DeepFly: Towards Complete Autonomous Navigation of
MAVs with Monocular Camera

Utsav Shah
Robotics Research Center

KCIS, IlIT Hyderabad

ABSTRACT

Recently, the interest in Micro Aerial Vehicles (MAVSs) and
their autonomous flights has increased tremendously and
significant advances have been made. The monocular cam-
era has turned out to be most popular sensing modality for
MAVs as it is light-weight, does not consume more power,
and encodes rich information about the environment around.
In this paper, we present DeepFly, our framework for au-
tonomous navigation of a quadcopter equipped with monoc-
ular camera. The navigable space detection and waypoint
selection are fundamental components of autonomous navi-
gation system. They have broader meaning than just detect-
ing and avoiding immediate obstacles. Finding the navigable
space emphasizes equally on avoiding obstacles and detect-
ing ideal regions to move next to. The ideal region can be
defined by two properties: 1) All the points in the region
have approximately same high depth value and 2) The area
covered by the points of the region in the disparity map is
considerably large. The waypoints selected from these nav-
igable spaces assure collision-free path which is safer than
path obtained from other waypoint selection methods which
do not consider neighboring information.

In our approach, we obtain a dense disparity map by per-
forming a translation maneuver. This disparity map is input
to a deep neural network which predicts bounding boxes for
multiple navigable regions. Our deep convolutional neural
network with shortcut connections regresses variable num-
ber of outputs without any complex architectural add on.
Our autonomous navigation approach has been successfully
tested in both indoors and outdoors environment and in
range of lighting conditions.

CCS Concepts

eComputing methodologies — Vision for robotics;
Computer vision; Machine learning;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ICVGIP, December 18-22, 2016, Guwahati, India
© 2016 ACM. ISBN 978-1-4503-4753-2/16/12... $15.00
DOL http://dx.doi.org/10.1145/3009977.3010047

Rishabh Khawad
Robotics Research Center
KCIS, IlIT Hyderabad

K Madhava Krishna
Robotics Research Center
KCIS, IlIT Hyderabad

Figure 1: Navigable Space Perception. Left: De-
tecting Navigable Spaces with Color Images is inher-
ently hard problem as what constitutes such a space
depend greatly on environment. Right: In Disparity
Space, this detection becomes more tractable.

Keywords

Micro Aerial Vehicles; Autonomous Navigation; Deep Learn-
ing

1. INTRODUCTION

Micro Aerial Vehicles(MAVs) that can autonomously nav-
igate through cluttered environments have long been an ob-
jective of robotics research [14], [22], [13], [2]. MAVs can be
useful in a number of important applications, such as disas-
ter scene surveillance, package delivery, and aerial imaging
for entertainment, remote farming, and construction work

Figure 2: DeepFly Framework. Column 1: Horizontal Translation of Quadcopter. Column 2: Images obtained
at endpoints. Column 3: Disparity map computed using two images. Column 4: Output of Network as
bounding boxes containing navigable spaces. Center of largest box is next waypoint.

monitoring. In order to fulfil the promise of these appli-
cations, MAVs should be able to navigate in unstructured
environments with complete autonomy. For this, it is es-
sential that they are able to avoid obstacles and navigate
robustly.

Most of the earlier approaches for autonomous operations
of MAVs use laser range sensors, Kinect, stereo camera, or
combination of multiple sensors. However, these sensors
are heavy and very power consuming. They hurt agility
of MAVs and make flight-time shorter. Also in most of the
publicly available MAV's, mounting such sensors is not feasi-
ble. Therefore, we are interested in autonomous navigation
method that uses only a monocular camera, which is read-
ily available in most of the MAVs. Much of the existing
approaches for autonomous navigation are tailored for ei-
ther indoors or outdoors conditions. Moreover, the lighting
conditions have greater impact on the results of the system.
We focus on the architecture that works both indoors and
outdoors and also in challenging lighting conditions.

While most of the existing efforts for autonomous naviga-
tion of MAVs focus on obstacle detection, we rather focus
on detecting good navigable spaces. The navigable spaces
can not be segmented efficiently using only color intensities
in variety of scenes. As seen in the left column of Figure 1,
bounding navigable spaces across diverse colour images can
prove to be difficult due to the wide chasm in the semantics
of what constitutes such a space. However, the context of
the navigable space is more tractable with disparity images
(right column of Figure 1). In disparity space, the repre-
sentation of navigable spaces is more uniform in wide range
of scenes. Hence, the task of finding good navigable regions
can be posed as finding regions in the disparity map which
occupies large area and have approximately same low dis-
parity values.

