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Abstract

This paper deals with the advantages of incorporating cognition and remembrance capabilities in a sensor-based real-time
navigation algorithm. The specific features of the algorithm apart from real-time collision avoidance include spatial comprehen-
sion of the local scenario of the robot, remembrance and recollection of such comprehended scenarios and temporal correlation
of similar scenarios witnessed during different instants of navigation. These features enhance the robot’s performance by pro-
viding for a memory-based reasoning whereby the robot’s forthcoming decisions are also affected by its previous experiences
during the navigation apart from the current range inputs. The environment of the robot is modeled by classifying temporal
sequences of spatial sensory patterns. A fuzzy classification scheme coupled to Kohonen’s self-organizing map and fuzzy ART
network determines this classification. A detailed comparison of the present method with other recent approaches in the specific
case of local minimum detection and avoidance is also presented. As for escaping the local minimum barrier is concerned this
paper divulges a new system of rules that lead to shorter paths than the other methods. The method has been tested in concave,
maze-like, unstructured and altered environments and its efficacy established. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Although there exist numerous approaches that deal
with real-time navigation of a mobile robot using range
sensors such as fuzzy logic approaches [1–3], heuris-
tics [4], wall following [5,6], force field [7,19] and
neural network methods [8–10] most of them do not
discuss strategies for incorporating memory or remem-
brance properties. A navigating robot must not only
avoid obstacles based on the range input but also com-
prehend the nature of its environment, remember over
time such comprehended scenarios, recollect them and

∗ Corresponding author.
E-mail addresses:kkrishna@iitk.ac.in (K. Madhava Krishna),
kalra@iitk.ac.in (P.K. Kalra).

associate in time perceptions of environment that re-
semble each other. Such requirements demand spa-
tial and temporal reasoning capabilities. Considering
the environment of the robot as an experience of a
sequence of sensor patterns; this paper discusses a
method that reduces to order such experiences by a
classification scheme to achieve the necessary spatial
and temporal reasoning properties.

The classification scheme consists of a fuzzy rule
base that maps the instantaneous range inputs into a
set of classes coupled to a SOM [11] and fuzzy ART
network [12] that learns a sequence of such classes
ordered in time. The SOM models the experience
of spatio-temporal patterns in terms of landmarks
learned offline while ART imparts plasticity by learn-
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ing and storing new patterns during real-time that are
not among the ones modeled by the SOM. Spatial rea-
soning is provided by the weight vectors of the neuron
that are codified representations of the local space of
the robot. Storing the lattice positions of the weight
vectors during a traversal imparts memory, temporal
ordering of the lattice position facilitates recollec-
tion while temporal association occurs through recall
when perception of a similar environment maps to
the same neuron.

Such spatio-temporal reasoning embellishes the
performance of a mobile robot through more appro-
priate paths, detecting local minimum situations and
scene recollection properties. This paper compares in
detail the performance of recent approaches proposed
to circumvent the local minimum problem [4,13–16].
Certain limitations are found in the virtual target
approach [15,16] when the robot reverts into the same
limit cycle which it tries to overcome for a class of
environments and a modification scheme is suggested
using a subgoal stack to overcome this limitation.
The paper also reasons that the proposed method for
overcoming the local minimum gives shorter paths
than the other algorithms from the instant the local
minimum is detected. The convergence of the algo-
rithm in reaching the target from the instant of local
minimum detection is ascertained.

The paper is organized as follows. Section 2 dis-
cusses the classification scheme for incorporating
cognition and remembrance properties. Section 3
discusses through graphical simulations the advan-
tages of using this classification scheme in maze-like,
changed and irregular environments. Section 4 does
the comparative study of the recent algorithms pro-
posed in the literature for overcoming the local min-
imum barrier and Section 5 winds up the paper with
concluding remarks.

2. Cognition and remembrance for the navigation
algorithm

To possess cognition features the robot must be-
come aware of the kind of environment it observes

Fig. 1. (a) Robot enters a corridor; (b) after a few instants; (c) corridor with a slit in its left; (d) meets a dead end.

while navigating to a certain degree. In vision-based
systems a single snapshot can capture the necessary
information required for understanding the nature of
the environment present in the neighborhood. On the
contrary sensor-based systems require a sequence of
sensor samples of the environment before an under-
standing of the environment can be attempted. For
example to understand its passage through a narrow
corridor the robot needs a minimum number of sensor
samples for reaching such an opinion. At the instant
when it just enters the corridor (Fig. 1(a)), it can only
understand the presence of an obstacle on its left
and right atnear distances from the sensor readings
(near is a typical fuzzy variable used in sensor-based
navigation systems [1–3]). However over a few sam-
ples (Fig. 1(b)) the robot can reach a fair conclusion
about its passage through a corridor. If the corridor
leads to an opening on the left (Fig. 1(c)) the robot
should get aware of it. If it leads to a blind end
(Fig. 1(d)) it must arrive at that conclusion just as a
human would, through the samples it had seen so far.
Hence the robot experiences a corridor though the
temporal sequence of sensor patterns and reducing
to order such experiences by an appropriate clas-
sification scheme the robot can become cognizant
of its passage through a corridor leading to a blind
end.

2.1. Fuzzy classifier

In the above example the robot’s experience
of the corridor is represented through the vector
[us(t), us(t + 1), . . . , us(t + n − 1)] where us(t) de-
notes the sensor sample at the instant it entered the
corridor andus(t + n − 1) is the sample of the envi-
ronment when it reached the dead end. Any sample
of the environment is given byus = [u0, u1, . . . , u6]
where eachui, i = {0, 1, . . . , 6}, is the range reading
of an ultrasonic sensor during that sample. Seven such
sensors are placed in the form of an arc on the cir-
cumference of the robot subtending an angle of 90◦ at
the center of the robot. Two issues become prominent
here.
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1. The space complexity involved in storing se-
quences of sensor samples where each sample is a
seven-dimensional vector of range readings.

2. How many ‘n’, of such samples shall represent a
landmark. In other words is there a way to fix the
upper bound onn.

To reduce the space complexity and to facilitate
fast learning of sample sequences by the SOM and
ART a fuzzy classifier is used that maps each sample
us to a particular class. The SOM and the ART can
be trained on a sequence of one-dimensional classes
rather than a sequence of seven-dimensional sen-
sor samples. Initially the seven sensors are clubbed
into three groups namely left, center and right. The
left group consists of sensor 4 down to 6, center
group represented by sensor 3 and right group by
sensors 0 to 2. The minimum reading of the sen-
sors in each group is considered as the reading of
that group. The fuzzy classifier classifies the read-
ings of such groups into one of the nine classes as
shown in Table 1. The mathematical formulations
of the classification scheme are not considered here
for brevity. Evidently there can be other ways of
classifying the range reading to classes. The reason
to have specified the range readings in terms of far,
near and very near is essentially due to the same kind
of partitioning employed in the fuzzification part of
the inference scheme for collision avoidance. Thus
the fuzzified range readings become an end product
for further inferencing leading to collision avoidance
as well as spatio-temporal classification responsible
for imparting cognition and remembrance features.
Increasing the number of classes, it is felt, may
not affect in a significant manner the performance

Table 1
Spatial classification of the range readings by fuzzy rule base

Right sensor Center sensor Left sensor Class

Very near Very near Very near 0
Near Near Near 1
Near Near Far 2
Near Far Near 3
Near Far Far 4
Far Near Near 5
Far Near Far 6
Far Far Near 7
Far Far Far 8

of the algorithm since most of the typical indoor
landmarks get represented through a sequence of
these nine classes (Table 1). There can also be
other ways of grouping the seven sensors into the
three groups. The suggestion by one of the referees
to have the center group reading as the maximum
range of sensors 2, 3 and 4 is found useful in fil-
tering variations in range readings on certain occa-
sions.

The second issue is regarding the upper bound on
the number of classes (since each sample is reduced
to a class) that represents a landmark. Through practi-
cal experience it has been surmised that the change in
the sequence of the classes holds the key to identify
typical landmarks more than the sequence of classes
itself. The change in the class sequence physically
represents what can be called as an ‘observation
event’. The detection of the observation event is cru-
cial for the robot to make an adequately intelligent
decision. This will be further elaborated in Section
3. In the corridor example (Fig. 1(d)) the observation
event occurs when the sequence of classes changes
from 3 to 1 to 0 represented as [3, 1, 0]. The change
represents the termination of the corridor into a blind
end, which occurs due to the change in sensor read-
ings when the robot nears the blind end. Similarly the
corridor in Fig. 1(c) is identified through the sequence
of changes [3, 4, 8]. Based on this observation event
the robot becomes aware of its traversal through a
narrow corridor opening to freespace on its left. The
point to be noted is that no two successive classes
in the sequence of classes will be the same. Since
it is the changes in the sequence that is of primary
concern than the number of classes in the sequence
it is significant that all such dead ended corridors can
be depicted by [3, 1, 0] irrespective of the size of the
corridor. Through experience it has been observed
that the typical landmarks (Fig. 2) encountered in an
indoor environment can be represented through not
more than two changes in sequence. The upper bound
on the number of classes is thus fixed at 3 irrespective
of the nature of the landmark. It is noteworthy that a
landmark experienced through a very long sequence
of spatial sensor patterns can be cognized through a
sequence of only three classes leading to considerable
reduction in memory. A sequence of three classes can
be learned and identified easily by SOM and ART in
reasonable time whereas an increase in their number
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Fig. 2. Some typical landmarks.

requires a large number of neurons to capture the
information and an expensive training time.

