free space. (b) In the next instant, sensor 11 detects
the object suddenly at near range.

76 -« Journal of Robotic Systems—2002

Medium Far

0.45 0.6 0.8 1

Figure 5. Spatial classification of a sensor reading through
fuzzy membership functions in dynamic environments.

looks like [bbbfffmm...]. This sequence can be inter-
preted as three experiences of blanks (the sensor did
not detect an object) followed by three experiences of
an object at far range succeeded by two experiences at
medium range. However, what is important is not the
temporal order of classes but the temporal order of
number of occurrences of each class in the sequence,
termed VOC (vector of occurrences of classes). The
VOC is extracted until the first range reading classi-
fied as near by the spatial classifier is encountered.
The VOC is then tagged as static or dynamic, depend-
ing on whether it was acquired while the robot was
approaching a static or a dynamic object. In Figure
3(c) the VOC for the eleventh sensor is given by the
vector [9, 9], indicating that the robot’s experience
of the static object through sensor 6 consisted of 9
experiences at far ranges, followed by another 9 ex-
periences at a medium range, whereas the experience
of the dynamic object in Figure 3(b) was a consolidated
experience of 4 at far ranges and 3 at medium range,
represented by the VOC [4, 3]. The experience of the
transverse dynamic object in Figure 4(b) gets coded as
[0, 0], indicating that sensor 11 suddenly experienced
the object at near range with no prior experiences at far
or medium ranges. The robot’s average velocity during
both the simulations was 3.2 pixels/sample. With the
robot’s velocity at 3.2 pixels/sample, a VOC of [9, 9]
is tagged as 0, indicating it as an experience of a static
object, whereas [4, 3] and [0, 0] are tagged as 1, indicat-
ing a dynamic object. The range patterns are acquired
for varying robot and object velocities. The acquired
data is processed as described, and tags are affixed. A
data set is thus formed, with the input vector consist-
ing of the robot’s velocity and the VOC and the out-
put being the static or dynamic tag associated with
the input vector. A resilient back-propagation algo-
rithm was used for learning the input-output map-
ping, thereby learning to classify a consolidated expe-
rience of a particular sensor as an experience of a static
versus a dynamic object by that sensor. Figure 6 shows
the error decay curve during the training process. The
inputs to the RPROP network are the robot’s average
velocity and the VOC denoted by the vector [v1, 1]

100

10*1.

10—2.

10-3

10-4

0 50 100 150 200 250 300 350 400
436 Epochs

Figure 6. The error decay curve while training experiences
of static and dynamic objects.

in the lower half of Figure 2, where the structure of
the RPROP network used is shown. The temporal or-
der extractor (Fig. 2) extracts the VOC from a given
sequence of classes. The robot’s velocity was varied
between 2 to 5 pixels per sample while the velocities
of the dynamic object ranged between 3 and 6 pixels
per sample during data acquisition.

2.1.1. Postprocessing Module

Once the presence of dynamic objects is identified,
their features are extracted. The features extracted are
the approximate endpoints of the object, which are
required for tracking and avoiding these objects. At
this stage the requirement of a map becomes indis-
pensable. The postprocessing module makes use of
a feature extractor (FE) that extracts the features as
follows.

Demarcating Distinctly Separable Objects. Consider
two objects A and B in Figure 7, which were detected
as dynamic by sensors 10 and 13, respectively. The
FE extracts the remaining parts of both the objects by
a recursive least-squares fit from the range readings
of sensors 10, 9, 8, and 7 for A and sensors 12, 13,

Figure 7. Object A detected by sensors 7-10 and object B
by 12-14, with 11 indicating free space.

Krishna and Kalra: When Does a Robot Perceive a Dynamic Object? « 11

{a) (b)

Figure 8. (a) Objects demarcated by a sudden jump be-
tween the readings of sensors 11 and 12. (b) Objects demar-
cated by a pattern of increase-decrease in a counterclockwise
scan.

and 14 for B. It demarcates A and B as distinct objects
by virtue of the free space reading due to sensor 11
between the readings of 10 and 12.

Demarcating Partly Occluded Objects. Consider a
dynamic object A occluded by another dynamic
object B in Figure 8(a). Since there is no free space be-
tween the two, the FE initially considers all the sensor
readings arising due to sensors 9-13. These objects are
demarcated by observing a sudden jump within a con-
tiguous set of sensor readings (Fig. 8(a)), or through
a pattern of increasing range readings followed by a
decrease (Fig. 8(b)) during a counterclockwise scan.
Further the FE resorts to a recursive least-squares
(RLS) fit as a final procedure for separating the visible
edges of occluding objects that do not get demarcated
while looking for above changes in patterns. The RLS
also parameterizes the visible edges in terms of their
slopes and intercepts.

Handling Wrong Classifications. Prior to extracting
the features of the dynamic object, a check is required
for handling some of the inaccuracies in classification.
There are situations when the consolidated experience
of a particular sensor can get classified as dynamic
experience although it was the experience of a static
object. Figures 9(a) and (b) indicate an example of
such a situation. Figure 9(a) depicts the instant just
prior to the instant when sensor 5 detects an object.

() (b)

Figure 9. (a) The instant just prior to the detection of the
object on the right by sensor 5. (b) Sensor 5 begins detecting
the obstacle at near range.

Figure 9(b) depicts the instant when sensor 5 detects
an object suddenly at a near range. In these circum-
stances the VOC would be [0, 0], which gets classified
as an experience of a dynamic object irrespective of
the robot’s velocity. This is due to a sudden decrease
inreadings of the sensor. Whenever such a sudden de-
crease in a sensor reading occurs, a check is made for
the readings of that sensor adjacent to it but closer to
the center sensor (sensor 11). If the most recent reading
is comparable, then the result of classification of the
experience of the adjacent sensor is assigned to the sen-
sor that experienced the sudden decrease. If the read-
ings are not comparable, then the experience of the
sensor that detected the sudden decrease is classified
as an experience of adynamic object. By “comparable”
we mean that adjacent readings must have a similar
classification by the fuzzy rule base, or can classified
as belonging to adjacent fuzzy sets. The readings are
noncomparable if they are classified as belonging to
fuzzy categories that are not adjacent or same, such as
near and far, or very near and medium. (It is admit-
ted that this is not the best way to compare adjacent
sensor readings and more precise possibilities could
exist). This part of the postprocessing scheme is de-
picted through the truth table shown in Table I. The
third column denoted by C takes a value 1 if the adja-
cent sensor readings are comparable and 0 otherwise.
The first and second columns represent the output for
the RPROP network for the adjacent sensors m and n,
denoted in the table as C,, and C,,. Here m=n—1 or
n+1 depending on whether the sensor is to the left
or the right of sensor 11, the center sensor with re-
spect to the robot’s heading direction. The realization
of the truth table is shown in Figure 10. The figure also

Table I. Truth table for the postprocessing stage of STA.

