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Abstract— This paper considers the problem of finding
pose matches between trajectories of multiple robots in their
respective coordinate frames or equivalent matches between
trajectories obtained during different sessions. Pose corre-
spondences between trajectories are mediated by common
landmarks represented in a topological map lacking distinct
metric coordinates. Despite such lack of explicit metric level
associations, we mine preliminary pose level correspondences
between trajectories through a novel multi-scale heat-kernel
descriptor and correspondence graph framework. These serve
as an improved initialization for ICP (Iterative Closest Point)
to yield dense pose correspondences. We perform extensive
analysis of the proposed method under varying levels of pose
and landmark noise and showcase its superiority in obtaining
pose matches in comparison with standard ICP like methods.
To the best of our knowledge, this is the first work of the kind
that brings in elements from spectral graph theory to solve the
problem of pose correspondences in a multi-robotic setting and
differentiates itself from other works.

I. INTRODUCTION

This paper proposes a novel variant of the multi-robot
trajectory mapping methods found in the literature [6, 1].
Unlike most previous methods that exchange laser scans or
map locations [18, 1, 6] to draw metric associations between
poses thereby fusing maps or trajectories, the current method
relies on exploiting the topology of the underlying pose-
graph to obtain dense pose correspondences across multiple
trajectories of one or more robots. Here each trajectory is
assumed to be represented in its own coordinate frame. As
a consequence, the entailment of the landmark locations in
a Cartesian space or range scans with depth information is
bypassed.

The motivation for this paper is argued from a situational
example, where the autonomous robots or vehicles move
through a network of roads, registering their trajectory in
their respective reference frames. During the course of their
trajectories, they occasionally pass through the same area of
the environment. If the information common to them is only a
set of images seen by them and represented as landmarks(like
road signs or stationary objects), the paper strives to answer
the following questions:

1) Given trajectories of two or more robots with a com-
mon topological map of landmarks, is it possible to
extract those parts of the trajectories (of the respective
robots) that have spanned or covered the same area ?

2) Is it possible to obtain metric level correspondences
between poses of the trajectories in those common
areas covered by them ?
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A. Challenges

Finding dense metric level pose correspondences across
overlapping trajectories have following challenges.
• The Cartesian coordinates for landmarks might not be

available (e.g. if front end is only using monocular
camera) or can have significant noise (e.g. GPS readings
can be really noisy).

• There could be significant pose-noise in each trajecto-
ries. As a consequence, traditional point-cloud registra-
tion methods are not directly suitable.

• There would be significant topological differences in the
pose-graphs constructed from trajectories that are only
partially overlapping.

• A significant number of landmarks are observed from
non-contiguous sections of the trajectory. The dense
pose level correspondences solution should respect these
constraints.

• Some parts of the trajectories might have many input
landmark associations as opposed to some other parts
where associations are sparser, as landmarks can not be
assumed to be uniformally distributed over the robot
trajectories.

• The initial landmark associations across two trajectories
might also be noisy (e.g., due to perceptual aliasing).

• Common landmarks which are observed from disparate
portions of the trajectory should not affect the per-
formance of the algorithm in terms of inter-trajectory
correspondence.

The solution to the above challenges lies in invoking frame-
works that exploit the topological properties of the landmark-
pose graph. The multi-scale Heat-kernel framework is popu-
larly used for scale-dependent topological characterization of
graphs [22]. In Pose-Graphs, this is achieved by formulating
some key graph nodes (i.e., selected landmarks) as the heat
sources and characterizing all other graph nodes based up
on the amount of heat that reaches to them if heat diffusion
is performed at multiple scales. Such intrinsic topological
characterization is analogous to barycentric coordinate sys-
tem and yield a dense heat-kernel descriptor for each of the
graph nodes. Heat diffusion does not have a direct physical
interpretation in our case and it merely acts as an intrinsic
metric over the pose-graph. The multi-scale characterization
is advantageous over the single scale as it enables dealing
with non-uniform distribution of heat sources (landmark
nodes) over the graph. Additionally, it allows simultaneously
characterizing both denser as well as sparser neighborhoods
in the graph.
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Fig. 1: The blue lines showcase the trajectory path, and the black dots showcase the landmarks; (a) The trajectory has been split into
two, with the ground truth correspondences(gray lines) among them; (b) The output of Correspondence Graph solution using multi-scale
heat-kernel pose descriptors; (c) Dense binary correspondence established by ICP initialized with output correspondences shown in (b).