Though the length of each class in a sequence
need not be known for landmark recognition the
minimum number of times a particular class must
occur in a sequence to prevent misidentification of
stray or noisy sequences to a landmark must be
known. In case of the dead ended corridor the first
class ‘3’ must occur at the least four times, the
second class twice and the third once. This min-
imum bound on the number of times each of the
three classes in a sequence needs to occur is another
three-dimensional sequence called the vector of lower
bounds.

To summarize a landmark is modeled as an ex-
perience of spatio-temporal patterns. Each sample of
such a pattern consists of range readings obtained by
the seven sensors. For reducing complexity of stor-
age, representation and learning a long sequence of
such samples each sample is mapped to a class by
the fuzzy classifier. The number of such classes in a
temporal sequence is fixed at 3 with no two consec-
utive classes being identical. The minimum number
of times each class must occur in a sequence to fil-
ter noisy samples is termed the lower bound for that
class.

2.2. Classification by SOM and fuzzy ART

The SOM is trained for the typical landmarks that
are expected to occur in a general environment. The
robot navigates across various landmarks such as
those shown in Fig. 2 using a fuzzy algorithm. The
range samples encountered during the traversal are
classified by the fuzzy classifier, grouped to form the
temporal sequence of classes as described in Section
2.1 and stored. The SOM is a lattice of 7× 7 neu-
rons that are initialized to normalized random values.
A sequence of classes is picked up in random from
the stored sequences of classes and presented to the
network. The winner is determined and the winner
and the other neurons are updated according to the
standard update rule with a Gaussian neighborhood
function [17]. The number of iterations should be of
two orders more than the total number of neurons in
the lattice [17] for the SOM to capture the essential
topology of the input space. Once the SOM is trained
for various landmarks the robot navigates across a
particular landmark with reduced sizes. The number
of occurrences of each class in the sequence of the
smallest landmark the SOM is able to recall is stored
as a neuron whose weights represent the lower bounds.
The neuron is stored in the position corresponding to
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Fig. 3. (a) Lattice neurons with their vector of lower bounds; (b) mapping of the landmarks by SOM through its weight vectors.

the lattice position of the winning neuron of the SOM
(Fig. 3(a)). Fig. 3(b) shows the weight vectors and
their corresponding landmarks after learning. Similar
landmarks get mapped to neighboring positions in the
lattice.

After such training the robot navigates in a real-time
workspace. On encountering a sequence of patterns
that represents a particular landmark the neuron in the
lattice is triggered and the robot becomes aware or
cognizant of the presence of such a landmark in its
vicinity. Thus SOM imparts spatial cognition features
to the robot.

However all the experiences of spatio-temporal pat-
terns cannot be modeled through the landmarks learnt
offline. Under some situations this can result in the
robot not getting aware of its trapped condition in a
local minimum discussed in Section 3. A provision
for online learning and classification can hurdle over
such local minimum barriers. Fuzzy ART with com-
plement coding scheme serves as a good alternative.
The ART network can dynamically add new patterns
to its knowledge base and can afford to forget those
patterns that do not occur frequently. As the robot nav-
igates the sensor samples are classified by the fuzzy
classifier and the temporal order of classes extracted.
The temporal sequence is the input to the ART net-
work, which either maps the sequence with an earlier
one or adds a new pattern to the existing set of pat-
terns. These decisions are governed by an appropriate
choice of the vigilance parameter [12].

The classification scheme discussed in this section
attempts to impart spatio-temporal reasoning abilities
to the robot by reducing to order the robot’s experience
of the environment through the sequences of sensor

samples. The efficacy and various concomitant utilities
of such a classification scheme is presented for static
environments in Section 3.

3. Simulation

The mobile robot navigates its environment based
on certain fuzzy rules that operate on the sensory input
space of the robot. The input space,U, of the mobile
robot can be represented as

u = [us, udf ]
T , u ∈ U,

whereus represents the sensory input space of seven
sensors. Inputudf represents the angular difference
between the mobile robot’s instantaneous direction
vector and the vector joining the robot’s center to the
target, also called the difference angle.

The fuzzy rule base acts on the input space,U
through two primary modules, the goal reaching
module and the obstacle avoidance module to output
a motion command to the robot. The goal reaching
module imparts a command that orients the robot
towards the target and the obstacle avoidance module
turns the robot in such a way to prevent collisions.
Both these modules guide the robot to its destination
avoiding the obstacles. The purely fuzzy algorithm
performs in a densely cluttered environment (Fig. 4)
but fails in environments that require spatial and tem-
poral reasoning capabilities. In the simulations the
robot has been modeled as a circle of radius 5 pixels
that rotates about its center and is aware of only its
start and final positions. Each of the range sensors
transmits a conical beam of width 10◦. The least
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Fig. 4. Navigation in a densely cluttered environment.

distance obtained within the cone becomes the range
input to the algorithm due to that sensor. The main
issue in sensor modeling here is the correspondence
between the range measure and the actual position of
the object. A typical ultrasonic sensor returns a radial
measured of the distance to the nearest object within
its cone, but the angular location of the object is not
known. Hence it is not possible to pinpoint the exact
location of the sensed portion of the object on a world
map. Moreover there are the associated problems of
specular reflection and sensor misreading that further
makes it difficult to locate the object. Reliable ways
of overcoming these issues to a reasonable extent in-
volves mainly the certainty grid of Elfes [20] and its
derivative histogram grid due to Borenstein and Koren
[7,19]. These methods project the range readings onto
a map divided into cells. The certainty values of the
cells are updated with repetitive sampling of the object
and high certainty values are obtained in cells close
to the actual location of the object. In the histogram
grid method the cell corresponding to the readingd is
assumed to lie on the sensor’s acoustic axis. The loca-
tion of the object on a map is required to be known to
derive the attractive and repulsive forces that drive the
robot, which are calculated based on these locations.

However fuzzy logic approaches typical of reactive
navigation operate directly on sonar readings. Exact

or even reasonable estimates of the positions of an ob-
ject on a map are not required. Based on the range
readings and the target location the fuzzy rules guide
the robot towards the target. Inaccuracies in sensor
readings can be minimized without the need for rep-
resenting the readings on a map. The two stage pro-
cess of filtering the moderate and major variations in
range readings discussed in Section 3.7 seem suitable
for tackling most of these variations. The subsequent
parts of this section portray the advantages of incorpo-
rating spatial and temporal reasoning properties in the
real-time navigation algorithm. These form the novel
aspects of this work.

3.1. Recent memory through spatial reasoning

Intelligent decisions are a natural consequence
of possessing reasoning and cognition properties. It
is an integral part of human navigation. A purely
fuzzy-based algorithm comprising of only the two
primary modules is unable to functionally replicate
such reasoning as far as navigational aspects are
concerned. By incorporating a SOM some of these
drawbacks are alleviated. Figs. 5 and 6 show the navi-
gation of a robot across a right-angled corner. Fig. 5 is
the path obtained through the fuzzy algorithm without
the classification scheme incorporated. Along the side
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Fig. 5. Path traversed by the robot without spatial reasoning. S
and T are the start and target locations, respectively.

Fig. 6. Path tracked through spatial understanding.

‘ab’ of the wall the target attracting module tends to
turn the robot to its left while the obstacle avoidance
module turns the robot to its right. The action spaces
of both the modules offset each other and the robot
follows the wall till it arrives at the corner ‘b’. At the
corner the readings of the left and right group of sen-
sors become comparable and the obstacle avoidance
module does not give a prominent turning behavior on
either directions. The turning propensity of the robot
however is to its left due to the presence of the target
on the left. On turning left the robot meets the same
wall again resulting in a path where the robot travels
the length ‘ab’ of the wall twice. The robot seems to
have forgotten that it had been seeing the wall on its
left all this while only to turn left biasing its decision

Table 2
Temporal order of the winning weight vectors, the lower bounds and lattice positions during a navigation

Temporal order of
occurrence in navigation

Weight vector of spatio-
temporal pattern

Corresponding vector
of lower bounds

Lattice positionin a 7× 7 lattice

1 (8, 7, 1) (1, 4, 2) (6, 5)
2 (7, 1, 0) (2, 1, 4) (6, 2)
3 (1, 0, 8) (1, 4, 1) (1, 7)

based entirely on the most recent range readings. In
other words the robot lacks an ability to reason about
its environment.