C is the comparator output that compares adjacent sensor
readings, C, is the experience of sensor S, classified as
static (C, = 0) or dynamic (C, = 1) by the RPROP network.
C,, is the experience of sensor S, adjacent to S, and closer
to the center sensor. With respect to the sensor arrangement
of Figure 1, m =n+1if n <11 and m = n — 1 otherwise.
Inputs are C,,, C,, and C and output is Y.

C m C n C Yi‘l
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

78 - Journal of Robotic Systems—2002

Comparator - C
AND

!

=

NOT

a
[z
o

.] ox f—r,

Figure 10. Realization of the postprocessing module of
STA.

indicates a comparator that compares the most recent
reading of the sensor, s,, and that of the sensor ad-
jacent to it and closer to center sensor, denoted as s,.
The essence here is whenever a sensor detects an expe-
rience that corroborates with a transverse object, the
classification of that object by the sensor adjacent to it
and closer to the center is given preference, provided
of course that the adjacent sensor had experienced the
object earlier.

The overall STA is depicted in Figure 11 with the
preprocessing block consisting of the fuzzy classifier
and temporal order extractor followed by the RPROP
network and the postprocessing module of Figure 10.
The net output is binary, indicating an experience of
static (0) or dynamic (1) objects by sensor s,,.

As far as objects approaching the robot from be-
hind, an elaborate classification is not required. Here
the concern is only with those objects whose velocity
is greater than the velocity of the robot. Objects whose
velocities are less than that of the robot do not pose
a threat, since the relative distance of separation only
increases with every sample. Hence, for classifying
objects that approach the robot from behind as dy-
namic, one need only check for an average decrease
in distance of separation over a time window. They
are so classified when the second component in the
VOC of a rear sensor takes a finite value, indicating
a decrease in the experience of the object from far to
medium range.

2.2. The Model-Based Approach

The STA detects motion in the proximity of the robot
solely based on the changes in range data over a time

Ky > L Post

n Pre processing | i)
RPROP processing Y,

block .
2

Figure 11.

Overall STA.

window. When the robot rotates, the sensors can see
an entirely different environment from what they had
seen an instant before, though there has been no dras-
tic change in the environment itself. This can result
in wrong classifications. The STA overcomes these er-
roneous classifications to a reasonable extent by an
extrapolation scheme. Based on the range samples
acquired until the instant of rotation, the STA com-
pletes the unfinished VOC by this scheme, and the
RPROP network through the extrapolated VOC per-
ceives the dynamic objects. Nonetheless, the scheme
is still unreliable when the robot must undergo rota-
tions over many consecutive samples to avoid succes-
sively encountered objects. To perceive motion based
on the samples of the environment during rotational
displacements of the robot entails, as a first step, cor-
relating the range data of those samples to its actual
regions in space. The correlation is thus a representa-
tion of the robot’s environment in a reference frame
and is a map-building affair. Motion can then be per-
ceived by detecting changes in the map over a tem-
poral window. The MBA builds a map of the robot’s
environment, extracts the features of the objects, tracks
the features over the samples, and detects motion by
detecting changes in the representation of these fea-
tures. The various preprocessing modules involved
before an object is deemed fit for classification by the
MBA are discussed briefly in the following.

2.2.1. Preprocessing Modules in MBA

The preprocessing modules consist of a feature extrac-
tor (FE) and an object tracker (OT). The visible edges
of the objects are extracted and represented through
the coordinates of their endpoints and the center. The
procedure adopted for feature extraction is listed very
briefly.

Feature Extraction. The FE operates in much the
same vein as the one described in the postprocessing
module of the STA—the only difference being that it
extracts the features of all the objects in the neighbor-
hood, while in STA it extracts the features of only those
objects that were classified as dynamic. Thus the FE
appears in the postprocessing phase of the STA but in
the preprocessing phase of the MBA.

Object Tracking. The extracted objects are tracked
through their centers in the subsequent samples by
a nearest-neighbor classification algorithm based on
Euclidean metric. An interesting case that arises while
tracking must be mentioned. Shown in Figure 12 is a
case where an object that was fully visible in the previ-
ous instant gets partially occluded, due to which the

Krishna and Kalra: When Does a Robot Perceive a Dynamic Object? « 719

——

]

=

]

Figure 12. Between two successive scans of the environ-
ment the object gets partially occluded; this can cause a sub-
sequent shift in the center, causing it to be classified as a new
object.

shift in its center is considerable, and it can be de-
tected as a new object in the subsequent instant. The
correspondence between the apparent new object at ¢
is done with the older object at t — 1 by seeing whether
their gradients and intercepts are compatible at both
instants. Other issues—such as how the tracking algo-
rithm maintains a list of objects tracked, identifies new
objects that appear within the vicinity of the robot,
and discards objects that are no longer visible—are
not mentioned here, for they are not pertinent to the
main theme of the discussion.

2.2.2. Object Classifier

The tracked objects are classified in two tracks. One
track is relevant for objects whose extracted edges are
parallel to their own motion direction, and the other
for objects whose edges are perpendicular to their di-
rection of motion. Since the direction of motion of the
object with respect to its edges cannot be determined
until the motion is detected, both the schemes are em-
ployed and the object is certified as dynamic if one or
both the schemes detect motion in it.

Parallel Edge Motion Detection (PEMD). The PEMD
scheme detects motion in an object by looking for the
rear (front) end of its visible edge to get past the lo-
cation that was earlier occupied by the front (rear)
end within a threshold number of samples, 1;;,. This
is portrayed in Figure 13(a), where the rear end of the
object gets past the location occupied by the front end
at fo in 5 samples. The threshold can be varied accord-
ing to the speed and size of the object considered. For

[—
1,+3 1,+3 1 t 1/n \x
0 0 0 0 /‘0‘4--

10 20

—_—
Length of object in pixels
(a) (b)
Figure 13. (a) PEMD. The rear edge of the object gets past

the location of the front edge at f; after 3 samples at #, + 3.
(b) Plot of length of object vs the ratio 1/n.

longer objects, the MBA looks for one of the endpoints
to get past a certain length of the object within the re-
quired number of samples. The ratio of the length of
the edge to its entire visible length, which must be
crossed over by the endpoint for the object to get clas-
sified as dynamic, is obtained through the plot of the
relation shown in Figure 13(b). Denoting the front co-
ordinates of the visible edge as (x,) and therear co-
ordinates as (x;, 1), and when the direction of motion
is from the rear to the front, the following procedure
classifies the attribute of the object:

Procedure MBA-PEMD
If (xf (t) > x, (1)) and (ys(t) > y,(t)) for an object k

If in & < ny, number of samples

M-t
n

If X (t+e) > x-(H) +

Yr(t+e) > yﬂHM

then k is a dynamic object

else k is a static object.

Similar reasoning extends for other combinations of
the front and rear edge, such as (xf(t) < x,(t)), and so
on.