Such multi-scale topological characterization of pose-
graphs addresses the previously listed challenges in following
manner. First, a purely topological approach that manages
to find pose correspondences can bypass the need of met-
ric coordinates for landmarks. Second, since between pose
relations over the same trajectory can be modeled as a topo-
logical relation with constant edge weights the problem of
pose noise stands circumvented. Third, the non-overlapping
part of the trajectories can be handled by only focusing on
local neighborhoods in each of the trajectory where landmark
associations are known in advance. This can be achieved by
a scale dependent characterization of pose-graphs which can
address the challenge of topological noise. Fourth, the heat
diffusion based topological characterization would inherently
exploit the explicit or indirect loop closure constraints and
ensure that final output correspondence respect them. Fifth,
the challenge of non-uniformity in distribution of landmarks
over trajectories can be addressed by exploiting the multi-
scale behavior. A small scale neighborhood characterization
is helpful in the parts of trajectories with large number of
landmarks as oppose to the areas with much sparser land-
marks where a large scale characterization is needed. Finally,
the issue of landmark association noise can be handled by
selecting more than one landmark as heat sources while
characterizing neighboring poses. We show performance of
proposed method on both real as well as synthetic data and
show robust performance with varying parameters and noise.

B. Our Contribution

1) Proposed a novel multi-scale heat-kernel descriptor ca-
pable of finding poses proximal to each other between
trajectories (each trajectory represented in its own
local coordinate frame), capitalizing on the inherent
topological similarities between the respective pose-
graphs at varying scales. Subsequently these matching
poses are robustified using a correspondence graph by
solving for its approximate maximal clique using the
spectral relaxation algorithm as proposed in [17].

2) The proposed method achieves higher precision inter-
pose associations than ICP based/inspired methods.
This is achieved despite ICP based methods being
initialized with metric correspondences of landmark
poses unavailable to the current method. This is based

on the observation that ICP, being an EM algo-
rithm, demonstrates improved convergence behavior
with good initialization.

Though a multi-trajectory pose-graph optimization can be
formulated using these dense pose level correspondences,
this paper is more concerned with improving the precision of
the pose level correspondences. Figure 1 shows the expected
(ground truth), intermediate (preliminary pose level corre-
spondences) and final dense correspondence output of the
proposed method on two trajectories obtained from Victoria
Park dataset(VP) [21].

II. RELATED WORK

Cooperative concurrent mapping and localization proposed
in [10], merges the sensor and navigation information from
multiple autonomous vehicles. Manifold representation and
patch based technique was proposed .in [14]. Particle filter
approaches to the problem have been explored in [15].
An approach using square root information smoothing was
presented Anderson’s work [1]. A related work on localizing
using road maps and visual odometry was also investigated
in [5].

Prior contributions without assuming initial poses between
robots have been made in [7] followed by [8]; which use
a triangulation-based robust estimator for matching feature
maps eventually using a RANSAC based approach for Robot
data association and initialization of relative frames of ref-
erence, to align individual maps. [19] invokes RANSAC
algorithm for implementing a distributed scheme for robust
data fusion.

The transfer overhead reduction was attempted in [16],
using condensed measurement. However, such methods are
susceptible to noise over several pose scans. A common
trend of using laser scans as map information has also been
prevalent in [1]. [18] creates pose matches across multiple
slam sessions by matching 2D laser scans. Nonetheless, the
laser based systems can be unavailable due to cost and other
factors.

Heat-kernel framework [2] is an important and popular
multi-scale graph analytics paradigm and has been success-
fully employed for solving various computer vision appli-
cations [22, 20]. Our recent work used this framework for



filtering significant outliers loop closure edges in the pose-
graphs [9].

III. BACKGROUND

In this section we will introduce two important mathemat-
ical building blocks of our proposed approach.

