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ABSTRACT
Autonomous navigation of generic monocular quadcopter in the in-
door environment requires sophisticated approaches for perception,
planning and control. This paper presents a system which enables
a miniature quadcopter with a frontal monocular camera to au-
tonomously navigate and explore the unknown indoor environment.
Initially, the system estimates dense depth map of the environment
from a single video frame using our proposed novel supervised Hi-
erarchical Structured Learning (HSL) technique, which yields both
high accuracy levels and better generalization. The proposed HSL
approach discretizes the overall depth range into multiple sets. It
structures these sets hierarchically and recursively through parti-
tioning the set of classes into two subsets with subsets represent-
ing apportioned depth range of the parent set, forming a binary
tree. The binary classification method is applied to each inter-
nal node of binary tree separately using Support Vector Machine
(SVM). Whereas, the depth estimation of each pixel of the image
starts from the root node in top-down approach, classifying repeti-
tively till it reaches any of the leaf node representing its estimated
depth. The generated depth map is provided as an input to Con-
volutional Neural Network (CNN), which generates flight planning
commands. Finally, trajectory planning and control module em-
ploys a convex programming technique to generate collision-free
minimum time trajectory which follows these flight planning com-
mands and produces appropriate control inputs for the quadcopter.
The results convey unequivocally the advantages of depth percep-
tion by HSL, while repeatable flights of successful nature in typical
indoor corridors confirm the efficacy of the pipeline.
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Figure 1: Quadcopter autonomously navigating in indoor enviornment, bottom left
sub-image depicting depth map of environment estimated using HSL and bottom right
sub image show flight planning command generated by CNN
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1. INTRODUCTION
Recently, the miniature quadcopters have become an intriguing

platform for contemporary new applications in indoor environment.
Low cost, high maneuverability, hover capabilities have made them
a versatile platform for research. Quadcopters could be used in
security and surveillance tasks, where the capacity of flying above
ground obstacles give them a great advantage over ground robots
[1, 2]. However, miniature quadcopters are not able to carry power
consuming sensors such as range finders and with unavailability
of GPS in the indoor environment makes autonomous navigation a
challenging task.

The solution presented in this work enables a miniature quad-
copter with limited payload capability and frontal camera as pri-
mary sensor to navigate autonomously in an unknown GPS-denied
indoor environment. The capabilities of the proposed system could
be described as a twofold framework: (1) Dense depth map esti-
mation: dense depth map is estimated from each individual video
frame in real time, captured from the frontal monocular camera of
the quadcopter using our novel supervised Hierarchical Structured
Learning (HSL) approach. (2) Autonomous Navigation: estimated
depth map is provided as an input to Convolutional Neural Network
(CNN), which generates flight planning commands. These flight



Figure 2: Navigation Framework Architecture: Image captured from frontal camera of
quadcopter is provided as input to HSL. Depth map generated by HSL is provided as
an input to CNN which generates flight planning command. Trajectory planning and
control module generates the trajectory and control input for the quadcopter.

Figure 3: (a) Sparse ORB features (green boxes) detected in the indoor environment,
not suitable for 3D navigation. (b) Overall features (red dots) detected and map created
by ORB slam with blue box representing state of drone.

commands are provided to trajectory planning and control frame-
work, which employs convex optimization for generating minimum
time trajectory and controls for quadcopter, shown in Fig 2.