In this paper we present DeepFly, our framework for au-
tonomous navigation of a quadcopter equipped with monoc-
ular camera. Figure 2 shows the architecture of our system,
composed of two modules: disparity map generation and
navigable space detection. We obtain a pair of images by
horizontal translation of quadcopter and pass it to stereo
correspondence algorithm. The generated dense disparity
map is then fed to our deep convolutional neural network
with shortcut connections which performs multivariate re-
gression. The regression target is bounding boxes for one,
two, or three navigable spaces depending on the structure
in front of the quadcopter. We select next waypoint from

these navigable spaces as center of biggest navigable space.

We specify two contributions of our approach: 1) We ob-
tain dense disparity map of scene using quadcopter equipped
with monocular camera which works in range of different en-
vironments and 2) We present a deep network with a novel
ground-truthing scheme which can regress “variable” number
of outputs without any complex architectural add on.

It is important to note that we do not claim that the
disparity map obtained in our approach is ideal. Instead,
we emphasize that we do not need perfect depth structure
for autonomous navigation purposes. The learning process
can handle small random errors in disparity map. Moreover,
our framework is modular: our disparity map generation
module can be used with other waypoint selection methods
and our navigable space detection and waypoint selection
module can be used on disparity map / depth map obtained
through some other pipeline.

2. RELATED WORK

Lately, there has been very interesting and impressive re-
search on Autonomous Navigation and Obstacle Avoidance
of MAVs. The bouquet of methods include using Range Sen-
sors, Stereo Camera, Monocular Camera, Structure from
Motion, and other feature based techniques. The existing
approaches also range from purely reactive systems to com-
plete planning based systems. Many of these approaches to
autonomous navigation of MAVs are specific to outdoors [4]
or indoors [11] conditions. Also many of them depend sig-
nificantly on lighting conditions [21]. On the other hand,
our approach works in both indoors and outdoors environ-
ments. It is very robust and works well in range of lighting
conditions.

Different Range sensors used with MAVs can include laser
range finder, infrared sensors, and such. Nieuwenhuisen et
al [17] presented obstacle detection and complete planning
method with 3D laser scanner, two stereo camera pairs, and
ultrasonic distance sensors. Bry et al [3] presented a state
estimation method using an on-board laser range finder and
inertial measurement unit and showed aggressive flight in
GPS-denied environments. However, the range sensors are
not practical to most of the publicly available quadcopters
as they are often too heavy for MAVs and consume lots of
power. Our work is based on only a monocular camera,
which consumes low power and is also light weight. More-
over, a monocular camera is readily built in to most of the
quadcopters.

Figure 3: Left: Image of the scene in front. Center: Disparity Map using ZED Stereo Camera. Right:
Disparity Map by Horizontal Translation of Quadcopter

Figure 4: ORB SLAM Output in typical Outdoors
(Top) and Indoors (Bottom) Environment

Structure from Motion (SfM) or Monocular Visual SLAM
approaches [12], [15] can be used to reconstruct 3D scene
geometry from a moving monocular camera. While such
SfM approaches are reasonably fast, they produce sparse
maps that are not suited for collision-free navigation; the
absence of visual features in some region does not neces-
sarily imply free space (Figure 4). Many of the approaches
that try to obtain dense depth map use some variant of
DTAM [16], [1]. However, DTAM is susceptible to break-
age due to insufficient feature tracks if quadcopter pitches
or rolls significantly. It also requires high computing power.
Moreover, DTAM based approaches needs large number of
images (ranging from 10 to 100) of varying views. In con-
tradiction, our method requires only two images captured
by quadcopter by performing a horizontal translation. Us-
ing this image pair, we obtain a dense disparity map us-
ing stereo correspondence algorithm (SPS Stereo [25] in this
work). The obtained disparity map is not as accurate as
depth map produced by DTAM, but it contains sufficient
information for the steps to follow in our pipeline.