Fig. 6 is the path tracked when the SOM is em-
bedded in the navigation algorithm. As the robot ap-
proaches the corner ‘b’ an observation event occurs
through a change in the sequence classes from 7 to 1
to 0. This triggers the neuron in the SOM lattice with
the weight vector [7, 1, 0], which is essentially the
coded representation of the right-angled corner expe-
rienced by the robot. Upon such cognition of the en-
vironment appropriate decisions by the algorithm lead
to a shorter path (Fig. 6). This is termed as the recent
memory divulged by the SOM by which the robot be-
comes cognizant of its latest experience of the envi-
ronment. Such spatial cognition or reasoning ability
imparted to the algorithm is a specific consequence of
the SOM and as discussed in Section 3.3.1 is a provi-
sion that the ART is not capable of providing.

3.2. Recollection of cognized scenarios by
temporal ordering

One of the typical features of human navigation
is their ability to recollect their experiences during a
traversal. This involves spatial cognition at an instant
followed by memorizing of such cognized scenarios
to facilitate recollection or recall later. Such features
can possibly have diverse advantages. A few of those
possibilities are explored in this section when such
capabilities are transferred to the algorithm.

In our algorithm storing the lattice positions of
the winning neurons imparts memory while record-
ing the temporal order of the lattice positions of the
winning neurons enables recollection. Table 2 gives
in temporal order the winning weight vectors of
the spatio-temporal patterns and their corresponding
lower bounds for the path tracked by the robot in
Fig. 6. The fourth column of the same table shows
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Fig. 7. (a) Path resulting by reclaiming cognition of the dead end; (b) path in the absence of recollection property.

the lattice positions of the winning neurons of a 7× 7
lattice. Based on this temporal ordering the robot can
visualize the history of its navigation by retrieving
the sequence of landmarks. This reordering captures
functionally to some extent the way humans can re-
count their journey as “I first started moving towards
the target until I met a wall. I turned such that the
wall came on my left. It was long and ended in a
corner bending towards the right. I took a turn at
that corner and the wall still continued on my left till
I reached the target”. Such recollection can have sig-
nificant advantages towards more sensible decisions.
Fig. 7(a) shows the path tracked by the robot to reach
a target on the other side of the corridor with a narrow
slit. The robot begins from S and moves towards the
target. When it reaches the slit the target attracting
and obstacle repulsing modules act in such a way
the robot does not come out of the slit but proceeds
further along the corridor. When it reaches the dead
end on the other side it retraces its path to reach the
slit again. Now spatial cognition followed by memo-
rizing and retrieval leads to the following reasoning,
“ I started moving through the target. The passage was
through a narrow corridor. I passed across a slit and
reached the other end of the corridor. I turned around
and moved in a direction opposite to my earlier di-
rection when I came across the slit. Because I know
that I am on my way back having met a dead end I
take a turn at the slit and plan my path again”. Here
the robot makes an intelligent guess to get out of the
corridor through the slit by reclaiming cognition of
its encounter of a dead end earlier. Functionally this
reasoning is simulated by suitable commands to the
robot when the temporal order of the winning lattice
positions stored in a queue matches a traversal that
leads to a blind end followed by an encounter of a
slit. In the absence of such spatio-temporal reasoning
the robot gets into a local minimum loop shown in

Fig. 7(b) due to the nature of the fuzzy algorithm.
Detection of local minimum by temporal correlation
is described elaborately in Section 3.3.Care should
be taken to note that in this instance the robot actu-
ally did not detect a local minimumby correlating
similar experiences. For on the return journey the
robot experiences a slit on its right, which is different
from the experience of a slit on its left during the
onward journey. Rather the decision was motivated
by recollecting the cognition of the blind end on the
side closest to the target.

3.3. Local minimum detection by temporal
association of perceptions

An inherent consequence of recollection is tempo-
ral correlation or temporal association. Temporal rec-
ollection involves recalling the scenarios cognized in
past from memory. Recognizing the similarity between
a currently perceived scenario with a one perceived
earlier by recollecting from memory is termed as cor-
relation or association. This is realized in the algo-
rithm when a neuron that won previously during a
traversal wins again. By temporally associating per-
ceptions of a similar environment the algorithm de-
tects a local minimum or a limit cycle path [14–16].
Fig. 8(a) shows an example of a local minimum loop
between the two corners ‘a’ and ‘b’ which occurs due
to the contradicting nature of the two primary mod-
ules in a concave or maze-like environments. Though
there exists algorithms [4,13–16] that surmount the lo-
cal minimum the uniqueness of the present approach
lies in its recognition of its trapped condition by cor-
relating similar experiences of the environment. In
Fig. 8(b) when the robot cognizes the corner at ‘b’ for
the second time it associates in time the cognition of
a similar corner previously and finding its spatial co-
ordinates at both the instants to be roughly the same
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Fig. 8. (a) A local minimum path; (b) temporally associating the two perceptions of the corner ‘b’ detects the local minimum; (c) fuzzy
ART detects local minima ([7, 8, 5]) earlier than SOM; (d) another infinite loop. Robot oscillating between ‘a’ and ‘b’, (e) robot guided
out of the oscillations.
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understands its trapped state. Suitable rules are exe-
cuted to steer the robot from the trap. The sequence
of steps that lead to recovery from local minimum
are described later in this section. It would be ar-
gued in Section 4 that the paths traced by the robot
through these recovery rules are shorter than those
traced in other algorithms. Before discussing the na-
ture of the recovery rules it is to be mentioned the
algorithm maintains a queue that records the lattice
position of the winning neuron and the coordinates of
the robot at the instant the robot cognizes a landmark.
The queue is allocated and maintained dynamically.
At any instant it stores a maximum of 20 coordi-
nates and lattice positions in temporal order. When-
ever a landmark is cognized the algorithm checks
for a previous occurrence of the landmark through
the lattice positions stored in the queue. Occurrence
of the same lattice position in the queue indicates
the experience of a similar landmark. If the corre-
sponding coordinates at those lattice positions match
an encounter with the same landmark is implied and
local minimum is detected. A similar landmark is dis-
cerned from the same landmark by comparing the
coordinates of the robot at both the instants from the
queue.

Fig. 9. (a) Sketch showing the path tracked by the robot for analysis of recovery rules. The robot leaves wall following at position ‘j’ in
its path shown by an arrow. (b) If obstacle following were not continued form ‘c’ the robot shall re-enter the danger zone through the
dashed curve shown. The robot crosses the TL ‘a1 a2’ at ‘j’.

3.3.1. The recovery rules
The steps are explained with the help of Fig. 9(a)

and 9(b), which can be considered a very general and
a difficult case for recovery from local minimum. The
path the robot would trace is only sketched and not
simulated in these cases to highlight certain important
parts of the figures. The algorithm also records the
coordinates of the robot at those instances a corner or
a sharp bend in the obstacle was cognized between
the two similar perceptions that lead to the detection
of the minimum. In Fig. 9(a) between two perceptions
of corner at ‘b’ the robot cognizes corner ‘a’. The
coordinates of the robot at ‘a’ and ‘b’ are noted. The
following rules are then executed. An analysis of the
rules is given subsequently.

1. The orientation of the target and the nearest obsta-
cle with respect to the robot when the minimum is
detected are recorded. (At ‘b’ the target and obsta-
cle are on the left of the robot.)
1.1. If the target and obstacle are on the same side

of the robot as in Fig. 9(a) fuzzy rules guide
the robot until the target and obstacle fall on
either sides of the robot (position ‘c’ in Fig. 9).
Algorithm branches to step 2.
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1.2. If the target and obstacle are on either sides the
robot rotates such that the target and obstacle
swap sides. At position ‘c’ in Fig. 8(c), target
is on the right and obstacle on the left when
minimum is detected, the robot turns such that
target comes on left and obstacle on the right.
Algorithm branches to step 2.

2. The robot tracks the silhouette of the obstacle until
it reaches a location outside the bounding rectangle.
At this location the robot evaluates if the target and
the obstacle lie on its same side. If they are the
robot slips into the rule base mode else it continues
contour following until the target and the obstacle
appear on its same side. This happens at position
‘j’ in Fig. 9(a); the bounding rectangle is shown in
dashed lines. The construction of the rectangle will
be dealt subsequently.