First, the system is primarily concerned with real-time estima-
tion of depth map of environment from a single video frame. The
RGB video captured from frontal camera of quadcopter is provided
as an input to our novel HSL approach which generates dense depth
map of the environment. The proposed supervised HSL approach,
discretizes the overall depth range (0-10 meters) into multiple sets.
It structures these sets hierarchically and recursively through parti-
tioning the set of classes into two subsets with subsets representing
apportioned depth range of the parent set, forming a binary tree.
Binary classification is applied at each internal set separately using
Support Vector Machine (SVM) classifier. The depth estimation of
each pixel of video frame starts from root node in top-down ap-
proach, classifying repetitively till it reaches any of the leaf node
representing its estimated depth. This allows transforming com-
plex regression based depth estimation into multi-class classifica-
tion problem utilizing multiple simple supervised learned binary
classifiers, which is discussed in detail in Section 3.1. This ap-
proach is applicable for low altitude autonomous navigation where
near-by object depth is more important than far off objects and also
depth range is more important than exact depth of object. The depth
estimation module of the framework appropriately utilizes the im-
age descriptors-color, texture and orientation as the feature vector.
Real-time dense depth map of the environment is estimated for each
video frame, circumventing the need for VSLAM [3,4] based sparse
reconstruction, which is often not suitable for navigation applica-
tion.

Second, dense depth map estimated by Hierarchical Structured

Learning (HSL) technique is provided as an input to Convolutional
Neural Network (CNN), which predicts the flight planning com-
mands (Go-Straight, Explore, MoveLeft, MoveRight etc), shown
in Fig. 2. The CNN is trained using supervised learning approach
with depth images being input and corresponding legitimate flight
planning commands being the output. This proposed approach de-
couples depth perception from flight planning. Furthermore, as
CNN accepts depth map as input thus allowing integrating either
3D LIDAR or Kinect based depth map etc in future. Our proposed
approach makes CNN module less complex and more generic due to
reduced dimensionality of input (depth map) R3→R1 and learning
invariant depth map structures instead of RGB images, discussed in
detail in Section 3.2. Estimated flight planning commands are pro-
vided as an input to the trajectory planning and control module,
which employs convex optimization for generating minimum time
trajectory and control inputs for quadcopter.

Current literature focuses only on estimating dense depth from
a single frame without considering its applicability. Whereas, this
paper presents novel HSL approach from the standpoint of robotics
vision along with its application in autonomous navigation of quad-
copter. Real-time performance, accuracy, adaptability and process-
ing requirements were considered while designing the framework.
HSL allows non-uniform quantization of overall depth range, pro-
viding flexibility to adapt the depth prediction to suite application
requirements.

The quintessential contribution of this paper according to the au-
thors lies in dovetailing very current, state of the art robotic vision
and machine learning techniques to achieve real-time autonomous
navigation of a monocular quadcopter, which continues to be a key
and visible area of aerial vehicle research. To the best of our knowl-
edge, such a system which seamlessly integrates dense depth es-
timation using Hierarchical Structured Learning (HSL) technique
and flight planning using CNN for indoor autonomous navigation
of miniature quadcopter with monocular camera as its primary sen-
sor, as shown in Fig. 1 has not been presented in literature before.

2. RELATED WORK
The perception of the depth map of an environment is crucial

to obstacle avoidance and autonomous navigation of quadcopters.
The principal existing techniques for depth map estimation include
monocular cues, structure-from-motion [4] and motion parallax.
Moreover, structure-from-motion and motion parallax approaches
require stable tracking between subsequent frames. The dense depth
map estimation from video stream obtained from the frontal monoc-
ular camera of the quadcopter, in our proposed work, utilizes fea-
ture vector which combines monocular cues: texture, texture gra-
dient and color information [5].

The depth estimation is normally considered to be a regression
problem and considered to be more complex than multi-class clas-
sification. However, Hierarchical Structured Learning (HSL) for
dense depth sensing is inspired by work of Ghosh et.al [6], which
utilizes hierarchical structured binary classifiers to solve complex
multi-class classification problem. Transforming depth sensing from
regression to multi-class classification problem for navigation is
similar to [7]. Multi-class classification using single complex model
[7] is affected by outliers which is mitigated using our proposed
HSL approach. Inferencing depth in a multi-label MRF framework
[5] is often not suitable for real- time applications such as quad-
copter navigation. Furthermore, DTAM [4] is susceptible to break-
age (due to insufficient feature tracks) when quadcopter pitches or
rolls significantly and also produces semi-dense depth map of en-
vironment which is not sufficient for autonomous navigation in 3D
environment. DTAM also requires GPU support for generating real