Once the structure of the environment is learned, the way-
point can be obtained in multiple ways. Alvarez et al [1] use
a horizontal scan line at the center of 3D world map and find
a point on that line that has highest depth value. Fraundor-
fer et al [5] use a 2D slice of 3D occupancy grid map based

on MAV’s fixed altitude and forwards MAV in the direc-
tion of free region. These approaches either do not consider
neighbouring information or are computationally expensive.
More importantly, since most of these approaches work on a
fixed height, the results can be suboptimal. Moreover, they
will fail if there is a wide obstacle, like a fencing wall, in
front at MAV’s fixed height. In our work, we have trained
a Convolutional Neural Network with shortcut connections
that regresses variable number of outputs. These outputs
are bounding boxes containing navigable spaces. We choose
center of the biggest box as the next waypoint. As our net-
work can learn navigable spaces in any part of the scene, our
approach is not bound by fixed altitude constraints.

Object detection is a well studied problem in the vision
community. However, detecting navigable spaces is a very
different problem from real world object detection as the
shape of these regions in disparity maps can be completely
arbitrary. There can be many regions in disparity map rep-
resenting high depth at various locations and occupying dif-
ferent amount of areas. We trained deep network to predict
minimum one to maximum three navigable regions given
the disparity map. For object detection, Ren et al [20] use
Region Proposal Network and classification network with
shared weights to jointly classify the object and predict its
bounding box. Redmon et al [19] divide the images in grids
and uses two anchor boxes per cell. Then the cells cov-
ering objects are merged; classification and detection are
optimized together. Our neural network architecture is ex-
tremely simple and cleaner compared to Ren et al and Red-
mon et al. We are looking at the whole image at both train-
ing and testing time like Redmon et al, but we do not divide
it into grids. Instead, we do multivariate regression on whole
image. We achieve the variable number of outputs using a
novel ground-truthing scheme. Our network is also different
from Tulsiani et al [24] as we do not use any masking for
variable number of outputs.

3. DEEPFLY FRAMEWORK

Our architecture is composed of two functional modules:
1) Disparity Map Generation 2) Waypoint Selection. Logi-
cally, this can be thought of as obtaining a depth map (as
disparities are inversely proportional to depth) and inter-
preting the depth map.

3.1 Disparity Map Generation

One of the big challenges in our application is to obtain a
pair of images which is to be input to stereo correspondence
algorithm. These correspondence algorithms usually take
rectified pair of images as input. Also most of such image
pairs are obtained using binocular stereo camera or precisely

calibrated monocular cameras. But in our case, the pair of
images are obtained from quadcopter moving horizontally; it
moves right to left to capture two images. These image pairs
are not rectified. The baseline, though mostly in specified
range, is not always exact. Moreover, there could be mi-
nor movements in forward/backward direction or up/down
direction as quadcopter moves from right to left. For our
work, we have tried to tackle these situations by observ-
ing the behavior of quadcopter during horizontal movements
and explicitly modelling rectifying commands.

Once we have obtained image pair, we feed it to stereo
correspondence algorithm. In our work, we are using SPS
Stereo [25] to obtain disparity map. It is open source and
produces dense disparity map. Other than SPS Stereo, we
also tried SGBM [8] (OpenCV implementation) with fine-
tuned parameters. It produces dense disparity map faster,
but it is not as accurate as SPS Stereo. Hence we have used
SPS Stereo in our work. At this point, it is crucial to inves-
tigate the claim that we can produce a meaningful disparity
map by translating quadcopter horizontally. Figure 3 shows
outputs produced by SPS Stereo of the same scene by using
an image pair obtained from ZED Stereo Camera and image
pair obtained by quadcopter. The results intimates that dis-
parity maps are of comparable quality. We present accuracy
of depth obtained by our method in Section 5. We believe
two reasons responsible for good quality of disparity map:
baseline is larger in our approach (25 centimeter) compared
to baseline of ZED camera (12 centimeter) and the stereo
correspondence algorithm is powerful enough to handle im-
ages obtained using less than ideal methods. The disparity
maps in Figure 1 (right) are obtained by horizontal trans-
lations of quadcopter. Figure 5 shows results of disparity
generation in extreme lighting conditions.

Figure 5: Left: Color Image of Scene in front in
Challenging Lighting Condition. Right: Corre-
sponding Disparity Map.?

2 These images are dark and hence may not look de-
tailed enough on all screens. They look fine with Intel
Corporation Broadwell-U Integrated Graphics (rev 09)
VGA controller. Also, zoom in for best visualization.