Perpendicular Edge Motion Detection (PDMD). The
PDMD scheme detects motion in an object by consid-
ering the rate of decrease in the distances to the ob-
ject’s center over a time window. Consider Figure 14,
where a static object is tracked in two successive sam-
ples through its center. The robot undergoes a net ro-
tational displacement of & between the two scans. The
robot actually moves along an arc from position a at ¢
to b at t +1, such that the net rotational displacement
with respect to the reference frame is «. The angles
made by the robot’s heading direction with respect

Figure 14. Static object tracked in two successive samples
by its center marked as o.

80 - Journal of Robotic Systems—2002

to the object’s center at the two instants are A and
(see Fig. 14), respectively. In actual simulations and
implementations there would be shifts in the object’s
center between the two instants. The shifts are not
considered in obtaining a relation for the decrease in
displacement, for what is required is a general notion
of the decrease to formulate a threshold that can clas-
sify the attribute of the object. The amount of shift in
the center between two successive scans is in general
difficult to predict or estimate. Let the distance from
the object’s center, o, to the robot’s center at a be d,
and the displacement of the robot’s center between
the two samples be c. Then the expected value of the
distance from the object’s center to the robot’s current
localization at b is given by

dy = —ccosy £ +/(d;_1 —csiny)(d;_q +csiny)
=d;,_1—ccosyy ford,_1>c ¢))

The expected rate of decrease between two samples
of the environment can be written as §; =d; —d;_1.
Considering an ensemble of N such samples of the
environment, and denoting the observed average rate
of decrease as 5 and the expected average rate of de-
crease as §, the PDMD routine classifies the object as
dynamic if the following relation holds:

+A ?)

Wi

S >

where A is a threshold fixed at 1.6 pixels/sample,

s diyN—1 —d;
- N-1
and
§ _ CiH-N—l _dt _ le\;_ll Cj COS wi (3)
~ N-1 N-1

It is to be noted that A is not a problem-specific pa-
rameter, it can be considered as a kind of tolerance,
given in lieu of the fact that the sensors do not de-
tect the same locations on an object during successive
instants. In other words, we may say to a reasonable
certainty that if relation (2) holds, the extracted fea-
ture corresponds to a dynamic object. However, in
cases where§ < 3 < § + A, the extracted feature is con-
sidered to be dynamic with a certainty p = (5 —5§)/A.
If the same inequality § <5 <5+ A holds over suc-
cessive instants, the certainty values are incremented.
The certainty value reaches unity in general within the
subsequent three samples.

The main advantage of the MBA is its robustness
to rotational displacements of the robot. It has been
seen that the MBA can track objects accurately even
during large rotational movements of the robot. An
obvious demerit of the MBA is the necessity to build a
model of the environment in every scan, update it, and
track all the objects in the neighborhood irrespective
of their attribute.

2.3. Clustering Based Approach I (CBA-I)

In the MBA, the feature vectors employed for fea-
ture extraction were those obtained during the most
recent sample. Inboth CBA schemes, however, the fea-
ture vectors obtained during the recent five samples of
the environment are used for demarcating the objects.
The advantages are that the objects are more easily de-
marcated as the density of feature vectors populating
a cluster increases, for the object has been repeatedly
scanned. This facilitates more accurate partitioning of
the data into clusters. The differences are highlighted
in Figures 15(b) and (c). Figure 15(b) shows the point
cloud of the workspace of Figure 15(a) as seen by the
sensors in one sample, while Figure 15(c) is the accu-
mulated point cloud over the last 5 samples and the
clusters are more discernible than in Figure 15(b). The
preprocessing stage consists of partitioning the point
cloud of feature vectors (FV), where each vector is a
triplet [x, y, t], into clusters representing the objects
that own the vectors. For clustering, the time compo-
nent of the vector is not considered.

2.3.1. Preprocessing Module

Before describing the clustering algorithm, some of its
salient features are listed:

* The algorithm is self-organizing and deter-
mines the number of clusters.

o . e
B 1100 . ..
. t
P |
. :
(a) (b) (c)
Figure 15. (a) Robot scanning an environment with two

static and one dynamic object. (b) Features extracted based
on the last scan alone. (c) Features extracted over the last
five samples.

Krishna and Kalra: When Does a Robot Perceive a Dynamic Object? « 81

¢ It makes use of two distance measures, center to
feature vector distance (CVD) and vector to vec-
tor distance (VVD), whose thresholds are de-
noted as ¢y, and vy, respectively.

¢ The thresholds decide the formation of a new
cluster. The thresholds are adaptive, however,
and change according to the distribution of the
feature vectors.

e The VVD uses the standard Euclidean metric
while the CVD employs the Mahanolobis dis-
tance.

* The partitioning is achieved in one shot, in the
sense that the feature vectors must be presented
only once to the algorithm.

The algorithm can be considered novel in the
sense that an exactly similar algorithm does not seem
to appear in the literature, but our aim here is not to
stake claims for its novelty or originality. Certain fea-
tures make it suitable for the problem under consid-
eration in the context of real-time learning, namely,
the ability to determine the number of clusters, and
one-shot partitioning. The contribution of the two dis-
tance measures and the adaptive thresholds adds to
the reliability of the algorithm, in finding the number
of objects in the vicinity and their centers to sufficient
accuracy.

The basic clustering algorithm follows.

Inputs. Feature vectors S={Xj, Xp, ..., Xy}, where
each X; = {x;, y;}; initial threshold values for ¢, and
vy, forgetting factor g and boundary parameter 5. In
the algorithm given, parameter « =1— 8.

Outputs. number of clusters K, each cluster desig-
nated as C;,i ={0,1,..., K—1}; number of feature
vectors n(k) in a cluster k ={0, 1, ..., K —1}; cluster
centers zy = {Xck, Yck}; covariance matrix for each clus-
ter; eigenvalues and eigenvectors for each cluster.

Procedure CBA1_CLUS

1. Select an arbitrary feature vector, X;, assign it
to cluster Cy, or equivalently cluster (X;) < Co,
zp = X;. Tag X; as considered.

2. Find the distance of the nearest, unconsidered
feature vector (FV) X; to the currently consid-
ered FV X;. Denote this distance as vvd. vod =
r}g?de(Xi, X)), j=1{0,1,...,i-1,i+1,..., N}

where d, is the Euclidean norm.
3. Ifvvd <oy,
a. cluster (X;) <~ C.y, where, C. = cluster
(X)

b. n(C.ur) = n(Cey) + 1; increment the number
of vectors in a class
c. Update center and covariance matrices for
the cluster
d. Update VVD threshold as vy =a(vy)+
(1 —-a)vovd
e. Find cod = d,,(X;, zcur), where d,, stands for
the Mahanalobis norm
f. If cvd > ¢y — n then ¢y, = cod + n; updating
the CVD threshold
4. Ifvod > vy,
a. Find z =mind,(X;,z),i={0,1,...,K},
the nearest ce}lter of a cluster to X;
b. cod =d,, (X, z)
c. Ifcvd <cy,
i. cluster (X;) <= Cy, Cy = cluster (z)
ii. n(Cp) =n(Cr)+1
iii. Update centers, covariance matrices
for Cy
d. Else if cvd > cy
i. K = K +1; forms a new cluster
ii. zx = Xj; the center of the new cluster
takes the value of the FV X
iii. 7(K) = 1; number of FV in the new clus-
ter is initialized to 1
iv. Set the distance thresholds to their start-
ing values
5. Tag X; as considered and assign X; = X j S0 that
X; becomes the FV over which steps 2—4 are
applied for the next pass of the algorithm
6. Repeat steps 3-5 until all the feature vectors
have been tagged as considered.
7. Compute eigenvalues and eigenvectors for the
clusters that got formed during the partition
process.