Figure 4: Hierarchical Structured Learning: Created binary tree representing the over-
all depth range of the environment (0.5-10 meters). Each internal node has separate
binary classifier (SVM) and leaf nodes represent the final depth range.

time depth estimation whereas HSL require minimum hardware re-
sources. PTAM [3] and ORB slam [8] as shown in Fig. 3 only
produce sparse 3D reconstruction of the environment with aver-
age 100-300 features detection per frame whereas our novel HSL
approach produces dense depth estimation of similar resolution as
that of the input frame. [9,10] both use CNN based single complex
system model whereas our proposed HSL approach sub-divides
the depth estimation in multiple sub problems and optimizes each
individually for best results. HSL’s real time CPU based perfor-
mance allows on-board processing on miniature quadcopters in fu-
ture, which may not be possible with other approaches. HSL is
primarily designed specifically for autonomous navigation of quad-
copter rather than accurate 3D reconstruction, which sets it apart
from other approaches. This approach is suitable for autonomous
navigation where depth range is more important than exact depth
of object from quadcopter.

The Convolutional Neural Network (CNN) based flight planning
approach is used in [11], which takes RGB images captured from
frontal camera of quadcopter as input and predicts control com-
mands for navigation. The quadcopter motion is controlled, using
simple fixed values of control inputs–yaw, pitch and roll, which
may not be able handle unplanned drift during the motion of quad-
copter. Whereas, our proposed system utilizes minimum time tra-
jectory planning and control module [7] which produces appropri-
ate control inputs for the quadcopter based upon flight planning
command. These control inputs are computed from the generated
trajectory in each update. Hence, they are applicable to achieve
closed-loop control similar to the model predictive controller. As a
result, it is able to mitigate such drifts to a certain extent. Dey et
al [12] depth perception is also inspired from [5] but utilizes single
regression model for depth perception whereas we utilize our novel
HSL approach. Ross et al [13] utilize Dagger algorithm for con-
trol whereas we suggest using CNN based control flight commands
generation along with minimum time trajectory planning and con-
trol. Visual appearance of similar environments may vary but their
3D or depth structure is mostly invariant. Where [14, 15] learn
using prior approach, our CNN learns from depth structure of envi-
ronment thus making it more generic and effective in unknown en-
vironments. Integrating minimum time trajectory generation also
ensures real time performance in complex environments.

Autonomous navigation of quadcopter in indoor environment
has been studied previously using various techniques like SLAM
[4], ultra-sonic or infrared sensors [16] and even laser scanners
[17]. [18] navigates 3D indoor environment utilizing RGB-D sensor
while [19] depends upon on-board laser sensors. These approaches
either use costly sensors or sensors not suitable for miniature quad-

Figure 5: RGB images captured from quadcopter are shown in top row and correspond-
ing depth map generated by HSL in second row with its heat map representation (dark
orange near, light orange futher and blue farthest distance) in third row for user vi-
sualization. Last row represents the CNN generated flight planning command for the
quadcopter.

copters due to their high power requirements. This paper focuses
on autonomous navigation of miniature quadcopters with limited
payload capacity and monocular camera as its primary sensor. Our
cost effective solution is inspired from autonomous flight in indoor
environment, work by Saxena et. al [20], which used perspective
cues from a single image. Unlike [7], the higher level behavior
decisions come from a learning module with the control loop be-
ing delegated to the lower level tasks of implementation of control
commands.