—— "ma

Figure 6: Top: Typical Failure Case for Fixed Alti-
tude Methods. Bottom: Output of Our Deep Net-
work for Same Case.

3.2 Waypoint Selection

The dense disparity map is input to deep network. At
test time, our network outputs bounding box for minimum
one to maximum three navigable spaces, depending on the
structure of environment. The complete details of architec-
ture, training, and dataset for our network can be found in
next section. Even though generated disparity map is not as
accurate as some other dense methods, we can cope up by
learning the free space. The disparity map contains enough
knowledge about free space and nearby obstacles. The out-
put of the network are bounding boxes containing navigable
spaces. We find the box with biggest area from all available
boxes and choose its center as waypoint.

Many existing approaches use a scan line in depth map
or a cell in 2D slice of 3D grid map to obtain waypoint.
Such methods limit that quadcopter fly only at fixed height.
And these methods will fail if there is a wide obstacle in
front with height even slightly higher than what quadcopter
flies at. Also finding a single point in depth map which has
highest depth value is not very meaningful if we do not con-
sider neighboring environment. There can be an immediate
obstacle just at side of the point with highest depth. Our
learning approach takes this into account and outputs the
regions that are large and navigable, even if they are not
farthest. This is fine in our approach because we let quad-
copter fly for about 5 meters before it repeats the process of
obtaining image pair, generating disparity map, and select-
ing next waypoint. Figure 6 shows one case where typical
methods would fail but our method will work fine.

4. DEEP NEURAL NETWORK: DETAILS
4.1 Architecture

Our network is inspired from He et al [6]. It is a 51-
layer network with shortcut connections performing mul-
tivariate regression. Figure 10 shows three core compo-
nents of network (visualization using Netscope). The image
data first goes through Convolution-BatchNormalization[9]-
Scaling-ReLU block with convolution kernel size 7, stride
2 and number of filters 64. This block is followed by Max
Pooling layer with kernel size 3 and stride 2 (figure 10, top).
Post this point, the network is composed of repetitive struc-
ture known as “bottleneck” building block [6]. The bottle-
neck blocks contain three Convolution-BatchNormalization-
Scaling-ReLLU modules with convolution kernel size 1, 3, and
1 respectively. The shortcut connections are introduced by

element-wise summation of output of previous block and
output of current block (figure 10, center). There are total
16 bottleneck blocks before average pooling through which
tensors pass. The bottleneck blocks are followed by Aver-
age Pooling with kernel size 7 and stride 1. The first fully
connected layer has 100 filters, followed by ReLU. The final
fully connected layer has 12 outputs, four for each of possi-
ble three bounding boxes containing navigable space (figure
10, bottom).

Other than our 51-layer network, we tried 16 layer VG-
GNet [23] for our task. However, its performance was not
upto level of the former. We could not try network any
deeper than 51-layer because of GPU memory limitation.
Our 51-layer network has more layers than VGGNet, how-
ever, the total number of parameters (~ 0.8 M) are ex-
tremely low compared to total parameters of VGGNet (~ 138
M). We cannot use any pretrained model available as most of
these networks are designed for color images and real world
scenes.

4.2 Multivariate Regression

Our network predicts bounding boxes for one, two, or
three navigable spaces from given disparity map. We do not
use any Region Proposal Networks [20] or divide image into
grids and process each grid [19]. Our approach is extremely
simple and cleaner. We train the network end to end with
some special number when it has to predict less than maxi-
mum possible number of outputs. For example, our network
can predict maximum three bounding boxes. If the environ-
ment in front has two or one navigable spaces, we will use
the special numbers once or twice respectively. In our case,
we have used 0 as the special number. To make example
more concrete, when there are only two navigable spaces
in front, we will train network with eight numbers specify-
ing coordinates of two bounding boxes containing navigable
spaces and four zeros for the remaining target values.

The network learns this phenomenon quite well. At test
time, whenever the number of navigable spaces are less than
maximum, the network predicts very small values close to
zero for the remaining bounding boxes. These small num-
bers can easily be thresholded and discarded. Hence, the
network learns to regress variable number of outputs with-
out any assistance like masking or region proposals. But
there are some caveats here which must be considered. First
is that there should be an upper bound on how many out-
puts there can be or what is maximum number of outputs
that we care about. In our case, we chose three regions as
maximum possible because it was the maximum number of
possible regions in more than 90% of our data. The second
thing to note is that there should be enough examples of
different number of outputs for network to learn such phe-
nomenon. This is a very fundamental point that is relevant
in many scenarios in machine learning.