A. Heat-Kernel Framework

The spectral graph theory enables Euclidean embedding of
the graph using the spectrum of graph Laplacian matrix. In
this space, Euclidean distance between graph node approxi-
mate average connectivity over the graph. [9]

Let G = {V,E,W} be an undirected weighted graph
where V = {v1, · · · , vn} be the set of graph nodes rep-
resented by (not-necessarily) some Euclidean coordinates,
E = {e1, · · · , em} be the set of undirected edges and W
be the n × n square symmetric weighted adjacency matrix
of the graph with each entry Wij ≥ 0, ∀ i, j ∈ {1, · · · , n}.

The graph Laplacian matrix L can be derived as:

L = D−W, (1)

where D is the diagonal degree matrix of the graph with
each non-zero diagonal entry di =

∑n
j=1 Wij .

Let
L = UΛUT (2)

be the eigen-decomposition of the L matrix where
U = [~u1, · · · , ~un] be the eigen vectors and Λ =
Diag(λ1, · · · , λn) be the corresponding eigenvalues of the
L matrix with property that {0 = λ1 ≤ λ2 ≤ · · · ≤ λn} and
~u1 = ~1 for a connected graph.

Heat diffusion on graphs is exactly the parallel of diffu-
sion on closed Riemannian manifolds where the heat-kernel
matrix is defined as [2]:

H(t) = e−Lt. (3)

We consider real-valued functions ~f over V , ~f : V → R and
we note that ~f = (f1, · · · , fn)T is simply a vector indexed
by the nodes of G. The vector ~f(t) = H(t)~f is a solution
to the heat-diffusion equation ( ∂∂t + L)~f(t) = 0.

Hence, ~f corresponds to some initial heat distribution over
the nodes of graph G, and ~f(t) is the heat distribution at
time/scale t starting from ~f(0) = ~f . Starting with a point
heat distribution, at node vj , ~fj(0) = [0, · · · , 1, · · · , 0]T , the
heat distribution at time t is given by the jth column of the
heat matrix which is denoted by H(:, j; t) as

~fj(t) = H(t)~fj(0) = H(:, j; t) (4)

From Eq. 4 we can obtain a straightforward interpretation of
the entries of the heat matrix, namely each entry h(i, j; t)
of H(t) corresponds to the amount of heat available at node
vi at time t, starting with a point heat distribution at node
vj . The symmetric function h : V × V → R is the heat-
kernel of a graph G. Each diagonal term h(i, i; t) of the
heat-kernel matrix has an interesting interpretation as well.
It corresponds to the amount of heat remaining at node vi
at time t. To conclude, the heat-kernel matrix encapsulates
important intrinsic information about how heat travels from

one part of the graph to another part or in a way heat
diffusion at different scales can be used to capture scale-
dependent topological characterization of graphs.

Fig. 2: Overview of the proposed method.

B. Correspondence Graph Framework

Correspondence graphs have been used in robotics [3]
to model the problem of data association. The idea is to
model each potential match across two feature sets as a node
whereas an edge capture mutual consistency among them.
The most consistent set of correspondences are given by the
maximal weighted clique of this graph.We adapt a spectral
relaxation solution [17] for maximal clique detection. In
this solution, the elements of eigenvector (associated with
largest eigenvalue) of the correspondence graph adjacency
matrix are sorted in the decreasing order. The correspondence
associated with largest element is accepted while other
conflicting ones are dropped from the selection list. Similarly,
next best correspondence is found until all one to one feature
level correspondences are established.

IV. PROPOSED METHOD

A. Overview

Figure 2 depicts the building blocks and overall pipeline
of the proposed approach. Each of these blocks are discussed
in detail below.
Mathematical Notations
Let the two pose-graphs be represented as G1 = {(V 1 ∪
Lc), E1,W1} and G2 = {(V 2 ∪ Lc), E2,W2}. Here, V k,
Ek are the sets of poses and undirected edges for each graph
Gk where Wk is the associate weighted adjacency matrix.
Let Lk is the sets of landmarks associated to each graph
Gk then Lc be the set of common (and may be noisy)
landmarks such that Lc = L1 ∩ L2 = {l1, · · · , lQ}. It is
important to note that li ∈ Lc represents the landmark but
do not expect it’s Cartesian coordinates to be known. Each
element ωkij ≥ 0 of Wk is defined as the weight for either
an odometry edge, or an edge connecting pose and landmark
node. As Wk is a squared symmetric matrix, ωkij = ωkji.
We consider ωkij = 0.7,∀(i ∈ V ki , j ∈ Lkj ) pairs and
ωkij = 0.9,∀(i ∈ V ki , j ∈ V kj ) pairs. We have intentionally