3. AUTONOMOUS NAVIGATION FRAME-
WORK

An indoor environment is the repetitive integration of few basic
components like hallway, door, stair, wall etc with varying views.
But certain characteristics of these components vary minutely irre-
spective of their location – depth map of the structure. Hallways
have a unique depth structure of long empty space in the middle
of the enclosed environment, which could easily be represented us-
ing depth map. Understanding their 3D structures instead of tra-
ditional RGB image view, could create a more generic solution for
autonomous navigation. Therefore, instead of learning RGB based
view of an indoor environment, we present a novel method for esti-
mating dense depth map of the environment using our novel Hierar-
chical Structured Learning (HSL) approach and CNN based module
for flight planning. The proposed framework is composed of two
major components–dense depth map estimation from single frame
obtained from frontal monocular camera using supervised Hierar-
chical Structured Learning (HSL) approach and CNN based module
which takes dense depth map as an input and generates flight plan-
ning commands (MoveLeft, MoveRight, Go-Straight, Explore etc.)
as output shown in Fig 5. Trajectory planning and control mod-
ule then generates minimum time trajectory and control inputs for
quadcopter based on the flight planning command.

The navigation framework consisting of (HSL, CNN and Trajec-
tory planning and control modules ) is implemented over Robot
Operating System (ROS) and executed over conventional laptop,
connected with quadcopter using Wifi. The video stream is cap-
tured from quadcopter frontal camera in real time and transfered



Figure 6: CNN architecture: Input depth map of 640×368 and 2 layers of Convolution
and max pooling layers followed by hidden dense layer with dropout of 0.5. Softmax
regression is applied at the output layer of CNN

over Wifi connection to HSL module, which estimates dense depth
map for each individual frame. Afterwards, estimated dense depth
is provided as an input to CNN module, which generates flight
planning commands ( MoveLeft, MoveRight, Go-Straight, Explore
etc). These commands are utilized by trajectory planning and con-
trol module to generate control input for quadcopter. Overall sys-
tem is able to generate depth map and flight planning commands
based on video frame within ∼ 400ms.

3.1 Hierarchical Structured Learning
The depth estimation module of the proposed navigation frame-

work generates dense depth map in real time from each single frame
captured from video stream. This novel approach uses feature vec-
tor derived from impressive work by Saxena et.al [5] and uses su-
pervised learning approach for training. The training data set for
indoor navigation is collected using Microsoft Kinect RGBD sen-
sor which uses the infra-red light to compute the distance from the
target objects. It consists of over 1600 RGB images R3 of various
indoor scenes (wall, hall-way etc) with their corresponding ground
truth depth images R1 representing depth between 0.5 to 10 meters.
The images and corresponding depth map obtained from Kinect
sensor were of 640× 480 resolution. The dataset is divided into
4:1 split for training and testing purposes with total training la-
bels ((number of pixels in each image) × (number of images in
the training set) = (640×480) × (1280) = 393216000). Hierarchi-
cal Structured Learning (HSL) was trained in supervised learning
approach utilizing RGB-D data from Kinnect with RGB images as
input and depth map of environment as desired predicted output.
Once trained, video from camera onboard the quadcopter is pro-
vided as an input and predicted depth map of the environment is
generated as an output. HSL does not require GPU support for real
time dense depth estimation and supports non-uniform quantization
of depth range, allowing emphasis on certain part of depth range,
not feasible with other approaches.

Multi-class classification using single complex model is affected
by outliers and error is propagated to all classifications. Estimated
classification accuracy may even be affected negatively by an in-
crease in the number of classes. However, our approach has mul-
tiple binary classifiers arranged in a hierarchical binary tree where
the flow of errors only restricted between siblings and parents nodes.
Furthermore, an absolute value of error in depth prediction de-
creases with each correct prediction at previous levels while mov-
ing towards leaf nodes. With the increase in number of classes
(n) the total number of comparisons required per pixel are only
O(log(n)), height of the tree. Other approaches like "one vs one"
and "one vs all" require O(n2) and O(n) comparisons respectively
[21].