3. From this instant (position ‘j’ in Fig. 9(a)) fuzzy
rules guide the robot until:
3.1. Target is reached. Process ends.
3.2. An obstacle appears on the other side of the

target (position ‘c’ in Fig. 9(b)), step 4 is ex-
ecuted.

4. The robot follows the obstacle till it reaches a posi-
tion such that condition given in step 2 is executed.
In this way steps 2–4 are executed until:
4.1. Target is reached. Process ends.
4.2. The robot comes on the other half-plane of

the trapping line, that side of the trapping line

Fig. 10. (a) Double walled obstacle; (b) correlation occurs due to second occurrence of [7, 1, 0].

which contains the target. In Fig. 9(b) the
robot crosses the trapping line ‘a1 a2’ at po-
sition j to come over to that half-plane of the
trapping line which contains the target. The al-
gorithm branches to step 5. (The trapping line
concept is dealt when the rules are analyzed.)

5. Once the robot crosses the trapping line the robot
breaks free of the obstacle which it tracked and
operates under fuzzy rules until:
5.1. Target is reached. Process ends.
5.2. While avoiding a new obstacle that is encoun-

tered the target and obstacle appear on either
sides of the robot (position ‘c’ in Fig. 10(b)
of the double walled obstacle). Algorithm
branches to 2.

3.3.2. A retrospection of the recovery rules
Rule 1.1: The positions of the target and obstacle

play an important role while robot tries to escape from
the clutches of the local minimum. They are impor-
tant considerations regarding when the robot can leave
wall following while still under partial influence of
the minimum. If the robot departs from wall following
when the target and obstacle are on either sides it can
rush to the target only to meet the same wall it tried
to escape by following it. Hence the algorithm strictly
observes wall following while the target and obstacle
are on either sides and the robot is under the partial
influence of the local minimum. The robot lies within
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the partial influence of the local minimumwhen it is
on that half plane of the trapping line that does not
contain the target. The robot is under thecomplete in-
fluence of local minimum or danger zonewhen it lies
inside the bounding rectangle and simply follows the
wall without any considerations regarding the posi-
tions of the target and obstacle relative to it.

Rule 1.2: This rule has no big impact on the algo-
rithm excepting it can lead to shorter traversals when
local minimum is detected earlier by fuzzy ART in-
stead of SOM discussed in Section 3.3.3.

Rule 2: The bounding rectangle (BR) delineates the
zone within which the robot is under the complete in-
fluence of the local minimum. As mentioned earlier
a queue maintains the spatial positions of the robot
whenever a landmark was cognized. From this queue
the coordinates of the robot when it cognized a corner
or an angled bend between the first cognition of the
landmark whose second cognition lead to the discov-
ery of the minimum and the cognition of an opening
while wall following is noted. In Fig. 9(a) these are
the coordinates of the positions of the robot when the
landmarks ‘a’, ‘b’, ‘d’, ‘e’, ‘f’, ‘g’, and ‘h’ were recog-
nized. Here ‘a’ was cognized between the two percep-
tions of ‘b’ and ‘h’ was recognized when the opening
was detected. From these positions the maximum and
minimum coordinates are computed which form the
corners of the BR. Normally the robot comes out of the
BR when it perceives an opening during the course of
tracing the contour and turns around it. In some case
such as in Fig. 9(a) the opening ‘h’ lies well inside the
BR and the robot comes out of BR at ‘j’. Coming out
of BR is a significant landmark since it signifies the
end of the domain of that configuration of obstacles re-
sponsible for the minimum. Nonetheless wall follow-
ing is not completely renounced for reasons mentioned
below.

Rule 4: Here the robot comes out of the danger zone
but is still within the partial influence of the mini-
mum. Hence the constraint the robot switches to wall
following when the target and obstacle come on ei-
ther sides. For if it would continue to act through the
fuzzy rules it can under certain conditions due to the
target’s influence re-enter the same danger zone that
it had escaped and relapse into the same local mini-
mum path. This can continue ad-infinitum as shown in
dashed lines in Fig. 9(b). In Fig. 9(b) at ‘b’ the robot
comes out of the danger zone, target and obstacle lie

on the same side and is guided by fuzzy rule base.
At ‘c’ obstacle and target come on either sides. If wall
following is not executed the robot re-enters the same
danger zone and regresses into an infinite loop. It is
also to be noted that the size of the rectangle keeps
increasing and rule 2 operates such that the robot does
not re-enter an area that it had already escaped.

The trapping line indicates the end of the influence
of the configuration of obstacles that lead to the lo-
cal minimum. Beyond this line the robot can navigate
freely under the fuzzy rules without fear of relapse
into the same loop it avoided.

Rule 5: Having crossed the trapping line the robot is
fit to encounter a new local minimum. Nonetheless to
prevent longer traversals a fresh local minimum path is
avoided through the rule 5.1 which automatically slips
to wall following when obstacle and target appear on
either sides and once again the sequence of rules 2–5
are executed. This occurs at ‘c’ in Fig. 10(b) of the
double walled obstacle.

Figs. 8, 10 and 11 depict the consistency of the
algorithm in detecting local minimum type situations
and the efficacy of the recovery rules in rescuing the
robot from such traps. The infinite loop is shown
in Figs. 8(a), 8(d), 10(a) and 11(a) where only the
fuzzy algorithm is implemented. The guidance out
of the loop when the local minimum is detected by
the SOM is shown in Figs. 8(b), 8(e), 10(b) and
11(b). These figures also denote the instants dur-
ing the robot’s journey when temporal correlation
occurs through the weight vectors representative
of the similar spatial scenarios that resulted in the
correlation.

Fig. 11(a) shows a simulation where the robot is
unable to come through an opening in the maze at lo-
cation ‘c’ due to conflicting behaviors of the two mod-
ules. Fig. 11(b) illustrates circumvention of the trapped
situation before temporal correlation occurs. This is
due to the recent memory capacity of the SOM, which
understands through the weight vectors the robot’s un-
duly long traversal through the maze and pulls it out
through the hole in the maze (Fig. 11(b)).

3.3.3. The role of fuzzy ART
The robot understands its environment through the

cognition properties imparted by SOM. In certain
cases the robot can encounter an environment which
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Fig. 11. (a) Robot unable to pull itself out because of conflicting target attracting and obstacle avoidance behaviors. (b) Upon cognizing
the slit through [3, 4, 8] the robot pulls out of the maze. (c) Without SOM, fuzzy ART pulls the robot out of the maze. Absence of SOM
is seen as robot completes a full traversal between the second and third loops from the center.

it is unable to map to a neuron in the SOM lat-
tice. This can lead to a local minimum like situation
shown in Fig. 12(a) that goes undetected. The ART
network however is plastic to new situations through
online learning and classification. Upon occurrence
of a pattern that is not among the ones which can
be perceived by SOM, the ART learns it, stores and
recalls when the robot experiences a similar scene
again. The ART network detects the local minimum
not detected by SOM in Fig. 12(b). The ART can also
detect local minimum ahead of SOM in certain cases
as in Fig. 8(c), which at times can lead to a shorter

path. However it must be noted while the ART can
provide for memory, recollection and correlation it
cannot impart spatial reasoning which is a privilege
of the SOM alone. Fig. 11(c) is an example when the
ART network alone is present and SOM is absent.
Here absence of spatial reasoning leads to the robot
completing a full traversal between the second and the
third obstacle loops from the center. However due to
temporal association property of ART local minimum
is detected during the robots second visit between
the obstacle loops and the recovery rules rescue the
robot.
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Fig. 12. (a) An environment where the SOM is unable to detect
the local minima. (b) Fuzzy ART pulls the robot out of the local
minima.

3.4. Convergence analysis of the recovery rules

The convergence of the algorithm is discussed
based on the recovery rules that are activated once
the local minimum is detected. In other words the
concern here is to establish on a more formal basis
the fidelity of the rules derived in Section 3.3.1 and
analyzed in Section 3.3.2.

Fig. 13. (a) For a configuration of objects that are rectangular the BR lies completely inside the configuration. (b) Parts of BR that project
outside the configuration is shown shaded.

Theorem 1. If a local minimum is detected and the
target is reachable from the point of detection, the
algorithm will leave the configuration of obstacles that
caused the minimum after a finite length path.