4.3 Dataset and Training

Because of unavailability of any standard dataset related
to our work, we created our own dataset. Our augmented
dataset contains about 12000 images of 640 x 368 resolution.
The input to the deep neural network is greyscale disparity
map. We normalize the disparity map in range 0 to 255
before training and testing. This normalization essentially
takes care of varying baselines among different pairs of im-
ages obtained by translation of quadcopter. We annotated

ground truth boxes manually, from left to right up to three
boxes per image. Each box was annotated such that it covers
maximal navigable (dark) area without hitting any bright
regions (obstacles). We performed two types of data aug-
mentation — mirroring and Gaussian smoothing. The size of
the dataset can be boosted greatly using random cropping.
However, we observed that the overall structure of the scene
is important in navigation task. We ground-truthed data
with the philosophy that the regions in the center should be
given more preference than regions near edges. Moreover,
we maintained to avoid navigable spaces that are close to
immediate obstacles. Such knowledge propagation cannot
be performed efficiently if we crop image in multiple parts.
Hence, we did not augment dataset using cropping. We use
the said resolution disparity map and did not scale it down
because regression is a hard problem and more details are
helpful.

We trained the network using Caffe library [10]. We ini-
tialize the weights as in [7] and train our network from
scratch. We use Stochastic Gradient Descent with mini
batch size of 6. We chose the size to be maximum that
we can fit on GPU. We start with learning rate 0.000001
with step size of 25,000 and multiplying factor 0.1. How-
ever, we increase learning rate after 50,000 iterations and
again follow step policy of decreasing it by factor 0.1 every
25,000 iterations. We use Euclidean Loss for learning. The
model is trained for 150,000 iterations. We use weight decay
of 0.0001 and momentum of 0.9, and we do not use dropout.

5. EXPERIMENTS

We have evaluated our DeepFly framework on a low cost
commercial Bebop quadcopter by Parrot. It is equipped
with frontal monocular camera, ultrasound altimeter, and
onboard IMU. It transmits frames at 640 x 368 resolution
and 30 fps to the host device through WiFi connection.
We use Robot Operating System (ROS) [18] as middleware
for communication with quadcopter. The whole pipeline of
quadcopter making a horizontal translation, disparity map
generation, and waypoint selection takes about 1.3 seconds.
The time taken by our pipeline is relatively low and quad-
copter can safely hover for necessary period. Because of the
limited computational power onboard, we perform all calcu-
lations on host system.

We perform experiments in wide range of environments
such as among the trees, on roads, at open spaces, in corri-
dors, in halls, and on stairs. We present some of our results
in Figure 7. We also test our system in challenging lighting
conditions (Figure 5). Find the statistical details of exper-
iments performed in Table 1. In the table, we divide the
failure cases into two categories: (1) Failure in quadcopter
translation and disparity generation (2) Failure by the neu-
ral network. We consider the experiment successful if the
biggest bounding box from which next waypoint is to be
selected indeed represents ideal navigable space. Table 2
presents some statistics about average depth error for vari-
ous depth ranges using our method. We use IMU data to to
measure baseline.

The horizontal translation of the quadcopter will fail if
the external forces such as wind are too great. By failure,
we mean that the quadcopter will not translate enough or
will translate too much. Because of this abnormal trans-
lation, the produced disparity map could be different from
the disparity maps the network is trained to work upon.

The failure cases in disparity generation means strong er-
rors in disparity map. These failure case occurs in case of
extremely texture less regions. We present couple of failure
cases in Figure 8.

It should be noted that it is easy to detect translation fail-
ure using monocular SLAM. We use ORB SLAM [15] in our
experiments to keep account of the translations. However,
the errors in disparity map cannot be detected easily. When
the neural network fails, it outputs the bounding boxes in
some special ways which can be caught easily, as discussed
in next section. Figure 9 shows some more results; these
results are fine for navigation purposes since we get the cor-
rect waypoint, but they can be improved. We believe that
overall results of our system can improve if we have larger
dataset.