In the proposed approach a depth value is estimated for each
pixel of the image. The features used in this approach captures en-

Figure 7: Quadcopter navigation in indoor enviornment: first row depicting GoS-
traight, second row MoveRight, third row MoveLeft and fourth row Explore.

ergy value by applying the Laws mask to the image intensity chan-
nel. Similarly, haze is captured by applying a local averaging filter
to the color channels. Lastly, to compute the estimate of the tex-
ture gradient robust to noise, six oriented edge filters are convoluted
with the intensity channel, more details in [5]. The computation of
the feature vector Fn(x,y), n = 1,...,17 where the n = size of feature
vector (17), for any given pixel in the image I(x,y) comprises of 9
Law′s mask, 2 color channels and 6 texture gradients filters.

Initially, the real continuous depth values obtained from Kin-
nect sensor are quantized into sets Si, i = 1,...,N, where the cov-
ering range of depth values for a set Si from near to f ar utiliz-
ing uniform sampling. Non-uniform sampling could also be in-
tegrated, to have sets with smaller resolution for certain range of
depth where accuracy is of importance and larger resolution oth-
erwise, to satisfy application requirements. This approach con-
verts the regression depth estimation into a multi class classifica-
tion problem. These sets Si, i = 1,...,N, are trained against feature
vector using our novel Hierarchical Structured Learning (HSL) su-
pervised learning approach. The depth range represented by these
sets have inherent inter-dependencies which are exploited by our
fast and intuitive HSL training process. It structures these sets hier-
archically and recursively through partitioning them into two sub-
sets where subsets represent apportioned depth range of the parent
set, forming a binary tree, as shown in Fig. 4. A classification is
applied at each internal node separately which uses Support Vector
Machine (SVM) with the linear kernel for binary classification. The
depth estimation for each pixel of image starts from root node in
the top-down approach, classifying repetitively till it reaches any
of the leaf node representing its estimated depth. The complex
multi-class classification depth estimation problem is hierarchically
transformed into multiple elementary binary one vs one classifiers
based solution, which yields both high accuracy and better gener-
alization. To achieve real-time performance the fast liblinear [22]
package with C++ interface is used in our implementation.

3.2 Convolutional Neural Network Based Flight
Planning

Convolutional Neural Network is trained using supervised learn-
ing method where dense depth estimated using our novel HSL ap-
proach is provided as an input along with respective flight plan-
ning commands – Move Left, Move Right, Go-Straight, Explore
etc. Flight planning commands are generated and recorded manu-
ally by flying the drone using remote control in a similar environ-
ment. The implementation of Convolutional Neural Network used
in our experiments is based on Lasagne package. Lasagne [23] is a
lightweight wrapper over Theano python library to build and train



neural networks. The CNN architecture pipeline used in our exper-
iments has following characteristics: An input dense depth image
of size 640×368, followed by the layer consisting of 4 convolution
filters of size 13×13 and the max-pooling layer with filter size of
4× 4. Subsequently, another layer consisting of 4 convolution fil-
ters of size 9×9 and max-pooling layer with filter size of 4×4 are
concatenated to the pipeline. The output of these layers is provided
to the dense hidden layer which is followed by output layer at the
end. Both the dense hidden layer and output layer have dropout
of 0.5, Fig. 6 describe the complete architecture. The output layer
uses Softmax regression which is generalized form of logistic re-
gression. Furthermore, it is trained to provide flight planning com-
mand (MoveLeft, MoveRight, GoStraight, Hover, Explore etc) as
output in the form of unique binary numbers.

So f tmax P(xi, j) =
exp xi, j

∑k exp xi,k
(1)

Flight Control = argmaxi, j(P(xi, j)) (2)

where x is an array input to the Softmax regression and element
with max probability is selected as next flight planning command.
If the selected command has probability below threshold value (ex-
perimentally found), default safety hover command is selected in-
stead. Once reached, control is switched back to manual control
mode.

3.2.1 convolution
Convolution layers perform 2D convolutions of their input maps

with a rectangular filter. Higher activations will occur where the fil-
ter better matches the content of the map, which can be interpreted
as a search for a particular feature. To add non-linearity, it uses
ReLU activation function: φx = max(0,x).