Proof. The robot leaves the obstacle once it gets out
of the BR. The BR is constructed based on the loca-
tions visited by the robot where it experienced a sharp
turning behavior (generally bends and corners). Since
these locations lie inside that configuration of obsta-
cles the BR is finite in size. Moreover the BR lies com-
pletely within the configuration of obstacles if they
form a rectangular shape (Fig. 13(a)). Hence while
following the contour the robot shall eventually reach
a location that lies outside the BR. Once outside the
BR the fuzzy rules and obstacle following work in tan-
dem to navigate the robot past the trapping line. This
way the robot overcomes a configuration of obstacles
that caused the minimum. If the configuration does not
constitute a rectangle some parts of the BR can project
outside the configuration (Fig. 13(b)). However if the
obstacles were of finite width these projections would
be minimized. Even if the obstacles were of negligible
thickness it is evident that contour following would
eventually take the robot to a location outside the BR.
In the extreme case the robot during the course of
obstacle following would ultimately cross the trap-
ping line (TL) which forms one of the sides of the
BR. This is becausethere exists at least one point on
the TL that lies within or on the configuration of ob-
staclesfor it is constructed based on positions that lie
within the configuration. The robot while wall follow-
ing would eventually come on the other side of this
point. �
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It is to be noted that to make sure that the leav-
ing point does not lie inside the configuration of ob-
stacles the robot continues wall following for a small
distance after it detects its location outside of the
BR. Once outside the configuration of obstacles that
caused the minimum the recovery rules 3 and 4 guar-
antee that the robot does not re-enter the same local
minimum it avoided. It has been shown before [13]
that a leaving point that lies outside the configura-
tion of obstacles along with the absence of a regress
to the same local minimum path guarantees attain-
ment of the target. Based on the satisfaction of the
above conditions the second theorem can be stated, the
proof for which can be found in the earlier approaches
[4,13].

Theorem 2. The algorithm finds the target if it is
reachable from the position of cognizing the minimum.

If the target is unreachable the algorithm can be
terminated once a loop inscribing the configuration of
obstacles is completed. This is the routine procedure
adopted across all approaches. Hence it can be stated
as a corollary:

Corollary. The algorithm always terminates after a
finite length path.

Hence in principle the algorithm is capable of
reaching the target if a local minimum is detected.
In practice the algorithm’s performance depends
on a reasonable construction of the BR. While the
construction of BR appears trivial in a structured
environment a doubt may still linger regarding its
construction in not so structured environments. The
subsequent section deals with the performance of the
algorithm in more unstructured environments.

3.5. Performance in less structured environments

Firstly it is to be clarified that the algorithm has been
developed from the point of view of indoor real-time
navigation. Inindoorenvironments typical objects en-
countered as well as rooms, corridors have regular
geometric shapes and are well structured. Secondly
the local minimum situation occurs at bends or cor-
ners due to abrupt change in the turning behavior of
the robot. The configuration of obstacles that actuate

an abrupt turning behavior in a robot can be detected
even if the environment is unstructured. Essentially
this involves learning the temporal sequence of sen-
sor patterns that indicate an abrupt turning behav-
ior of the robot and identify such sequences during
navigation. While in structured environments abrupt
turning behavior occurs at right-angled corners and
bends such as the meeting of two walls in unstruc-
tured environments it occurs when the bends do not
form a perfect right angle and may possess a curved
or irregular shape. For example the BR for an ir-
regular environment is shown sketched in Fig. 14.
The probable path of the robot is shown sketched
with arrows indicating the direction of navigation.
The obstacle is shown mirrored on one side. Fig. 15
portrays the simulation results in three environments
that are not exactly structured. The consistency in
detecting the turning behavior from sensor patterns
is seen in the algorithm’s ability to attain the tar-
get in these environments. The BR is also shown in
the figures. In Fig. 15(a) irregularity can be seen in
the bends that are not exactly at right angles and
somewhat resemble the curved bends of the structure
in Fig. 14. Figs. 15(b) and 15(c) portray the perfor-
mance in the presence of some convex and circular
objects along with the configuration of obstacles that
constitute the minimum. When other objects lie in
proximity to bends or corners the detection of turn-
ing behavior is more difficult to perceive. However
the algorithm seems competent to counter such situa-
tions.

Fig. 14. BR for an unstructured environment. Obstacle contour is
shown mirrored on one side. The path tracked by the object as
well as the rectangle is shown in solid lines.
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Fig. 15. (a) A configuration of obstacles whose bends are somewhat similar to those in Fig. 14. The BR is also shown. (b) The presence
of convex objects near the configuration that is responsible for turning behavior makes it unstructured. (c) Presence of elliptical object
near the bends lends to some irregularity.

3.6. Performance in modified environments

Since the algorithm has elements of environment
understanding and memorizing the understood con-
tents a question regarding its performance when the
objects of the environment are rearranged or altered
can arise. Specifically does a modified environment
invalidate the contents of the memory in such a way
that the robot’s navigational performance completely
collapses. The answer to this question depends on the
kind of modifications performed (insertion of new ob-
jects, removal of existing objects and rearranging ob-
jects) and the position in the environment where these
modifications occurred. Here we briefly analyze the
situation when modification in the form of insertion
of a new object to the environment occurs. Essentially

the concern here is capability of the robot in reach-
ing its destination despite the modifications. The fol-
lowing generalizations regarding the performance can
be made when modification in the form of insertion
occurs.

1. An insertion of an object or objects at locations
that are not proximal to critical positions does not
affect the performance of the algorithm in any tan-
gible manner. By critical position we mean those
positions that are instrumental in the detection of
local minimum like situation or positions that are
responsible for an abrupt turning behavior of the
robot. Fig. 16(a) shows the path of the robot in
a certain environment under unmodified condi-
tions. Fig. 16(b) is the instant of perturbing the
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Fig. 16. (a) The original obstacle configuration. (b) Instant of introducing a new object. (c) The path traced in the modified environment
has not tangible difference from the path traced in the original environment of ‘a’.

environment by inserting an object. Fig. 16(c) is
the path obtained after this modification occurs.
Evidently there is no appreciable change in the
nature of the paths in Figs. 16(a) and 16(c).

2. Insertion of an object or objects in such a way that
it forms a critical position by itself or insertion near
a configuration that constitutes a critical position
can alter the path lengths significantly. The paths
can get elongated or compressed depending on the
timing and position of insertion. Fig. 17(a) shows
an insertion that reduces the path length consider-
ably when compared with Fig. 16(a) as local mini-
mum gets detected earlier. Fig. 17(b) is an example
where the path increases noticeably due to delayed
detection of minimum. Here temporal correlation
of the corners at the other end leads to the detec-
tion. In Fig. 17(a) the bar was inserted after robot’s
first visit of the corner at ‘a’ while in Fig. 17(b)
the bar gets inserted during the robot’s cognition

of the corner at ‘b’ after it had already been to ‘a’
once.

3. However insertion and removal of an object in an
alternating fashion between any two consecutive
visits of the robot can trap it permanently as it fails
to experience the previous environment at the same
location. For example alternating insertion and re-
moval of objects at locations marked by arrows in
Fig. 18(a) can trap the robot forever. Tapping the
facilities of environment recollection properties
through certain heuristics can overcome such situa-
tions. A simple heuristic of the following form can
come in handy: “If the robot cognizes a configura-
tion of objects that entails an abrupt turning be-
havior three times without the recovery rules being
invoked then enter local minimum avoidance mode
(LMA)”. The rule can be seen at work in Fig. 18(b).
Here the middle bar was inserted after the robot
had reached the corner ‘b’ after visiting ‘a’.
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Fig. 17. (a) An insertion that leads to a formation of a new landmark. A shorter path results as the modification was introduced during
the robot’s first visit to corner ‘a’. (b) A modification when the robot cognized the corner ‘b’ results in a substantially longer path.

When the robot cognizes the middle bar at ‘c’ dur-
ing its return from ‘b’, recalling previous experi-
ences of the corners at ‘a’ and ‘b’ and the fact that
the recovery rules have not been invoked branches
the algorithm into LMA mode. As a matter of fact
the above heuristic also reduces the length of path
in Fig. 17(b) to its original form of Fig. 16(a).

Thus modifying the features of the environment
does not have an adverse effect on the algorithm’s pri-
mary objective of reaching the goal. It is always possi-
ble to come up with a scheme of insertion and removal
of objects in an alternating or cyclic fashion that can
confuse the robot despite the heuristics. However bar-

Fig. 18. (a) Alternate insertion and removal of objects at the two locations indicated by the two locations indicated by the arrow can trap
the robot forever. (b) Robot comes out of the configuration of obstacles by recollecting previous experiences of the corner at ‘a’ and ‘b’.

ing such intentional and planned modifications a ran-
dom singular or stray modification in general would
not prevent the robot from attaining its goal. This sec-
tion further indicates the enhancements to real-time
navigation due to spatio-temporal reasoning.