Fig. 3: A basic trajectory with 27 poses (marked as ’x’) and 4
landmarks (marked as ’o’). The solid lines represent odometry while
the dashed line represents landmark-pose edges.

put relatively higher weighing for odometry edges than for
landmark-pose edges, so that we can insist on having more
reliability on odometric observations as compare to pose-
landmark association coming from the front end.

B. Heat-Kernel Descriptor

The graph Laplacian matrix for each input pose-graphs can
be computed using the weighted adjacency (see Eq. 1).The
heat-kernel matrices Hk(tp) is subsequently calculated for
k = 1, 2 and ∀tp ∈ T = {t1, · · · , tP } using Eq.3. As ex-
plained in section III, each element hki,j(tp) of the symmetric
Hk(tp) matrix stores the amount of heat transferred from
landmark node lj (considering it as a unit heat source) to
the pose node vi while diffusing heat at scale tp.

The heat descriptor Rk
vi for node i in graph Gk is

computed by constructing a P ×Q matrix. Where P is the
number of time scale parameters (varying from a small scale
to large scale values i.e., t1 7→ 0 and tP 7→ ∞) used for
heat diffusion (see implementation details in section V), and
Q = len(Lc) is the number of common landmarks between
the two trajectories for which initial association is assumed
to be given.

We can see in a toy example depicted graphically in Fig-
ure 3, let Q = 4 be the number of common landmarks. Now
if we diffuse heat at 3 different scales (i.e., tp ∈ {t1, t2, t3}),
our heat-kernel descriptor matrix for node vki ∈ V k would
be a 4×3 size matrix, where each element in the row would
be the amount of heat reached from lkj ∈ Lc to vki at 3
different scales of heat diffusion. In general, we can define
the heat-kernel descriptor for node vi in pose-graph Gk as a
matrix of size Q× P :

Rk
vi =

h
k
i1(t1) · · · hki1(tP )

...
...

...
hkiQ(t1) · · · hkiQ(tP )

 (5)

Descriptor Matching
Given any two heat-kernel descriptors R1

vi and R2
v′i

from
pose-graph G1 and G2, we propose to use the weighted
Euclidean distance to compute a matching score between

two descriptors as:

score(i, i′) =
√
tr(((R1

vi −R2
v′i

)Ψ1/2)T ((R1
vi −R2

v′i
)Ψ1/2))

(6)
A lower score signifies a better match and vice-versa.

The dimension weighting matrix is defined as Ψ =
diag[ψ1, · · · , ψP ] where 0 ≤ ψi ≤ 1 is the weight given
to scale ti. The Ψ matrix addresses the challenge posed
by the non-uniform distribution of landmarks across the
trajectory. As nodes in the vicinity of several landmarks
have a significantly higher informative heat-kernel descriptor
than nodes having very less number of landmarks in their
neighborhood, we exploit multi-scale behavior of heat-kernel
descriptors by setting the weights in such a way that for
nodes with neighborhood of numerous landmarks, we give
more importance to the descriptors entries (dimensions) that
are associated with small scale heat-diffusion. Similarly, for
nodes with neighborhood of fewer landmarks, we give more
importance to the descriptors entries (dimensions) that are
associated with large scale heat-diffusion.

C. Correspondence Graph
To improve on the global consistency of the matches

introduced by the heat-kernel descriptors, we have exploited
the technique of correspondence graphs. (see section III for
details).

Given two sets of descriptors from pose-graphs (G1 and
G2), we construct a correspondence graph Gcors with follow-
ing details. For every pair of nodes (i, i′) : i ∈ V 1, i′ ∈ V 2

there is an associated score that measures how well R1
vi ∈ G

1

matches R2
v′i
∈ G2 . We consider matching only the descrip-

tors from two pose-graphs for which respective nodes belong
to the neighborhood of the common landmarks. If these
descriptors match with a score below the threshold value θ,
we consider them as a potential candidate assignment. Let
n be the number of such assignments. Each of them can be
modeled as a node of the correspondence graph.