3.2.2 max-pooling
The output of the max-pooling (MP) layers is formed by the

maximum activations over overlapping square regions. MP layers
decrease the map size, thus reducing the network complexity. MP
layers are fixed, non-trainable layers selecting the winning neurons.

In most of the proposed approaches, RGB image is provided as
input to CNN for learning [11]. However, our proposed framework
provides estimated depth using HSL to CNN as an input thus re-
ducing the input complexity (R3 → R1) of the system. This also
allows system to be more generic in nature as it learns minutely
varying depth structures of the components of environment instead
of the views in RGB. The CNN is trained with 50:50 split between
training and testing dataset containing over 300 depth images each
and respective labeled flight control. The selected depth images
represent diverse scenes of environment from set of 1600. This dis-
tribution setup between training and testing dataset ensured varied
and adequate testing to avoid over fitting condition. The CNN is
trained using back propagation for either 500 epochs or if desired
threshold accuracy is achieved, which requires about 48 hours on a
workstation equipped with an Intel Core i7 CPU with 16 GB RAM.
The estimated flight planning command is provided to trajectory
planning and control module.

3.3 Trajectory Planning and Control
Unplanned drift in motion or error in state estimation prevalent in

most quadcopters, may make quadcopter lean and crash. To avoid
such a situation, a visual vanishing point based reference feedback
mechanism was developed to align the drone to the middle of the
corridor while in motion. This creates drift directional information
for trajectory planning, which generates control commands for the
quadcopter.

Figure 8: Quadcopter flying through hallway with symantic representation.

3.3.1 Vanishing Point
Indoor environment consists of straight parallel lines which al-

lows use of proven vanishing point technique for navigation. The
LSD [24] algorithm is used in our experiment for detecting lines in
the environment. The lines should converge towards a point (van-
ishing point) but because of noise, all the lines may not intersect
at the same point. The region in the image which has the highest
density of pair-wise line intersections, indicates a high confidence
index and thus contains the vanishing point [20]. To achieve this,
the image plane is divided into an M×M grid G and middle of
grid element Gp,q with maximum intersections is selected as the
vanishing point for the frame.

(p,q) = arg max(p,q)Gp,q (3)

The current frame vanishing point is likely to be in close prox-
imity to the previous frame. Using this information, a linear mo-
tion model for Kalman Filter is constructed to suppress the noise in
the vanishing point estimation. The deviation (∆x,∆y) in vanishing
point from the center of the image corresponds to the change in the
heading angle γ .

γ = tan−1(∆x∗ f ield o f view o f camera
width o f image

) (4)

The variation in the heading angle (γ) thus computed is fed to
the trajectory generation to adjust the direction of motion.

3.3.2 Trajectory Planning
Quadcopter motion model used in experiment is described by

roll− pitch−yaw (θ ,φ ,ψ) set of Euler angles. The proposed trajec-
tory planning and control module generates minimum time trajec-
tory from the current position of quadcopter in every update cycle
of the proposed navigation framework. Minimum time trajectory is
generated with constraints:

Minimize : Ω = |Vmax− vtk|2

Sub ject to : vtk <=Vmax, atk <= Amax and

jtk <= Jmax, ∀k = 0, . . . ,n

where vtk, atk, jtk are instantaneous velocity, acceleration and
jerk of quadcopter at time tk and Vmax, Amax, Jmax are the maximum
velocity, acceleration and jerk constraints [7].

4. EXPERIMENTS AND RESULTS
We have evaluated the proposed framework on a low cost com-

mercial Bebop quadcopter by Parrot [25] which is equipped with
frontal monocular camera, ultrasound altimeter and onboard IMU.
It transmits video frames at 640× 368 resolution along with IMU



Figure 9: Estimated Depth using HSL with 1st and 3rd column depicting RGB images
and 2nd and 4th columns depicting respective estimated depth using our novel (HSL)
approach with color coding red, yellow and blue representing near, farther and farthest
distances.