The pivot of the algorithm is the vector to vector
distance measure, denoted as vvd in the algorithm.
Starting from an arbitrary FV X; owned by an object
Ok in the range space, the algorithm attempts a search
to extract the remaining feature vectors of Oy before
branching to the FV of another object.

The algorithm can be best understood through
Figures 16(a) and (b), which are the point cloud rep-
resentation of a certain environment. The arrows in
the figure indicate the direction in which the search
proceeded. S in the figures denotes the starting fea-
ture vector considered (step 1 of the algorithm). The
initial threshold, vy, is generally of a higher value.
The algorithm searches for the nearest unconsidered
vector to S (step 3). If the nearest vector is within
the threshold distance to the vector considered, it

82 . Journal of Robotic Systems—2002

e t %T T
- e \
\ Z, . e

Q) Yo ‘RS ‘e ’1"

s 5 T \

@ (b) (©

Figure 16. (a) The point cloud representation of an envi-
ronment is shown on the left. The right figure represents the
direction of the search starting at S. (b) The search branches
from FV S to S, of the same cluster. When the search reaches
S, the center has shifted to Z;. Center Z; is shown as a cross.
(c) The search proceeds to T; from S; and reenters at S;. The
centers of the split cluster Z;, Z, are shown using a cross.

gets added as an FV of the same object; the center,
variances, and thresholds for that object get updated
(steps 4a—f). The newly added FV becomes the next FV
to be considered, to which step 3 is again applied. In
this way the algorithm proceeds to extract the vectors
of the same object. The algorithm exploits the princi-
ple that the vectors owned by the same object should
be spatially more proximal amongst themselves than
the vectors belonging to another object. Simultane-
ously the threshold vy, shrinks and settles at a value
indicative of the average intervector partition within
a cluster. Figure 17(a) shows the typical plot of vy,
for a cluster as the search proceeds. The forgetting
factor B =1—« is responsible for adapting v, to the
intervector partition by this factor while retaining the
previous threshold value by a factora =1— 8.

When the nearest FV to X;, X, does not fall within
the threshold vy, the algorithm finds the center of a
cluster that is closest to X; Mahanalobically (step 5a,
where d,,, is the Mahanalobis norm). If the closest cen-
ter does not satisfy the threshold criterion of step 5c,
a new cluster is formed with its center and thresh-
olds initialized according to steps 5d(i-iv). Step 5c¢
is crucial for those situations when the initial FV to
be considered was somewhere near the center of the
object, like the FV S in Figure 16(b). When the search

Progress of search

(a) (®)

Progress of search

Figure 17. (a) Typical variation of threshold vy, for a cluster.
(b) Typical variation of threshold c;;, for a cluster.

reaches an end of the cluster with FV 5; (Fig. 16(b))
the closest unconsidered FV to S;, which is S,, shall fail
the criterion of step 4. However, since it lies within the
threshold c;, with respect to center Z; (Fig. 16(b)) of
the same cluster at that instant, it (S;) gets assigned
as an FV owned by the same object that owns S and
51. The search proceeds from S,. The arrows in Figure
16(b) also indicate the branching of the search from
51 to S,. While vy, is adapted to capture the average
intervector partition distance within a cluster, ¢y, is
adapted to delineate the boundary of the cluster and
to grab those vectors that do not satisfy criterion of
step 4 but lie near the periphery of the cluster. The c,
adapts itself to trace the boundary of the cluster when
the Mahanalobis norm is employed. The typical vari-
ation of ¢y, for a cluster with the progress of search is
shown in Figure 17(b). The boundary parameter n of
step 4f is instrumental in achieving this adaptation.

On the other hand, if T} becomes the closest FV
with respect to S; of Figure 16(b), then T; initiates the
formation of a new cluster as it fails the criterion of
steps 4 and 5c. In this case the search progresses as
shown in Figure 16(c) and the starting cluster is again
reentered through the feature vector Ss. If S3 passes the
criterion of step 5¢, then it gets assigned to the object
thatowns Sand S;. Ifit fails, it splits the object into two
clusters with centers Z; and 7, indicated by crosses
in Figure 16(c). Such split clusters are merged through
a compatible cluster-merging scheme discussed very
briefly in the subsequent subsection.

2.3.2. Object Classification

The eigenvalues and the eigenvectors of the parti-
tioned clusters are computed. A cluster representative
of a dynamic object can be discerned from those signi-
fying a static object throughits elliptical or rectangular
shape. Static clusters are linear and enclose negligible
area while the visible edges of dynamic objects tracked
over samples enclose a finite area.

The objects are classified according to a simple
procedure as follows:

Procedure CBA-I_CLAS
fori=1to K
if (v/A2i/v/*1i) > k) then C; represents a dynamic
object
else it indicates a static object
end;

Here 1y; is the eigenvalue corresponding to the
first principal componentand « is set to 0.3. Theratiois
the ratio of the standard deviations along the principal

Krishna and Kalra: When Does a Robot Perceive a Dynamic Object? « 83

axes of the cluster. The ratio indicates the shape of the
cluster, and for linear clusters or lines the ratio is closer
to zero.

Prior to object classification, a compatible cluster
merging (CCM) method needs to be invoked. CCM is
used for merging two categories of decomposed clus-
ters. The first category is the split cluster described
towards the end of Section 2.3.1. The other category
refers to two or more parallel line like clusters repre-
senting the same dynamic object. This occurs when
the sensors detect more or less the same locations on
a moving object in successive samples. In such a case
the dynamic object appears to be composed of two or
more linear clusters that are more or less parallel. The
CBA-I may decompose such an object into its linear
clusters that need to be merged. The CCM algorithm
does this. The algorithm is ommitted here for brevity.
The criteria for CCM are similar to those employed by
Krishnapuram!® with certain modifications, and the
clusters are merged pair-wise transitively.!®

Compatible Cluster Merging. It is the nature of most
of the clustering algorithms that they do not partition
the data into the expected number of clusters unless
the number of clusters is specified beforehand. This is
especially so if the algorithm has to find the number
of clusters on its own from the given data. It has been
found with the problem at hand that two categories of
decomposed cluster tend to get formed, that need to
be merged. One category is the split cluster discussed
previously and the other category is the decomposi-
tion of a dynamic object into two or more parallel line
like clusters.