We model our pairwise affinity among candidate assign-
ments a = (i, i′) and b = (j, j′) by comparing the number of
odometry steps between nodes (i, j) over G1 and similarly
between (i′, j′) over G2, respectively. A lower difference in
the number of steps invokes a higher affinity and vice versa.
We implemented an inverse exponential kernel over the dif-
ferences in odometry steps, to get the required affinity. Let M
be the n×n weighted affinity matrix of the correspondence
graph where each symmetric entry is the value of pairwise
affinity among two candidate assignments.

The list of solution correspondences from binary vector
x is explicitly stored as node index pairs in C = {ck, cm}
where ck = (i, i′).

We find out an approximation of the largest clique in the
correspondence graph and obtain the binary correspondences
by adopting the algorithm which is well explained in [17].

D. Iterative Closest Point
The above obtained correspondences feed into the well

known ICP algorithm as supervised initializations. ICP as
we know is an algorithm employed to calculate a rigid
transformation that registers a point cloud to another, thereby



minimize the difference between two clouds of points. For
our case, we have used point to point minimization metric,
as described in [4]

V. EXPERIMENTS AND RESULTS

We have conducted extensive experiments on various stan-
dard datasets and evaluated our method using the standard
metric of mean Precision and mean Absolute Trajectory
Error (ATE). We pose the trajectory merging problem as
point-cloud registration. Therefore performance of the pro-
posed framework has been compared against ICP like method
which are de-facto standards for point cloud registrations.

For the purpose of benchmarking our results, we propose a
supervised ICP algorithm (sICP) that is initialized with land-
mark associations between trajectories. Here we assume that
landmark coordinates are known to enable the initialization.
As we show subsequently that our method despite lacking
such metric level initializations is still able to outperform
sICP.
Supervised Iterative Closest Point (sICP)
It is a variation of the previously mentioned ICP algorithm.
The standard ICP is supervised in two steps, Firstly, we
find an initial transformation R|T of G1 by applying ICP
on the initial association of landmarks coordinates among
G1 and G2. This R|T is applied on the v1i . This serves
as an initialization for the ICP to be applied on the graph
poses. Secondly, we crop the number of poses, both on G1

and G2, on which to apply ICP on by removing the graph
poses which are topologically distant from the associated
landmarks. This reduces point to point matching anomalies
induced by extraneous non-overlapping information.

A. Data and Model Experiments
Datasets
We are using two standard real datasets, namely, Victoria
Park [21] (VP) and Kitti00 [13]. We split trajectories in
various parts to simulate a multi-robot trajectory session. We
consider both pose noise and landmark coordinate noise.
Pose-Noise Model: Pose Noise can be modeled as a suc-
cessive noise model which adds a δ times average odometry
length µodom, to every pose in a cumulative manner. The
new pose coordinates are computed as:

vki = Qki,(i−1) ∗ v
k
i−1 + δN(0, σodom)µodom (7)

where vki is the i-th pose-node of k-th pose-graph, Qki,(i−1)
is the original odometric transformation between the two
poses. An example set of trajectories with and without pose
noise has been shown in Figure 4.
Landmark Coordinate Noise: The Landmark Coordinate
Noise model adds a γ times the mean sequentially pairwise
landmark distance (µlandmark), to every landmark indepen-
dently. The new landmark coordinates are computed as:

lki = lki + γN(0, σlandmark)µlandmark (8)

where lki is the i-th landmark-node of k-th pose-graph.
Experiment on Real Data
Our proposed algorithm has been tried out in an outdoor
multi-session dataset, where a Husky

TM
Robot fitted with

(a) (b)

Fig. 4: The colored path shows the trajectory of the robot. The dots
show the landmarks. (a) Shows a trajectory without pose noise,
while (b) is the trajectory with added successive pose noise.

a Bumblebee
TM

stereo camera have been used to take two
individual datasets of around 100 metres each. The datasets
are consecutive such that each of the robot overlaps a portion
of the other’s trajectory.