Table 1: HSL Depth Estimation

HSL Depth
Estimation

Tolerance (meters)
0 0.5 1

Depth Estimation
vs Ground Truth
Accuracy %

16.89 46.14 52.63

information to the host device through wifi connection. For all the
experiments including depth estimation, CNN flight planning, tra-
jectory planning and control generation are carried out on a conven-
tional laptop computer running ROS (Robot Operating System) as
middle-ware over Ubuntu 14.04 LTS with Intel Core i5 processor
@2.6 GHz and 8GB of RAM. Microsoft Kinnect was only utilized
for collecting training dataset (RGB-D) of indoor environment for
HSL with input being RGB image and depth map as learning param-
eter. The quadcopter training images and depth data were collected
from corridors of multiple building and to ensure the efficacy of
experiments, the quadcopter testing was performed on corridor not
part of the training dataset.

The HSL approach requires ∼ 0.18 sec to estimate dense depth
for image of resolution 640×368 and CNN takes∼ 0.2 sec for gen-
erating flight planning command. The computation cycle time is
approximately equal to system response time (∼ 400ms) of Bebop
justifying its practicality. Average accuracy of dense depth estima-
tion using HSL is 16.89% while 46.14% accuracy is observed if tol-
erance range is increased to +/−0.5 meters, as shown in Table 1.
Moreover, overall error in the depth prediction using HSL is 0.531
on log distance: Elog = 1

NxM ∑ | log(Dg) − log(Dp)|, where Dg
ground truth depth, Dp estimated depth, N is rows and M columns
of image. The accuracy of depth estimation achieved using HSL at
some of the internal tree nodes when compared with ground truth

Table 2: Classification Accuracy of HSL nodes

Binary Nodes
of HSL (meters)

Classification
Accuracy %

Log Distance
Error

0-5 74.07 0.256
0-4 73.57 0.263
0-3 57.84 0.293
0-2 12.07 0.613

Table 3: Autonomous Navigation Experiments

Autonomous
Navigation

Successful
Navigation

Unsuccessful
Navigation

Total
No of
Experiments

Indoor Navigation 34 7 41

is depicted in Table 2. Overall accuracy of classification decreases
as we move from top to bottom of HSL tree structure as shown in
Table 2 due to a) error predictions of parent nodes are processed
by children nodes b) error in prediction at each node of HSL. The
data in HSL node representing depth range 0-5 meters as shown
in Table 2 is classified further by 0-4 meters, 0-3 meters and 0-2
meters. Overall prediction accuracy decreases as the data moves in
top-down approach between nodes due to above mentioned justifi-
cation. CNN classification is tested on testing dataset of over 300
images and 92.66% accuracy is achieved. Experiments are con-
ducted numerous times in indoor environment, Fig 8 with success-
ful navigation rate of 82.04%, as shown in Table 3. Inherent drift
in motion of quadcopter, incorrect depth map estimation due to un-
even lighting in hallways, astray vanishing point detection resulted
in unsuccessful navigation attempts of the quadcopter. The Fig.
7 depicts the overall motion of quadcopter in indoor environment.
First row in Fig. 7 shows GoStraight motion of quadcopter. Second
row depicts sequence of MoveRight followed by GoStraight motion
after detecting the hallway. Similarly third row shows MoveLeft
followed by Gostraight motion profile. Fourth row represents the
Explore motion profile after detecting the end of the hallway where
quadcopter turns 90o and move towards next hallway. Fig. 9 show-
cases HSL depth estimation results in various scenarios in indoor
environment. The experiment video showcases the efficacy of our
framework for autonomous navigation of quadcopter. The frame-
work is even able to mitigate the effects of unplanned drift in mo-
tion while navigating in indoor environment.