Generally algorithms that use maps are considered
robust to such changes in environment. Any change
in the environment gets reflected on the map and the
paths are recomputed according to these changes.
Since objects are represented in terms of cells with
occupancy values image understanding from these
cells require reconstruction techniques and hence
difficult and computationally intensive. In the cur-
rent method internal representations are not in the
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form of an assortment of cells but rather in terms of
landmarks. For example the robot’s internal repre-
sentation takes the following form, “there’s a corner
near spatial location ‘a’, a dead end near location
‘b’, a bend near ‘c’ and a corridor near (270, 200)”.
These internal representations are stored in a codi-
fied form in a queue data structure as described in
Section 3.3. Each element of the queue contains the
lattice position of the winning neuron and the coor-
dinates of the robot at that location. Modifications
to the environment can get appended to the queue
without deleting the original contents. Thus the queue
structure is some kind of an implicit map. However
the map info has not been used in the traditional
sense of planning the paths, rather they are used as
aids that help in memory-based reasoning for the
robot.

3.7. Sensor related problems

As is well known ultrasonic sensors come with their
own baggage of problems and a navigation algorithm
must also consider effects of reducing these. To over-
come the noise inherently associated with range read-
ings a two tier filtering scheme is adopted in this
present approach. At the first stage the fuzzy classi-
fication scheme acts as a vector quantizer and hence
has some inherent noise filtering capacities. Moder-
ate variations in readings get smoothed as they get
mapped to the same class. For example when the robot
approaches the corner shown in Figs. 5 and 6 the read-
ings of the left sensor tend to grow more than the
actual distance due to multiple reflections. However
the classification scheme classifies both the actual and
elongated readings into the same class. The fuzzy clas-
sifier serves to filter most of the moderate variations
in the range readings.

At the second stage the attempt is to counter dras-
tic variations in sensor readings such as outliers or
any spurious signals. Some heuristic filtering mea-
sures are adopted for this purpose. For example a se-
quence of classes 77777177 encountered by the robot
during its sojourn gets recast as 77777777 for such
abrupt changes can occur due to (i) rotational vari-
ations or (ii) stray noise/outliers. In other words the
pattern sequence 7–1–7 cannot be due to any configu-
ration of static objects and can be safely filtered away
as noise or outlier. Similar measures are adopted to

detect noise within a stream of data. They are some-
what akin to Borenstien’s popular VFF [7] or VFH
method [19], which ascribes a certainty measure to
each reading. So as the robot sees a class 7 in a repe-
tition an implicit increase in certainty of that reading
occurs and the robot is assured of its traversal along a
wall on its left. Indeed these are the main considera-
tions in fixing the vector of lower bounds described in
Section 3.2.

Finally it is to be mentioned that many such sources
of error can be surmounted through laser range finders
and the present method is applicable to both sonar as
well as lasers.

A real-time implementation of the current algorithm
is presently beyond the scope of our lab considering
its primary research thrusts and objectives. However
the first author as a graduate student at a different
lab could navigate a robot in real-time through the
same configuration of sensors as mentioned here. The
details of these real-time runs can be found in the
paper [9] cited in this paper. The same sonar model
was applied in simulations. For real-time purposes
the reliability of range data was improved through a
median-filtering scheme. Here each sensor samples
the environment five times in rapid succession. The
median of the reading obtained in these five samples
is considered the most reliable reading. Median fil-
tering is commonly used as a robust statistical tool
for filtering noise and outliers [21]. This way a cir-
cular array of seven sensors with a maximum range
of 1 m can be sequentially fired in 205 ms. The robot
is assumed stationary during those 205 ms for com-
putational convenience. However this assumption has
negligible impact on the navigational performance
of the robot. Median filtering has some philosophi-
cal resemblance to the certainty approach in that the
most reliable reading (reading with high certainty)
is extracted through this method. In simulations
median filtering is not very consequential and hence
not adopted.

4. Comparison with other methods

In this section the methods [4,13–16] proposed re-
cently in the literature for overcoming the local min-
imum problem are analyzed and compared with the
present approach.
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4.1. Huang and Lee’s method

This method [4] is an extension of Lumelsky’s Bug
algorithm [18] where the wall following scheme used
in Lumelsky’s approach for overcoming the local min-
imum trap is selectively used. The algorithm operates
in two modes the H mode and T mode. H mode oper-
ates when the obstacles are convex and the T (track)
mode comes into play when concave obstacles are en-
countered. The switch from H mode to T mode oc-
curs when the difference in successive turns made by
the robot exceeds 120◦. The algorithm switches back
to H mode at a point ‘b’ during its traversal which is

Fig. 19. (a) An example form a previous paper. Heuristic determination results in misidentification of local minima. (b) Path traced by
the current method. (c) According to Huang and Lee’s method the robot leaves wall following when ‘a’, ‘b’, and ‘c’ are collinear and ‘b’
lies between ‘a’ and ‘c’. (d) A much shorter path results from the present method.

collinear with points ‘a’, ‘c’ and is between ‘a’ and ‘c’,
where ‘a’ is the location at which the robot switched
initially to T mode and ‘c’ is the target position. The
following handicaps can be seen:

1. The detection of local minimum is done empiri-
cally by comparing differences between successive
rotations. This leads to occasional misidentifica-
tion of situations as a local minimum. Fig. 19(a)
shows a misclassification of the environment as a
local minimum and the robot begins to track the
obstacle contour though it is not trapped leading to
long traversals. Fig. 19(b) is the path obtained by
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the current method. The current method does not
recognize the configuration of obstacles to repre-
sent a local minimum since it does not experience
the same scenario twice in its traversal. The path
obtained is shorter.

2. The leaving condition is too conservative which
also leads to long paths. Fig. 19(c) is the path
obtained using Huang and Lee’s approach while
Fig. 19(d) is the path obtained by current approach
using the recovery rules described in Sections 3.3.1
and 3.3.2. These sections discussed the recovery
rules using Fig. 9(b), which is the sketched coun-
terpart of the actual simulated graph of Fig. 19(d).

4.2. Kamon and Rivlin’s method

Kamon and Rivlin [13] proposed a method whose
main contribution was a new leaving condition that
generated paths with much reduced lengths when com-
pared with the Bug algorithms. Their algorithm was
called Distbug. There is no specific scheme for deter-
mining the robot’s trapped condition. The algorithm
automatically slips into wall following upon detecting
the first obstacle. The robot leaves the obstacle bound-
ary when either the target becomes visible or accord-
ing to the inequalityd(X, T ) − F � dmin(T ) − Step,
whered(X, T) is the distance from the current loca-
tion, X, of the robot to the target,T, dmin(T) is the
minimal distance to the target since the last instantia-
tion of wall following, F is the distance in freespace
from X andStepis a predefined constant. If no obsta-
cles are detectedF is set toR, the maximum range of
the sensors. The implication of the above inequality is
that the robot escapes from wall following:

1. when the target becomes visible or
2. when the range readings in the direction of the

target indicate that the robot can proceed towards
the target without meeting an obstacle at a location
farther from the target than the current obstacle
whose contour the robot follows.

This condition also guarantees that the robot would
not revert into the same area bounded by those ob-
stacles which it had just escaped from. The leaving
condition is dependent on the maximum sensor range
R and theStepsize. When global information of the
environment is absentStep is determined heuristi-
cally. Increasing value ofStepincreases path lengths

while reducingStepresults in robot leaving the wall
following mode earlier. However choosing too small a
step size can result in the robot performing many path
cycles before it eventually avoids the obstacle. To pre-
vent this the robot must follow the boundary upon hit-
ting a obstacle in a direction, which takes it closer to
the target. This is naturally achieved in our proposed
algorithm by the target attracting module. In the dis-
cussion to follow theStepsize is taken as negligible
or zero.