6. DISCUSSION

6.1 Comments on Learning Capability of Deep
Networks

While ground-truthing for training the network, we gave
bounding box coordinates in particular direction: first four

.i
- 4
I

Figure 7: Some Results of Deep Neural Network in Different Environments. The Center of the biggest box
is selected as next waypoint (red/green circle).

neurons of last fully connected layer learn bounding box of
left most navigable region, next four neurons learn bound-
ing box of second left most (or, equivalently, second right
most) navigable region (if any), and last four neurons learn
bounding box of right most navigable region (if any). The
network successfully learned this directionality. At test time,
whenever there are more than one navigable regions, neu-
rons regressed bounding boxes in same direction as they were
trained to do (first four neurons predicting left most region
and so on). Interestingly, it is easy to detect failure cases of
network because we observe that every time it fails to pre-
dict the navigable regions, it outputs bounding boxes which
are not in strictly left to right order.

One more comment about our deep network is that since it
was able to interpret variable number of outputs, we tried to
figure out whether it can count. We changed the Euclidean
Loss to Softmax Loss and tried to classify images based on
number of navigable regions they have — class 0 indicates
one region, class 1 indicates two regions, and so on. And
the results show that our network can count regions too.
This just strengthens our claim that if the maximum possi-
ble number of outputs are bound by upper limit, the deep

Table 1: Results

Environment Total Runs | Successful Runs | Failure by (1) | Failure by (2)
Outdoors, Normal Light 80 71 4 5
Indoors, Normal Light 40 34 5 1
Abnormal Light (Indoors and Outdoors) 20 13 5 2

Table 2: Depth Accuracy
Depth Range <2m |[2-5m|[5-10m
Average Error (in m) | 0.1765 | 0.3823 | 0.7392

networks can learn to predict varying number of outputs
without any complex architecture. Though, it is important
to note that our problem is in grayscale image space and we
are interested in multiple instances of one class. It would be
interesting to realise these type of results with color images
and for multiple classes.

Figure 8: Top: Failure Because of Error in Dispar-
ity Generation. Bottom: Failure Because of Neural
Network.

Figure 9: Some Improvable Results: Here, the Way-
point Selected is Fine for Navigation Purposes. Al-
though the Results in Entirety can be Improved.

6.2 Limitations and Future Work

While we obtain working results in large number of exper-
iments, the output of the neural network can still get better.
We believe that current limitations on performance are be-
cause of the size of our dataset. Augmenting the current
dataset can boost the performance of the network, which is
one possible next direction.

One other limitation of our pipeline is the quality of gen-
erated disparity map. Though it is good enough for our
purposes, it can still get better and faster by using more ac-
curate algorithms. Better disparity map can also boost per-
formance of our neural network. We did not train any deeper

network than the 51-layer one because of GPU constraints,
but that would be an interesting avenue. We are neglecting
outer forces (like wind) and dynamic environments in this
work. Incorporating this work with a global planner and
handling the outer forces seems a fruitful direction.

7. CONCLUSION

We solve the problem of recognizing and bounding vari-
able number of navigable spaces for a quadcopter with monoc-
ular camera. Understanding the scene structure in terms
of navigable regions is a critical problem in autonomous
navigation and can be challenging when the operating en-
vironments are heterogeneous and diverse. To this effect,
we presented DeepFly framework, our first step towards
complete autonomous navigation of quadcopter, that re-
gresses multiple navigable regions. This was accomplished
by obtaining dense disparity maps by horizontal translations
of quadcopter. We use deep convolutional neural network
with shortcut connections to regress multiple navigable re-
gions from given disparity map. We present a novel ground-
truthing scheme which can manage variable number of out-
puts. Making the pipeline more robust and faster, and in-
corporating it with a global planner are our possible next
directions.

8. ACKNOWLEDGMENTS

This work was supported in part from grants made avail-
able by Rockwell Collins - IDC under the CSR program.

9. REFERENCES

[1] H. Alvarez, L. Paz, J. Sturm, and D. Cremers.
Collision avoidance for quadrotors with a monocular
camera. In Experimental Robotics, pages 195-209.
Springer, 2016.

[2] K. Bipin, V. Duggal, and K. M. Krishna. Autonomous
navigation of generic monocular quadcopter in natural
environment. In 2015 IEEE International Conference
on Robotics and Automation (ICRA), pages
1063-1070. IEEE, 2015.

[3] A. Bry, A. Bachrach, and N. Roy. State estimation for
aggressive flight in gps-denied environments using
onboard sensing. In Robotics and Automation (ICRA),
2012 IEEFE International Conference on, pages 1-8.
IEEE, 2012.