B. Choice of Parameters
The time scale parameter vector T k, which is useful for

computing the heat-kernel descriptors for trajectory pose-
graph Gk, is obtained by using the inverse logarithmic map
of d = e(−λ

k
j .t) for specific values of λkj and d. Here,

λj is the jth eigenvalue of the associated graph Laplacian
matrix where the value of jth index is typically set to
be the 5% of total number of nodes in the respecting
trajectory. This enables normalization of scale parameter
in case of trajectories with significantly different n and
topological variations. For a fixed j, the different values of
d parameters yield respective scale parameters that are used
as elements of T k vector. E.g., we have used values of d as
[0.99, 0.95, 0.90, 0.85, 0.80, 0.75] which yields the scales as

T 1 = [0.30, 1.55, 3.18, 4.90, 6.73, 8.67]

T 2 = [0.04, 0.23, 0.49, 0.75, 1.04, 1.34]

for trajectory shown in Figure 4. For kitti00, the same values
for d, generates

T 1 = 0.1808, 0.9229, 1.8957, 2.9241, 4.0149, 5.1762]

T 2 = [0.1159, 0.5916, 1.2151, 1.8744, 2.5735, 3.3179]

It is important to note that, T 1 and T 2 vectors for two pose-
graphs G1 and G2 can be different depending on the variation
in the respective graph topologies.

C. Evaluation Metrics
To determine the performance of our algorithm, we com-

pute both the precision as well as the translation error
inflicted by the incorrect correspondences. For the former,
we calculate the true positive rate of the correspondences
established by our algorithm. For the latter, we select the
Absolute Translation Error(ATE) error. It is important to note
that for computing ATE, we project our matches to ground
truth trajectory (computable from optimization of single
original trajectory), and then calculate the mean squared error
over it.



(a) (b) (c) (d) (e)

Fig. 5: (a),(b): shows the independent g2o trajectories. The landmark-pose associations are marked with gray. (c) shows the dense
pose association (gray) among the poses in the two trajectories. (d) showcases the optimized trajectory with the our computed dense
correspondence, (e) shows the optimized trajectory computed from associations created using front-end libViso and DLoopDetector [11].

(a) (b)

Fig. 6: (a) Shows results of our algorithm (our initialization + ICP),
while (b) shows results of supervised ICP, (landmark initialized +
ICP); for the VP dataset. Just the cropped section of the trajectory
is shown on the optimized section, for visualization purposes.

TABLE I: Performance over Varying Pose-noise
Dataset Pose Noise δ ATE Precision

ours sICP ours sICP

Victoria
Park

1 1.43 66.84 0.91 0.31
3 3.42 52.58 0.66 0.30
5 5.91 53.23 0.47 0.16

Kitti00
1 1.04 100.56 0.94 0.25
3 1.86 138.60 0.76 0.12
5 4.04 125.90 0.42 0.07

In order to compute precision, we have compared the pose
correspondences to that of the ground truth associations of
poses. Since we are allowing significant (accumulative) pose-
noise model, we relax the definition of precision by accepting
a drift in matching inside a neighborhood of approximately
0.1% of the average number of pose nodes in the respective
pose-graphs.

D. Results

Qualitative Comparison
Here we show qualitative results on VP dataset where
we have added a pose-noise with δ = 4 and γ = 7 .
Figure 6 shows the comparison between the output of the
proposed method v/s a supervised ICP algorithm. Although,
both figures show dense binary correspondences obtained
from ICP algorithm, we can see that the output of ICP
initialized with only landmark associations (with Cartesian
coordinates) are inferior as compared to results obtained with
proposed method (which do not consider landmark Cartesian
coordinates) on the same set of trajectories with same input
landmark associations.
Pose-noise Variations
We have used both VP and Kitti00 dataset for comparing

robustness of our method and benchmark sICP in the pres-
ence of varying pose-noise in each of the pose-graph. We
have evaluated the performance of the two algorithms using
ATE and precision while varying the pose-noise for δ being
1, 3 and 5 (see Eq. 7 for details). This cumulative Gaussian
noise was added in 6 independent experiments and the mean
ATE and precision values are reported in the Table I for both
the datasets.
Landmark Coordinate-noise Variations
We have corrupted the ground truth landmark coordinates for
both VP and Kitti00 datasets by setting five different values
of γ = {2, 5, 7, 10, 12} in Eq. 8. This independent Gaussian
noise to landmark coordinates was added in for three values
of δ = {1, 3, 5} and the mean ATE and precision values are
reported in the Table II.