The split clusters are merged if the following con-
ditions hold:

1. The closest interpixel distance between any
two feature vectors owned by the individual
clusters is comparable with the steady state
threshold vy, obtained for each of the two clus-
ters.

2. The eigenvectors corresponding to the small-
est eigenvalue for either of the clusters under
consideration are nearly parallel.

The decomposed clusters of a dynamic object get
merged based on conditions suggested by Krishna-
puram and Freg.!> Let the centers of the two clus-
ters be v; and v;, the eigenvalues of the two clusters
be {Ai1,..., Ain} and {Aj1, ..., Ajy}, and the normal-
ized eigenvectors be {¢i1, ..., ¢ix} and {pj1, ..., ¢ju}.
The eigenvalues and eigenvectors are arranged in
descending order of the eigenvalues. The criteria

proposed are stated as follows:

lvi —vjll .
1. ——— <ks, kjliesbetween2and 4 (4)
NZYENGY
2. |plpjn>ki|, kiclosetol (5)
T | 4T
3. ¢fn+¢j;7 Vi —Vj Skz (6)
2 i+l

The first condition states that the cluster centers
should be sufficiently close, and the second states that
the clusters should be almost parallel. The third re-
quires that the normal to the hyperplanes be orthog-
onal to the line connecting the two centers. In other
words, the clusters should lie in the same hyperplane.
The third condition is redundant for the current ap-
plication, as all the feature vectors are represented on
the same Cartesian plane. Though there exist more
sophisticated merging criteria,'® this method has been
adopted (considering their simplicity as well as their
suitability for the problem at hand). The compatible
clusters are merged transitively in pairwise fashion.!®

2.3.3. Parallel Edge Motion Detection

The preceding classification scheme works well for
dynamic objects whose visible edges are perpendic-
ular to their own direction of motion. Objects whose
visible edges are parallel to their motion direction get
represented as line-like clusters, as was the case with
static objects. For such objects the time component of
the FV is considered explicitly and motion is detected
in the same manner as described through procedure
MBA-PEMD.

2.4. Clustering Based Approach Il (CBA-II)

Finally, we present the GK algorithm as a possible
clustering approach for dynamic object perception.
The GK algorithm requires the number of clusters to
be specified initially. Since the number of objects in the
robot’s vicinity is unknown, the number of clusters, K,
is assigned a value higher than the number of objects
the robot generally encounters over five sampling in-
stants. The data obtained is partitioned into clusters
through the GK algorithm and compatible clusters
are merged through the CCM scheme mentioned in
Section 2.3.3. Prior to this is another processing step,
the reassignment of wrongly assigned clusters to fea-
ture vectors. It is one of the inherent traits of the fuzzy
clustering family of algorithms that smaller clusters
tend to grab FVs owned by larger clusters to minimize
the cost function.!” Hence a module that reassigns the

84 . Journal of Robotic Systems—2002

wrongly assigned vectors to their actual owner clus-
ters is introduced. This module identifies an FV, X;,
to be wrongly assigned to an object O;, when its clos-
est FV belongs to a different object O; and X; is also
Mahanalobically closer to the center of the object O;
than the object to which it is actually assigned (O;).
After reassignment, compatible clusters are merged
and the final clusters classified in the same manner as
described in Sections 2.3.2-3.

While it is accepted that the CBA-II differs from
the CBA-I only in the preprocessing stage of cluster
formation, the main motivation for employing this ap-
proach has been to present a possible application of
the fuzzy clustering family of algorithms!® in the area
of mobile robot navigation. Literature indicating such
applications has been very rare. Apart from that, the
nature of the sensor data seem amenable for a cluster-
ing application. Fuzzy clustering algorithms have an
advantage in that the data is partitioned based on an
explicit minimization of an optimization function and
the final convergence is independent of the order in
which the inputs are presented. The parameters need
not be varied from one data set to another. The GK
algorithms seem specifically suited for this purpose
due to their ability to detect elliptical and linear clus-
ters of different shape and orientation. The constraint
to specify the initial number of clusters can be com-
pensated by clustering with a higher number than re-
quired and coalescing the compatible ones. A better
approach to determining the optimal partition of data
can be the one given by Xie and Beni.!* However, this
algorithm is unsuitable for real-time applications, as it
requires clustering over a range of possible partitions
starting from K = 2 before reaching a value of K that
indicates optimal partition. A comparative summary
of the four approaches is presented towards the end of
the subsequent section, with respect to criteria critical
for robotic navigation.

3. SIMULATION RESULTS AND COMPARISON

To test the efficacy of the algorithm, a graphical simu-
lator has been developed on a Pentium machine. The
robot is modeled as a circle of radius 5 pixels with a
ring of 24 sensors placed along the circumference, with
an angular separation of 15 degrees with respect to
the robot’s center. In simulations, the trajectory of the
robot until it identifies the dynamic object is shown.
To portray the efficacy of the classification strategy
for further application, simulation graphs of how this
classification actuates collision avoidance of dynamic
objects is occasionally shown.

3.1. Simulation Analysis

Figures 18-20 depict identification of dynamic
objects through the STA. The weight vectors of the
resilient propagation (RPROP) network obtained
after the training process converged are used while
navigating in a real-time environment. Input data is
preprocessed by the spatial classifier followed by the

Figure 18. Instant of perception of the dynamic object on
the left through sensors 13 and 14 with VOCs [3, 3] and [2, 3],
respectively.

Figure 19. (a) Instant prior to cognition of the dynamic ob-
ject on the right. (b) Sensor 10 cognizes the dynamic object
on the right due to VOC [7, 0]. (c) Sensor 12 cognizes the
dynamic object on its left through VOC [8, 0].

(a) (b)

Figure 20. (a) Detection of free space by sensor 5 an instant
prior to motion detection. (b) Sensor 5 perceives motion in
the environment through the VOC [0, 0].

Krishna and Kalra: When Does a Robot Perceive a Dynamic Object? « 85

order extractor before being fed to the RPROP net-
work. The network outputs the temporal sequence of
classes as an experience of static or dynamic objects.

Figure 18 shows the instant of perception of the
dynamic object on the robot’s left amidst five static
objects through sensors 13 and 14. The RPROP net-
work classifies the VOC [3, 3] obtained through sen-
sor 13 and VOC [2, 3] obtained through sensor 14 as
experiences of a dynamic object. The postprocessing
module compares the range readings of both the sen-
sors, and finding them to be comparable, infers that
the sensors have cognized the same dynamic object.
Figures 19(a—c) portray the perception of two dynamic
objects amidst three static ones. Figure 19(a) shows
the instant just prior to perception. Figure 19(b) sig-
nifies the situation when the dynamic object on the
right is perceived through sensor 10, and Figure 19(c)
is when the dynamic object on the left is detected by
sensor 12. The average velocity of the robot was 2.7
pixels per sample. The experience of the VOC by the
sensors that perceived motion is also given in the cap-
tions to the figures. Figure 20(a) indicates the situation
just prior to motion detection, when sensor 5 detects
free space. Figure 20(b) is the instant when motion is
perceived through sensor 5 as it detects an object sud-
denly at near ranges. This experience gets captured
through VOC [0, 0] for sensor 5, which indicates an
experience of a dynamic object. The postprocessing
module checks for the reading of sensor 6 that is ad-
jacent to 5 but closer to the center sensor 11. Since the
readings are not comparable, the STA classifies the ex-
perience of the spatiotemporal patterns by sensor 5 as
an experience of a dynamic object.