[4] S. Daftry, S. Zeng, A. Khan, D. Dey,

N. Melik-Barkhudarov, J. A. Bagnell, and M. Hebert.
Robust monocular flight in cluttered outdoor
environments. arXiv preprint arXiv:1604.04779, 2016.

[5] F. Fraundorfer, L. Heng, D. Honegger, G. H. Lee,

L. Meier, P. Tanskanen, and M. Pollefeys.
Vision-based autonomous mapping and exploration
using a quadrotor mav. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and
Systems, pages 4557-4564. IEEE, 2012.

Figure 10: Deep Neural Network: Building Blocks

(6]

7]

[10]

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. arXiv preprint
arXiv:1512.03385, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE
International Conference on Computer Vision, pages
1026-1034, 2015.

H. Hirschmuller. Stereo processing by semiglobal
matching and mutual information. IEEE Transactions
on pattern analysis and machine intelligence,
30(2):328-341, 2008.

S. Ioffe and C. Szegedy. Batch normalization:
Accelerating deep network training by reducing
internal covariate shift. arXiv preprint
arXi:1502.03167, 2015.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev,

J. Long, R. Girshick, S. Guadarrama, and T. Darrell.
Caffe: Convolutional architecture for fast feature
embedding. In Proceedings of the 22nd ACM
international conference on Multimedia, pages

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

21]

(22]

23]

(24]

[25]

675-678. ACM, 2014.

D. K. Kim and T. Chen. Deep neural network for
real-time autonomous indoor navigation. arXiv
preprint arXiv:1511.04668, 2015.

G. Klein and D. Murray. Parallel tracking and
mapping for small ar workspaces. In Mized and
Augmented Reality, 2007. ISMAR 2007. 6th IEEE and
ACM International Symposium on, pages 225-234.
IEEE, 2007.

T. Krajnik, M. Nitsche, S. Pedre, L. Pfeuéil, and

M. E. Mejail. A simple visual navigation system for an
uav. In Systems, Signals and Devices (SSD), 2012 9th
International Multi-Conference on, pages 1-6. IEEE,
2012.

J. Langelaan and S. Rock. Towards autonomous uav
flight in forests. In Proc. of AIAA Guidance,
Navigation and Control Conference, 2005.

R. Mur-Artal, J. Montiel, and J. D. Tardés. Orb-slam:
a versatile and accurate monocular slam system. I[EFEE
Transactions on Robotics, 31(5):1147-1163, 2015.

R. A. Newcombe, S. J. Lovegrove, and A. J. Davison.
Dtam: Dense tracking and mapping in real-time. In
2011 international conference on computer vision,
pages 2320-2327. IEEE, 2011.

M. Nieuwenhuisen, D. Droeschel, M. Beul, and

S. Behnke. Obstacle detection and navigation planning
for autonomous micro aerial vehicles. In Unmanned
Aireraft Systems (ICUAS), 2014 International
Conference on, pages 1040-1047. IEEE, 2014.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, and A. Y. Ng. Ros: an
open-source robot operating system. In ICRA
workshop on open source software, volume 3, page 5.
Kobe, Japan, 2009.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi.
You only look once: Unified, real-time object
detection. arXiv preprint arXiv:1506.02640, 2015.

S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn:
Towards real-time object detection with region
proposal networks. In Advances in neural information
processing systems, pages 91-99, 2015.

A. Saxena, S. H. Chung, and A. Y. Ng. Learning
depth from single monocular images. In Advances in
Neural Information Processing Systems, pages
1161-1168, 2005.

M. F. Selekwa, D. D. Dunlap, D. Shi, and E. G.
Collins. Robot navigation in very cluttered
environments by preference-based fuzzy behaviors.
Robotics and Autonomous Systems, 56(3):231-246,
2008.

K. Simonyan and A. Zisserman. Very deep
convolutional networks for large-scale image
recognition. arXw preprint arXiw:1409.1556, 2014.

S. Tulsiani and J. Malik. Viewpoints and keypoints. In
2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1510-1519. IEEE,
2015.

K. Yamaguchi, D. McAllester, and R. Urtasun.
Efficient joint segmentation, occlusion labeling, stereo
and flow estimation. In Furopean Conference on
Computer Vision, pages 756-771. Springer, 2014.