5. DISCUSSION
Our proposed approach utilizes Microsoft Kinnect for labeling

ground truth depth subsequently used for HSL training but observed
to be ineffective in places with direct sunlight, bright objects etc
which may introduce outliers or errors in training dataset for HSL.
Stereo camera ZED is initially tested but found to be ineffective
for generating depth ground truth due to large Min distance (1.5
meters) for depth perception and ineffective on walls with very
less texture. The accuracy of the depth perception could be in-
creased by using higher resolution Microsoft Kinect 2 Sensor or
using 3D LIDARs. CNN module currently predicts using Intel Core
i5 CPU as main processing unit but with increase in complexity
of model in future, GPU based model may be chosen. Theano
which has dynamic GPU/CPU selection and capability for handling
complex Neural Networks made it optimum choice for this experi-
ment. The system consisted of Intel Core i5 CPU and Nvidia 820M
2GB graphics card. Experiments were conducted to evaluate the
overall real time prediction performance between CPU and GPU
with results recorded in Table 4. GPU based CNN prediction was
comparatively faster than CPU but with only 10% improvement.
This could be attributed due to simple design of CNN and small
640×368 image size.

Learning rate and momentum play an important role in final ac-
curacy of classification achieved by neural networks. Small value
may cause the system to never reach the goal or being stuck in local
minima and large value may cause it to keep overshooting the goal
value without ever reaching it. These parameters were determined



Table 4: CPU vs GPU performance for CNN prediction

Frame CPU (Sec) GPU (Sec)
1 0.277 0.270
2 0.276 0.271
3 0.311 0.272
4 0.300 0.284
5 0.280 0.278

Figure 10: Top row: original Image, middle row: HSL predicted depth and last row :
Make3D predicted depth.

experimentally for our work with learning rate η = 0.005 and mo-
mentum m = 0.01. Outdoor navigation using similar methodology
was also approached but due to limited functionality of Microsoft
Kinect in sunlight and above mentioned limitations of ZED stereo
camera, activity is deferred. Bebop quadcopter dynamical model is
not available to public from the manufacturer but is managed by its
internal proprietary software.

The effectiveness in terms of depth prediction accuracy and real
time performance of our novel HSL approach was compared with
Make3D [5]. Real time performance comparison between the two
approaches is described in Table 5. Make3D treats the depth predic-
tion problem as a regression problem whereas HSL as a multi-class
problem. Thus for comparison with HSL, predicted depth values
of Make3D were discretized into predefined number of bins. Depth
prediction accuracy was calculated using formula log distance:

Elog =
1

NxM ∑ | log(Dg) − log(Dp)|

and comparative results are shown in Table 6. It could be seen that
HSL provides comparative depth prediction accuracy to Make3D
but with real time performance. The depth prediction comparison
output is show in Fig. 10. It was observed that Make3D excelled in
predicting depth of continuous surfaces but absolute error in depth
per region of image was lower in HSL output.
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Table 5: Real time performance comparison between HSL and Make3D

Depth Prediction
Time (Sec)

Image
Size

Output
Depth Map

Size
Make3D 56 1704 × 2272 900 × 1200
HSL 0.7 1700 × 2268

Table 6: Depth prediction comparison between HSL and Make3D

Depth Prediction
Log Error

Discretized
Depth Level

Make3D 0.698 20HSL 0.710

6. CONCLUSION
This paper presents novel approach to achieve real-time autonomous

navigation of a miniature quadcopter. We present a system which
seamlessly integrates real time dense depth estimation using Hier-
archical Structured Learning (HSL) technique and flight planning
using CNN for indoor autonomous navigation of quadcopter with
monocular camera as its primary sensor. The numerous exper-
iments convey unequivocally the advantages of depth perception
by HSL, while repeatable flights of successful nature in typical in-
door corridors confirm the efficacy of the framework. In future, au-
tonomous navigation in natural outdoor environment using similar
approach along with moving obstacle avoidance is being actively
persuaded.
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