Figure 21 is a snapshot of the instant when the
MBA through the PDMD track detects the dynamic
object on the rear while the robot rotates to avoid the
static object. This we feel to be an involved case for
detection, for the object is on the rear and approaches
the robot at an obscure angle that is likely to go unno-
ticed. Figures 22(a—c) depict an environment that con-

Figure 21. Instant of perceiving the dynamic object
through MBA as the robot rotates to avoid the static objects.

. ° °
Ee
Object 1
(@) (b) (©
Figure 22. (a) Instant of perceiving object 1 by MBA.

(b) Perception of object 2. (c) Perception of object 3.

tains three dynamic and two stationary objects. The
MBA could clearly distinguish the static and dynamic
objects. The figures also show the instances when the
objects labeled 1, 2, and 3 got identified as dynamic.
Here objects 1 and 2 got identified through the MBA-
PEMD scheme and object 3 through the MBA-PDMD
method.

Figures 23-25 delineate the classification of dy-
namic objects through CBA-I. Figure 23(b) is the point

L]
5 P ? .
= = 2 _ -
= . Bs
5 0 o, H
Object 1 ':4 & ‘
(a) (b) (c)

Figure 23. (a) Threestaticand two dynamic objects. (b) The
point cloud representation of part (a) with the centers of
clusters formed by CBA-I. A outlier cluster beside object 5
is shown circled. (c) Cluster centers after CCM.

(a) (b) ©

Figure 24. (a) An environment where one dynamic object
crisscrosses the path of another within a few samples. (b)
Clustering results of CBA. The FV of the merged cluster of
the two dynamic objects for t = 8 are disparate and shown
connected by a line. A noisy cluster is also shown within a
box. (c) The final clusters and their centers. The coalesced
dynamic object gets decoupled into two.

86 - Journal of Robotic Systems—2002

y 7.

(@) (b) ©

Figure 25. (a) Navigation amidst three dynamic and two
static objects labelled 1-5 in clockwise direction. (b) Initial
clustering results. Dynamic objects 1 and 4 are clustered as
two clusters each by the CBA-I. Static object 3 forms a split
cluster. (c) Final cluster centers after CCM. Objects 1, 3, and
4 are represented by a single cluster now.

cloud representation of the environment of Figure
23(a), based on the data acquired during the last five
samples. The figure also shows the centers of the clus-
ters denoted by small circles or squares found by
the CBA-I algorithm. The static object on the robot’s
right (object 5) gets represented as a split cluster (de-
scribed in Section 2.3.2) while the dynamic object on
the robot’s front-right (object 4) is decomposed into
two linear clusters. The prominent advantage of this
approach is that noisy readings and outliers get iden-
tified as individual noise clusters that can be easily
discarded. This is especially crucial from the point of
view of the collision-avoidance scheme that would
follow the classification. Since collision avoidance in-
volves some kind of future prediction of the object’s
motion based on its endpoints or centers, presence of
outliers can distort the centers or endpoints from their
actuallocations and result in prediction errors that can
affect the collision-avoidance strategy. In Figure 23(b)
the outlier beside the cluster indicating object 5, shown
enclosed in a circle, gets identified as a distinct noise
cluster. These clusters can then be quarantined from
affecting the estimates of the motion predictor that
would follow. Figure 23(c) shows the centers of the
clusters after CCM. The dynamic object now gets rep-
resented as a rectangular/elliptical cluster, the split
cluster on the right gets merged, and the outlier dis-
carded. The classification strategy identified both the
dynamic objects, the one on the front-right (4) through
the ratios of the eigenvalues and the one on the front
left (2) through the same scheme as MBA-PEMD.
Table II shows the ratios of the square roots of the
eigenvalues of the clusters of Figure 23(c). The labeling
of the objects in Table Il is consistent with the labeling
indicated in Figure 23(a).

Figure 24(a) depicts another interesting situation,
where one dynamic object crisscrosses the path of
another in quick succession. As a result the point
cloud representation of both the dynamic objects

Table Il. Ratios of the standard deviations of the objects of
Figure 23(a) along the principal axes of the clusters.

Object Index it Liz hit/ N Ai2
1 12.11 224 0.18
2 6.08 1.09 0.18
4 10.00 3.90 0.39
5 12.42 1.25 0.10

(Fig. 24(b)) are merged, and the CBA-I clusters both
the objects together as a single entity. Such merged
clusters get differentiated through a dynamic decou-
pling procedure. This procedure makes use of the time
component of the feature vectors to separate the clus-
ters. In a nutshell, the FV of the cluster at a partic-
ular timestamp is considered. For example, consid-
ering the FV of the merged cluster with timestamp
t =8 shows two distinct clusters marked with cir-
cles and connected by a line in Figure 24(b). Sim-
ilarly, two distinct clusters get formed at t =9 and
t=11. If over a sequence of five samples a clus-
ter can be subdivided in more than two samples,
the algorithm decouples the cluster, as follows. The
distinct clusters that got formed at successive time
stamps are clubbed through a nearest-neighbor cri-
terion. In other words, a distinct cluster at ¢ = 8 gets
merged with the closest distinct cluster at t =9. Thus
we have two distinct sets of clusters considering the
timestamps of t =8 and ¢t =9 from the four that got
formed (two each for each timestamp). For each of
the distinct sets the eigenvectors are computed. The
remaining FV gets assigned to that cluster to which
it is Mahanalobically closer. Thus the coupled clus-
ter of Figure 24(b) gets decoupled in Figure 24(c) into
two. The preprocessed clusters were then classified
accurately as two dynamic and two static clusters.
A noisy cluster shown enclosed within a square in
Figure 24(b) also gets discarded in Figure 24(c).

Figure 25(a) shows navigation amidst two static
and three dynamic objects. The CBA-I clusters the five
objects into eight clusters. The clusters along with the
centers are shown in Figure 25(b) with the dynamic
objects labeled 1 and 4 getting decomposed into two
clusters each. Figure 25(c) represents the centers af-
ter CCM. Once again the classification strategy could
accurately identify the dynamic objects amidst static
ones. Here the eigenvalue method mentioned in Sec-
tion 2.3.2 classified all three dynamic objects.