The claim is that the present leaving criteria re-
sults in the robot leaving the obstacle following mode
earlier than the condition proposed in the Distbug al-
gorithm. In all those figures relevant to the remaining
part of this Section 4.2 the robot’s path is represented
by sketches and not by actual simulation graphs.
Fig. 20(a) shows the path traced by the robot using the
Distbug algorithm in dashed line. The robot switches
to wall following at H1 and leaves wall following at
L1 when the inequality holds. In the same figure the
current algorithm switches from wall following to the
fuzzy rule base mode at position ‘L2’ when the robot
comes out of the BR and obstacle and target are on
the same side of the robot. The paths leading to the
detection of local minimum is not shown since we are
primarily concerned about the leaving criterion and
not the detection criterion. It is clear from this figure
the leaving criteria of the present algorithm can result
in shorter paths. However increasingR in Distbug
leads to earlier departure from obstacle following as
Fig. 20(b) indicates where the algorithm starts moving
towards the target from position ‘a’ and matches the
performance of the present algorithm. IncreasingR
any further shall not decrease the path length anymore
since the inequality would not get satisfied. Decreas-
ing R on the other hand results in Distbug churning
out longer and longer paths, the robot leaves wall
following at positions ‘b’, ‘c’ on decreasingR in the
same figure. On decreasingR further the performance
of Distbug reduces to the performance of the standard
Bug algorithm. Fig. 20(c) shows the path traced by
Distbug in solid line with the leaving position marked
at L1 whenR is set to the maximum sensor range used
in the simulations of our present work. IncreasingR
to more than twice the maximum value used in the
current algorithm results in the Distbug leaving at L2
and the performance matches the present algorithm
(Fig. 20(c)). It is to be noted that L1 is the first instant
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Fig. 20. (a) Path planned by Distbug shown in dashed line and the current path in solid line. Overlapping parts of both the paths is also
shown in solid line. (b) Paths with varyingR. Robot departs from wall following at ‘a’, ‘b’ and ‘c’ asR decreases resulting in longer
paths. (c) For varyingR Distbug has its leave points at L1 and L2.

when the robot exits from wall following. But the
presence of the wall immediately on its left forces it to
continue with wall following till the target is sighted.
IncreasingR further has no effect for the inequality
d(X, T ) − F � dmin(T ) − Step is not satisfied. In
other words the algorithm does not see an obstacle
closer to target than,dmin (marked in the same fig-
ure), however high the maximal sensor range be. It
can be summarized the best performance of Distbug
on increasingR matches the current algorithm and on
decreasingR performance of Distbug reduces to that

of the Bug algorithms. The fuzzy nature of target at-
tracting module in the current algorithm, which turns
the robot towards its target in smooth increments can
in some cases veil this advantage.

4.3. Virtual target approach

The virtual target approach [15,16] is the most re-
cent work on local minimum avoidance as on date
when this paper is being written. It presents a very ele-
gant scheme, as the algorithm does not change the
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Fig. 21. (a) The failure of the virtual target approach. (b) Oscillation between the zones A and B. (c) The current method overcomes the
local minimum. (d) Modified path traced by the virtual target approach on using a subgoal stack.

control structure of the fuzzy algorithm. In other words
the algorithm does not switch to a wall following mod-
ule upon detection of a local minimum. The local
minimum is detected when an abrupt change in the
target orientation with respect to the robot occurs, i.e.
when the target position changes from left to right or
vice versa over an instant. Upon detection of the local
minimum the robot continues to navigate with the ex-
isting fuzzy rule base using a new virtual target orien-
tation as a modified input to the rule base. The target is
switched back to its original position when an opening
in the obstacle is detected. Upon scrutiny however the
algorithm fails to transcend the local minimum trap in
some situations. Fig. 21(a) shows a simulation where
the virtual target strategy fails. Failure occurs in those
situations where the robot encounters a local minimum

when operating in the virtual target mode. In Fig. 21(a)
target is switched at point ‘a’ where an abrupt change
in the target orientation occurs. The virtual target ori-
entation is given bytv = −(π − tr), wheretv and tr
are the virtual and real target orientations, respectively.
From position ‘a’ the robot navigates using the virtual
target till it reaches the end of the obstacle at position
‘d’. However the robot meets another local minimum
situation between points ‘b’ and ‘c’ due to the influ-
ence of the virtual target. The orientation of the virtual
target with respect to the robot while it navigates from
‘b’ to ‘c’ wavers between the rays passing through the
two boxes ‘T1’ and ‘T2’. Target attracting and obstacle
repulsing tendency conflict each other and the robot
falls again into the local minimum trap from which it
is unable to escape. A possible means to get out of
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this trap is to navigate the robot under the influence of
a new virtual target and switch back to the real target
when the end is detected. The orientation of the second
virtual target is chosen with respect to the first virtual
target in the same manner and the orientation shall
almost coincide with the real target. Hence the robot
can be considered to be operating under the influence
of the real target from point ‘c’ itself instead of point
‘d’. Upon reaching ‘d’ a formal switch can be made to
the real target. The problem is still not resolved as the
robot wanders into oscillations between the two sym-
metric zones of the obstacle marked ‘A’ and ‘B’ shown
in Fig. 21(b). The explanation for this phenomenon is
as follows. At ‘d’ even if the robot would rotate around
the bend the real target attracts the robot and the robot
rushes to meet the same wall again at ‘e’. The robot
traverses now towards the left side of the wall and at
‘f’ switches to a virtual target. At ‘g’ it switches to
a new virtual target till an opening is detected at ‘h’
where a switch is made to the real target. At ‘h’ under
the influence of the real target the robot reaches the
wall yet again and the cycle continues forever with the
robot oscillating back and forth between zones A and
B. Fig. 21(c) shows the path traced by the robot us-
ing the present algorithm for the same workspace. In
Fig. 21(c) the robot departs from wall following at ‘g’
which lies outside the BR shown in dashed line and
where the target and obstacle lie on the same side of
the robot. Due to the reasons cited above the virtual
target approach cannot surmount the barrier given in
Figs. 19(c) and 19(d) for the same starting and target
locations.

Fig. 22. In the virtual obstacle approach the robot falls into local minimum many times before it reaches the target.

4.3.1. Modifications to the virtual target approach
A modification to the virtual target approach is sug-

gested to overcome its vulnerabilities. The proposal is
to maintain a stack containing the target orientations
that have been switched. The top most element of the
stack is the target position that has been switched most
recently. Upon reaching the end of an obstacle the top
most target is popped from the stack and the robot
visits it. On visiting this target the robot attempts to
visit the next target in the stack. Thus the robot vis-
its each of the subgoals in the order in which they
are popped out of the stack and eventually reaches
the original target which is the last to be popped out.
The stack contains the intermediate subgoals the robot
should visit and hence is termed as the subgoal stack.
Using this strategy the robot can overcome the situ-
ation discussed in Figs. 21(a) and 21(b). Fig. 21(d)
shows the sketch of the path the robot would adopt
using the modified approach. At point ‘a’ the posi-
tion of the real target, ‘T’, is pushed on to the stack.
At ‘c’ the position of the virtual target ‘T1’ is pushed
on to the stack. When the robot reaches the opening
at ‘d’ switch is now made to the virtual target ‘T1’
instead of the real target, which lead to the oscilla-
tions shown in Fig. 15(b). From ‘d’ the robot navi-
gates under the influence of ‘T1’. On reaching ‘T1’
switch is made to the original target ‘T’, which the
robot eventually reaches. There is still a catch in this
reasoning. When the robot reaches ‘c’ and detects an
abrupt change in the orientation of the virtual target it
pushes the position of the virtual target, T1, onto the
stack. The position of ‘T1’ is unknown to the algo-
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rithm for it is only a virtual target. Only its orienta-
tion is known. The algorithm actually pushes on to the
stack the approximate position of the location ‘c’ and
its own location at that instant ‘r’. Location ‘c’ can be
found through sensor readings. The robot then navi-
gates from ‘d’ under the influence of the virtual target

Table 3
Comparison of the recent approaches that tackle the local minimum problem

Method Detecting criterion Leaving criterion Comments

Huang and
Lee [4]

Difference in rotation of
the robot between
successive instants

When points a, b and c are collinear and b
is between a and c. a is the hit point, b the
leaving point and c the target

• Empiric detection leads to
erroneous classification of local
minima.

• Leaving criterion is highly conser-
vative. Paths longer than other
methods that employ wall following.

Distbug [13] No explicit criterion Target is visible or the nearest obstacle
in the direction towards the target is closer
to the target than the current obstacle
whose contour the robot traces

• A highly efficient leaving criteria
leads to more optimal paths
compared to standard bug
algorithms.

• Leaving criterion is dependent on
maximal sensor range. Increasing
sensor range implies earlier
egress from wall following.

Virtual target
[15,16]

Abrupt change in robot’s
turning tendency due to a
change in target orientation

An opening in the obstacle is
detected

• The algorithm does not change
the structure of the fuzzy
control system.

• Regresses into the same infinite
loop it tries to avoid and unsuitable
for environments where local
minimum occurs when the robot
navigates under the influence
of a virtual target.

• Modification proposed in this
paper which corrects the
above problem.

Virtual
obstacle [14]

Robot visits twice the same loca-
tion with the same orientation

When the subgoal created is reached • Very large memory
requirements.

• As the length of the concave
obstacle like a corridor increases
the path length increases manifolds
due to creation of many virtual
obstacles. Gives longest traversals
among all the methods considered.

Current
approach

Robot recognizes previous
experience of a similar environ-
ment at the same position

When the robot reaches a location outside
the BR where the target and obstacle are
on the same side of the robot

• Employs spatial and temporal
reasoning for detection.