We see that our proposed method provides consistently
better results than sICP even for higher landmark coordinate-
noise levels. Please note that the mean ATE for sICP can drop
significantly low (and the respective mean precision for sICP
can go high) for close to zero pose-noise. However, majority
of the real-world scenarios this will not be the case and hence
our method which is utterly invariant to landmark-coordinate
noise should be preferred of sICP.

We see that our proposed method provides consistently
better results than sICP even for higher pose-noise levels.
It is important to note that the pose-noise is significant
high, as it is a cumulative noise and hence the overall pose-
noise can increase dramatically (e.g., in case of VP where
approximately 5000 poses are there on each trajectory).
Experiment on Real World
The odometry of the land robot has been calculated using
libViso2 [12]. libViso2 was also used to reconstruct the
landmark points. Provided with 11 non metric landmark
associations among the two trajectories, our attempt to mine
pose relations have been showcased in Figure 5. Here, we
find that even when the trajectory is not exactly overlapping,
we are still able to come up with reasonable correspondences.
g2o Optimization over merged Trajectories
As a consequence of obtaining dense pose correspondences,
we are able to merge trajectories as well. Figure 7 shows
two optimized trajectories on the VP Dataset. On the left
(a) is the g2o optimized trajectory computed using the
original single trajectory (can be treated as ground truth
here). On the right side (b) is the g2o optimized trajectory
obtained by merging the two overlapping and independently



(a) (b)

Fig. 7: (a) The g2o optimized trajectory obtained by original single
trajectory. (b) The g2o optimized trajectory obtained by exploiting
pose level correspondences between the split trajectories.

TABLE II: Performance over Varying Landmark Coordinate-noise
Dataset Landmark Coord. Noise ATE Precision

ours sICP ours sICP

Victoria
Park

2 3.74 3.74 0.57 0.68
5 3.74 5.04 0.57 0.50
7 3.74 35.45 0.57 0.53
10 3.74 42.71 0.57 0.44
12 3.74 78.67 0.57 0.02

Kitti00

2 2.22 2.24 0.73 0.72
5 2.22 120.03 0.73 0.09
7 2.22 2.24 0.73 0.72
10 2.22 31.5 0.73 0.49
12 2.22 121.69 0.73 0.15

corrupted trajectories, as discussed above. In this care the
split overlapping trajectories were corrupted with following
noise parameters: (δ = 4 and γ = 7).

Figure 5 shows trajectories taken in the campus. They are
independent trajectories, with inexact overlap between them.
We mine dense correspondences between the parts of the
two trajectories that are proximal to one another. Further
we successfully merge the trajectories into a single unified
frame, through a backend g2o optimization. Moreover, these
results obtained are comparable to the results of trajectory
merging obtained through point cloud correspondences of the
common landmarks shown in Figure 5(e)

E. Discussion
Considering our proposed method only takes into account

the graph structures of the individual trajectories, one draw-
back is that trajectory correspondences of non proximal
overlap are only obtained to be qualitatively accurate. The
method is also susceptible to large noise in the initial
landmark associations and are susceptible to symmetrical
neighborhood in the pose-graph. However, these are classical
limitations for almost all existing methods.

The main theme and contribution of the paper is not its
performance vis-à-vis ICP like approaches, but rather in
its ability to mine metric level inter pose correspondences
given what was merely a set of topological relations lacking
a distinct metric character. To the best of our knowledge,
such a topological pose-graph analysis approach for multi-
trajectory alignment problem was not proposed in robotic
literature earlier.

VI. CONCLUSION AND FUTURE WORK

We have proposed a novel heat-kernel descriptor and
correspondence graph modeling for obtaining dense pose

level correspondences across multiple unoptimized trajecto-
ries. The key achievement of the proposed method is to find
dense pose level correspondences using only the topological
landmark association. We have provided extensive results
under varying levels of pose and landmark coordinate-noise
and showcase its superiority in obtaining associations in
comparison with ICP like methods.

As part of the future work, we would like to formulate a
more sophisticated multi-trajectory optmization framework
that can better exploit the dense pose level correspondences
across trajectories.
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