Finally, indicated in Figure 26(a) is the clustering
of the environment of Figure 25(a) through the GK al-
gorithm. The initial number of clusters had been fixed
to 8. Also shown is an FV indicated by an arrow that

Krishna and Kalra: When Does a Robot Perceive a Dynamic Object? « 87

o . e

(a) (b)

Figure 26. (a) GK algorithm forms eight clusters in much
the same way as CBA-I except for a misassigned FV indi-
cated by an arrow. (b) Final centers after CCM.

is owned by object 4 (Fig. 25(a)) but gets wrongly as-
signed to object 3. Figure 26(b) shows the centers af-
ter sorting out the wrongly assigned FV, followed by
CCM.

As a possible illustration of the efficacy of the
detection schemes for the purpose of real-time col-
lision avoidance of dynamic objects, the graphs of
Figure 27 show the various stages in collision avoid-
ance of two dynamic objects encountered in quick suc-
cession. The objects got classified as dynamic through
the MBA.

3.2. Comparative Analysis

The four approaches are compared on the basis of their
suitability for real-time implementation, accuracy of
classification, nature of the internal representation
required, and performance during rotational displace-
ments of the robot. The following limitations are
common across all four approaches, some of which
can be made out from the simulation graphs.

1. The approaches can discern an object as sta-
tionary or dynamic based on its translational

Figure 27. Various stages in detection, tracking and avoid-
ance of two dynamic objects. Detection through MBA.

displacements. The approaches are not de-
signed to identify rotating objects as dynamic
(such as a rod that rotates about its center).

2. The length of the object can also affect the per-
formance of the classification. This happens
when the detection is based on the visible edge
thatis parallel to the object’s own motion direc-
tion and is very long. Here “very long” can be
interpreted as those edges whose length spans
the conical envelope of all those sensors that
could have detected the object over more than
half the time window number of samples. Such
very long edges would getidentified as station-
ary though dynamic. For example, an edge that
can be detected at a particular instant by sen-
sors 10 to 13 and is detected by all of them and
continues to be detected by all of the sensors
that can possibly detect it for two more sam-
ples is considered very long.

3. The distance moved by the robot during a
scan of the environment is negligible when
compared with the distance moved by it be-
tween successive scans of an environment. In
other words the algorithm treats the robot to be
stationary when the sensors probe the environ-
ment. This does not necessarily mean that dur-
ing real time the robot must stop every time it
evaluates its neighborhood. The assumption is
only to facilitate simplified computations.

3.2.1. Analysis of STA

The STA appears to be the best suited for real-time
implementations, as it can classify the objects faster
than the remaining approaches. The only preprocess-
ing is the extraction of the temporal order of classes.
Upon being presented with the temporal order, the
network outputs the classification through the weight
vectors learned offline by a single feed-forward pass.
It also does not require any internal representation
in terms of feature maps of the objects, and classifies
purely based on range data. The scheme is however
susceptible to rotation. Though its variance to rotation
is tolerated through the extrapolation scheme men-
tioned in Section 2.2, it is unreliable when the robot
has to encounter dynamic objects in succession. In the
absence of successive rotations, the scheme gives the
best accuracy amongst all the approaches. This can
be attributed to the use of artificial neural networks,
which is especially useful for nonlinear mappings as
well as noisy data. Further, the architecture employed
(Figs. 2, 8) is inherently elegant and can be realized
through hardware.

88 . Journal of Robotic Systems—2002

° 00 @ 50 oned

(2) (d) (©

Figure 28. (a) A difficult case for discernment for the MBA.
(b) FV extracted from one sample. (c) Feature vectors ex-
tracted over last five scans.

3.2.2. Analysis of MBA

In terms of real-time suitability, the MBA should rank
second after the STA, as features are extracted through
a single pass of the feature vectors obtained from the
most recent scan. It does not involve an iterative pro-
cedure for clustering the partitioned data as in CBA-II
or a search for the nearest FV as in CBA-I. Storage re-
quirements are lower when compared with the clus-
tering approaches, since data acquired from the last
sample alone is considered. The algorithm is invari-
ant to rotational displacements of the robot. However,
in terms of accuracy of classification, it is the least ac-
curate amongst all the approaches. The MBA is specif-
ically vulnerable in situations such as that illustrated
in Figure 28(a). Since the visible edges of both ob-
jects are along the same line and the objects are spa-
tially proximal, the MBA may not be able to demarcate
the two objects based on the FV extracted (shown in
Fig. 28(b)).

3.2.3. Analysis of CBA-I

In terms of real-time suitability, CBA-I ranks third.
Though the clusters are partitioned through a single
pass of the feature vectors in the sense that iterative
loops are not required, the partitioning process entails
a search for the nearest FV for every FV considered.
However the search space reduces with every FV con-
sidered, as only the remaining unconsidered FVs are
searched. The scheme also requires a CCM procedure.
In terms of accuracy, the scheme is most reliable when
rotational displacements are considered. The scheme
is also robust to presence of outliers. Outliers in gen-
eral get partitioned as distinct noisy clusters that can
be discarded. With FV accumulated over the last five
samples and an intrinsic ability to detect free space
through the threshold vy, it can easily demarcate ob-
jects as shown in Figure 28(a), due to the presence of
a discernible free space between the FVs of the two
objects (Fig. 28(c)). It is invariant to rotation.

3.2.4. Analysis of CBA-II

This scheme ranks last in terms of real-time suitabil-
ity amongst the approaches considered here. This is
chiefly due to an iterative procedure for partitioning
the clusters typical of a clustering algorithm based on
optimizing an error function,'"!® coupled with other
procedures such as CCM. Nevertheless, for the kind of
objects encountered in a typical indoor environment
where the number of objects encountered over a span
of a few samples is not very high, the performance
seems reasonable for real-time application when sim-
ulated on high-speed processors. The accuracy is com-
parable with the CBA-I, however the tendency to grab
FVsbelonging to another cluster is prominent. The al-
gorithm is rotation invariant.

3.3. Possible Objections and Limitations

It is acknowledged that the results presented here are
graphical simulations and the utility of the approach
for real-world implementations may be questioned.
The prominent objections can be from the point of
view of estimation of the robot’s egomotion and the
reliability of sensor data. It is argued here that the
above methods can be employed legitimately for ex-
perimental robots also from the point of view of both
these objections.

The range data provided by the range finders
are with respect to a frame of reference fixed to the
sensor. To compare range data obtained at different
instants they need to be projected onto the same refer-
ence frame to facilitate maintaining internal represen-
tations in the form of maps. This entails an accurate
knowledge of the robot’s displacement in terms of ro-
tational and translational motions between samples.
The approaches presented in this paper are primar-
ily concerned with identifying local spatial changes
that occur within a short time window of observa-
tions and not with changes over temporally distant
scans. Hence long-range position estimation is not the
consequence of this paper. The changes in the robot’s
position over temporally proximal scans can be esti-
mated to working accuracy based on odometric data
itself. Recently Prassler and others have reported ef-
ficient real-time implementations on a similar prob-
lem through map building based on such odometric
data.? It is also emphasized that it is not the objec-
tive of this paper to concern itself with robot localiza-
tion or the map building problem, and the argument
is that the present approach should be used in tan-
dem with approaches that surmount dead-reckoning
erTors.