• Leaving condition less
conservative then the other methods
that employ wall following.

positioned at ‘c’ till it reaches a position ‘T1’ which
is approximately collinear with the line from ‘r’ to ‘c’
such that ‘c’ lies between ‘r’ and ‘T1’. Employing a
subgoal stack appears to be an appropriate modifica-
tion to eliminate the limitations of the virtual target
approach.
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4.4. The virtual obstacle approach

Pin and Bender [14] proposed a virtual obstacle ap-
proach for the local minimum problem. Local mini-
mum is detected when the robot visits approximately
the same position twice with the same orientation.
When it occurs the minimum and maximum coordi-
nates of the positions that occurred between the two
visits is taken to form the two diagonal vertices of a
rectangular obstacle. The remaining two vertices get
fixed automatically. The space surrounding the obsta-
cle is divided into eight sectors and the sector opposite
to the current goal is determined. The subgoal is placed
at the mid-point of that sector and the robot navigates
to the subgoal and reaches it. Navigation then contin-
ues with the original goal and considering distances
from the virtual obstacles as well as real obstacles.
The approach has the following disadvantages.

1. Considerable memory is involved in storing all the
coordinate positions and their orientations at those
positions between the two visits. Memory is also
involved in storing the coordinates of the virtual
obstacle every time they are formed.

2. The robot gets into a number of local minimum
paths till it eventually reaches the target. Each such
local minimum path consists of a number of os-
cillations till the minimum is detected. Every local
minimum involves creation of a new virtual obsta-
cle and a subgoal and increases the path many folds.
The final path traversed is extremely long and cum-
bersome. Other approaches do not suffer from this
problem of having to endure many local minimum
paths before reaching the target. Fig. 22 shows the
nature of the path computed by the virtual obstacle
approach and the corresponding increase in path
lengths as the number of local minima the robot
encounters increases.

3. In certain cases as shown in their paper [14] the
robot can enter a local minimum when the subgoal
is located in unreachable locations and a new vir-
tual obstacle has to be created. This too plays a part
in making the path unwieldy.

4.5. Summary

When should the robot depart from wall following
is an interesting and a possible area of research for

autonomous robots prevailing over the local minimum
barrier in the absence of prior knowledge of the en-
vironment. Leaving too early can result in the robot
regressing into the same local minimum path it tries
to escape and this can go on forever. Leaving too late
can lead to lengthy traversals. The algorithm provides
a new leaving criterion that gives shorter paths than
those algorithms that tackle the local minimum. The
paths are shorter than the algorithms that employ and
that do not employ wall following. The performance
of both the approaches that do not employ wall fol-
lowing, the virtual target and the virtual obstacle ap-
proaches is less satisfactory than those employing it.
The virtual target approach regresses into infinite loops
in some cases and the paths of virtual obstacle are
unwieldy.

As far as detection of local minimum is concerned
the present method employs spatial understanding
and temporal association properties imparted by the
classification scheme. The claim is that it is more
consistent with human intuition involving memory
and recollection features.

The comparisons are summarized in a tabular form
in Table 3.

5. Conclusions

A method for imparting spatial reasoning, mem-
ory, recollection and temporal correlation features for
a mobile robot has been proposed. A classification
scheme consisting of a fuzzy classifier coupled to a
SOM and fuzzy ART network has been adopted for
this purpose. The performance of the algorithm is em-
bellished through more acceptable paths due to scene
understanding, memorizing and recall of such learned
scenarios and detection of local minimum traps by
temporally associating similar perceptions of the envi-
ronment. The paper also describes a new criterion for
departing from wall following that results in reduced
paths compared to other methods that tackle the local
minimum and at the same time avoids relapsing into
the same local minimum path due to the earlier de-
parture from wall following. A comparative study of
the recent methods proposed reveal that those meth-
ods that do not employ wall following to escape the
minimum either relapse into the same infinite loop in
certain situations or furnish very long paths. The pro-
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posed method seems suitable for concave, maze-like
and altered environments.

Acknowledgements

The authors would like to thank the anonymous ref-
erees for their comments and the co-editor T.C. Hen-
derson for having to bear the queries from us regard-
ing the manuscripts status.

References

[1] F.G. Pin, Y. Watanabe, Navigation of mobile robots using
a fuzzy behaviorist approach and custom designed fuzzy
inferencing boards, Robotica 12 (6) (1994) 491–503.

[2] P.S. Lee, L.L. Wang, Collision avoidance by fuzzy logic for
AGV navigation, Journal of Robotic Systems 11 (8) (1994)
743–760.

[3] H.R. Beom, H.S. Cho, A sensor-based navigation for a mobile
robot using fuzzy logic and reinforcement learning, IEEE
Transactions on Systems, Man and Cybernetics 25 (3) (1995)
464–477.

[4] H.P. Huang, P.C. Lee, A real-time algorithm for obstacle
avoidance of autonomous mobile robots, Robotica 10 (1992)
217–227.

[5] J.L. Crowley, Dynamic world modeling for an intelligent
mobile robot, in: Proceedings of the IEEE Seventh
International Conference on Pattern Recognition, Montreal,
Quebec, 1984, pp. 207–210.

[6] V. Lumelsky, T. Skewis, Incorporating range sensing in the
robot navigation function, IEEE Transactions on Systems,
Man and Cybernetics 30 (1988) 1058–1069.

[7] J. Borenstein, Y. Koren, The vector field histogram — fast
obstacle avoidance for mobile robots, IEEE Transactions on
Robotics and Automation 7 (3) (1991).

[8] A. Dubrawski, J.L. Crowley, Learning locomotive reflexes:
A self supervised neural system for a mobile robot, Robotics
and Autonomous Systems 12 (1994) 133–142.

[9] I.J. Nagrath, L. Behera, K. Madhava Krishna, K. Deepak
Rajasekhar, Real time navigation of a mobile robot
using Kohonen’s topology conserving neural networks, in:
Proceedings of the International Conference on Advanced
Robotics, Monterey, CA, July 1997, pp. 459–464.

[10] G.H. Hamzei, et al., Becoming incrementally reactive:
Online learning of an evolving decision tree array for robot
navigation, Robotica 17 (1999) 325–334.

[11] T. Kohonen, Self-organizing map, Proceedings of the IEEE
78 (9) (1990) 1460–1480.

[12] G.A. Carpenter, S. Grossberg, D.B. Rosen, Fuzzy ART: Fast
stable learning and categorization of analog patterns by an

adaptive resonance system, Neural Networks 4 (1991) 759–
771.

[13] I. Kamon, E. Rivlin, Sensory-based motion planning with
global proofs, IEEE Transactions on Robotics and Automation
13 (6) (1997) 814–822.

[14] F.G. Pin, S.R. Bender, Adding memory processing behavior
to the fuzzy behaviorist approach: Resolving limit cycle
problems in mobile robot navigation, Intelligent Automation
and Soft Computing 5 (1) (1999) 31–41.

[15] W.L. Xu, S.K. Tso, Sensor-based fuzzy reactive navigation
for a mobile robot through local target switching, IEEE
Transactions on Systems, Man and Cybernetics 29 (3) (1999).

[16] W.L. Xu, A virtual target approach for resolving the limit
cycle problem in navigation of a fuzzy behavior-based mobile
robot, Robotics and Autonomous Systems 30 (4) (2000) 315–
324.

[17] M.H. Hasoun, Fundamentals of Artificial Neural Networks,
MIT Press, Cambridge, MA, 1995, p. 114.

[18] V.J. Lumelsky, A.A. Stepanov, Path planning strategies for a
point mobile automaton moving amidst obstacles of arbitrary
shape, Algorithmica 2 (1987) 403–430.

[19] J. Borenstein, Y. Koren, Vector field histogram — fast obstacle
avoidance for mobile robots, IEEE Transactions on Robotics
and Automation 21 (3) (1991).

[20] A. Elfes, A sonar-based mapping and navigation system,
Technical Report, The Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA, 1985, pp. 25–30.

[21] P. Rousseeuw, A. Leroy, Robust Regression and Outlier
Detection, Wiley, New York, 1981.

K. Madhava Krishna was born in
Madras, India, in 1974 and obtained his
undergraduate and postgraduate degree
from the Birla Institute of Technology
and Science, Pilani, in Electronics Engi-
neering. He is currently working towards
his Ph.D. degree in the Indian Institute
of Technology at Kanpur. His primary
research interests are in the areas of
mobile robotics, soft computing and in-

telligent systems. He is also keenly interested in consciousness
studies, philosophy of mind, mind–brain problem and philosophy
of quantum physics and AI.

Prem K. Kalra was born in 1957 in Agra, India. He obtained
his undergraduate degree from Dayalbagh Educational Institute
and post graduate degree from Indian Institute of Technology at
Kanpur. His doctoral degree was from the University of Manitoba.
His research interests are in neural networks specifically in the
area of new neuron models, fuzzy logic and AI.