Krishna and Kalra: When Does a Robot Perceive a Dynamic Object? « 89

As far asrange data is concerned, laser range find-
ers have proven to be more precise and reliable than
sonar. In this paper we have assumed that specular re-
flections do not arise from dynamic objects and this as-
sumption has been condoned in other approaches.” 1
The authors reported successful real-time implemen-
tations of dynamic collision avoidance through an
REBP network, which was trained based on range data
obtained from a sensor model that neglected these re-
flections. Another important consideration with range
images is the ignorance regarding which part of the
conical beam actually detected the object. Due to this,
projections of the range data onto the reference frame
will be in an average error of five degrees. Estimating
which edge of the cone could have detected the ob-
ject by considering readings obtained from adjacent
sensors can reduce this error. For example, consider a
contiguous set of readings obtained by sensors 7-10
detecting an object (Fig. 29). These readings can vary
in three ways. They can monotonically increase from
7-10, which indicates that the object is closest to 7, or
decrease monotonically, which indicates that it is clos-
est to 10, or they can decrease and increase, which in-
dicates that they are closest to a sensor between 7 and
10. For the monotonically increasing case, we consider
the reading of sensors 10-8 to be given by that edge of
the conical beam that is closest to sensor 7. These edges
are shown in dark lines in Figure 29, where each sen-
sor beam is marked by three rays, the center ray and
the two extremities of the cone. However, for sensor 7
we consider the reading to have been obtained by the
center ray, since it is not possible to certify whether
the object came under the influence of the entire cone
of sensor 7 or part of it. Hence the reading of sen-
sor 7 is assumed to have been obtained through its
central ray to keep the error bound within 5 degrees.
Similar reasoning can be applied for the decreasing
and increasing-decreasing patterns. In this way the
errors for other sensors except sensor 7 would be
negligible.

Figure 29. Sensor 7-10 detect the object with increasing
ranges. That ray of the cone that is most likely to have
detected the object is shown in a dark line. Each sensor is
marked by three rays, a center ray and the two extremeties
of the cone.

4. CONCLUDING REMARKS

To be useful in the real world, a mobile robot should be
able to navigate in unstructured environments where
changes are likely to occur. Though there exist many
approaches in the literature that deal with naviga-
tion in nonstationary workspaces, they do not spec-
ify a strategy for demarcating dynamic objects amidst
static ones. Awareness of the surroundings in terms
of static and moving agents is a realistic first step for
any navigating system. This occurs inherently in real-
life systems. This paper has presented four possible
approaches for classifying objects in a robot’s vicin-
ity as static or dynamic. These approaches have been
tested through real-time simulations and found suit-
able. A comparative analysis of these approaches with
criteria critical to real-time implementations has been
presented, and it is also argued that these approaches
can be adopted for indoor mobile robotic applications
without much modification.

REFERENCES

1. K. Fujimura and H. Samet, A hierarchical strategy for
path planning among moving objects, IEEE Trans Robot
Automat 5:(1) (1989), 61-69.

2. C.L. Shih, T. Lee, and W.A. Gruver, A unified approach
for robot motion planning with moving polyhedral ob-
jects, IEEE Trans Syst Man, Cybern 20:(4) (1990), 903—
915.

3. N.C. Griswold and J. Eem, Control for mobile robot in
presence of moving objects, IEEE Trans Robot Automat
6:(2) (1990), 263-268.

4. Y.S. Nam, B.H. Lee, and M.S. Kim, View time based
moving object avoidance using stochastic prediction of
object motion, Proc IEEE Int Conf Robot Automat, Min-
neapolis, MN, 1996, pp. 1081-1086.

5. Q. Zhu, Hidden Markov model for dynamic object
avoidance of mobile robot navigation, IEEE Trans Robot
Automat 7:(3) (1991), 390-397.

6. P.Srivastava, S. Satish, and P. Mitra, A distributed fuzzy
logic based n-Body collision avoidance system, Proc
Fourth International Symposium on Intelligent Rob
Systems, Bangalore, India 1998, pp. 166-172.

7. 1. Hiraga et al., An acquisition of operator’s rules for
collision avoidance using fuzzy neural networks, IEEE
Trans Fuzzy Syst 3:(3) (1995), 280-287.

8. A. Fujimori, M. Teramoto, PN. Nikiforuk, and
M.M. Gupta, Cooperative collision avoidance between
multiple mobile robots,] Robot Syst 17:(7) (2000), 347-
363.

9. C.C. Chang and K.T. Song, Environment prediction for
a mobile robot in a dynamic environment, IEEE Trans
on Robot Automat 13:(6) (1997).

10. K.T. Song and C.C. Chang, Reactive navigation in dy-
namic environment using a multisensor predictor, IEEE
Trans Syst, Man, and Cybern 29:(6) (1999).

90

11.

12.

13.

14.

o Journal of Robotic Systems—2002

D. Gustafson and W. Kessel, Fuzzy clustering with a
fuzzy covariance matrix, Proc IEEE CDC, San Diego,
CA, 1979, pp. 761-766.

K.M. Krishna and PK. Kalra, Solving the local minima
problem for a mobile robot by classification of spatio-
temporal sensory sequences,] Robot Syst 17:(10) (2000),
549-564.

M. Riedmiller and H. Braun, A direct adaptive method
for faster back propagation learning: The RPROP al-
gorithm, Proc IEEE Int Conf on Neural Networks,
1993.

D.E. Rumelhart, G.E. Hinton, and R.]. Williams, Learn-
ing internal representations by error propagation, Par-
allel distributed processing, vol 1, D.E. Rumelhart
and J.L. McClelland (Editors). MIT Press, Cambridge,
MA, 1986.

15

16.

17.

18.

19.

20.

. R. Krishnapuram and C.P. Frieg, Fitting an unknown
number of lines and planes to image data through
compatible cluster merging, Pattern Recognition 25:(4)
(1992), 385-400.

R. Babuska, Fuzzy Modeling for Control, Kluwer Aca-
demic Publishers, Boston, 1998, p. 101.

R. Krishnapuram and J. Kim, A note on the Gustafson-
Kessel and adaptive fuzzy clustering algorithms, IEEE
Trans on Fuzzy Syst 7:(4) (1999), 453—461.

J. C. Bezdeck, Pattern recognition with fuzzy objective
function algorithms. New York: Plenum, 1981.

X.L. Xie and G. Beni, A validity measure for fuzzy clus-
tering, IEEE PAMI 13:(8) (1991), 841-847.

E. Prassler, J. Scholz, and A. Elfes, Tracking mul-
tiple moving objects for real-time robot navigation,
Autonomous Robots 8:(2) (2000), 105-116.

