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Pose Induction for Visual Servoing to a Novel Object Instance

Gourav Kumar*!, Harit Pandya*!, Ayush Gaud! and K. Madhava Krishna'

Abstract— Present visual servoing approaches are instance
specific i.e. they control camera motion between two views of
the same object. We address the problem of visual servoing to a
novel instance of an object category: given a desired view of any
instance (source) of an object category, the robot is required
to servo to the corresponding view of another instance (target)
from the same object category. We formulate visual servoing
across instances as iterative pose induction and pose alignment
problem. Here, the desired camera pose of the target (instance
on which servoing is done) is induced from a desired view of
a source instance (any instance from the same category). Once
the desired camera pose is transferred through pose induction,
the pose alignment step is solved by estimating the current pose
using the semantic reconstruction of target followed by a pose
based visual servoing (PBVS) iteration. To tackle large variation
in appearance across object instances in a category, we employ
visual features that uniquely correspond to locations of object’s
parts in images. These part-aware keypoints are learned from
annotated images using a convolutional neural network (CNN).
Advantages of using such part-aware semantics are two-fold.
Firstly, it conceals the illumination and textural variations from
the visual servoing algorithm. Secondly, semantic keypoints
result in more accurate matching compared to local appearance
based descriptors like SIFT. We validate the efficacy of our
approach through experiments in simulation as well as on a
quadcopter. Our approach results in acceptable desired camera
pose and smooth velocity profile. We also show results for large
camera transformations with no overlap between current and
desired pose for 3D objects, which is desirable in servoing
context.

I. INTRODUCTION

Visual servoing utilizes image sensory information to
move a robotic system towards a goal position with respect to
the given object. A visual servoing approach is composed of
extracting a set of visual features from image measurements
and controlling the robot such that these features match
their desired configuration [1]. Traditionally visual servoing
approaches are classified into two high-level streams based
on how the control objective is defined [2]. Position based
visual servoing (PBVS) utilizes visual features to estimate
the object’s pose in robot’s Cartesian space. Estimating
robot’s pose requires additional information regarding the
geometry of the object which is obtained by either explicit
knowledge of object’s 3D model or by reconstructing the
object while servoing. Whereas, image based visual servoing
(IBVS) directly controls the robot in image space. However,
IBVS camera trajectory is not explicitly controlled in the
Cartesian frame as a result controller could lead to a local
minima [3].
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Fig. . Aim: Given a desired view of an object instance (source) and its 3D
model, we consider the problem of servoing to the corresponding desired
view of a different instance (target) using a quadcopter. In this figure, the
quadcopter is initially observing the target from side view. The servoing
task requires the quadcopter to move to the frontal view of the target so
that observed view matches the given desired view.

For visual servoing quality of features have a strong cor-
relation with the performance of a visual servoing approach.
Previously, low-level geometric primitives (for examples
corners, lines, contour) were proposed as visual features
[1]. However, extracting these features reliably is non-trivial.
Thus, a few approaches used local appearance based features
like SIFT [4]. The issue with such features is that they only
account for local variations, therefore the matching accuracy
is compromised. In this paper, we propose part-aware key-
points as visual features that encode the global perspective of
the object and retain only the meaningful precise keypoints as
shown in figure 2. Furthermore, these keypoints describe the
locations of object’s parts that could be related semantically
to object, thus they provide a unique and accurate matching
across instances in contrast to local descriptors such as SIFT,
ORB etc. We trained a convolutional neural network (CNN)
based on stacked hour-glass architecture [5] to learn these
part-aware keypoints on Pascal 3D dataset [6].

Visual servoing controller defines an error function be-
tween current and desired configuration of visual features.
Since these visual features are geometrically related, a pos-
sible solution exists in SFE(3) space such that the error
is regulated to zero at the desired pose. However, while
servoing across instances in the same object category, the
geometry of the objects does not permit the error to diminish
at the desired pose. This limits the scope of traditional visual
servoing to views to same object. These problems arise
frequently in practical scenarios where servoing to a new
instance is required, especially in the case of manipulation
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Fig. 2. SIFT vs Part-aware keypoints: SIFT based keypoints might result
in an incorrect matching when the instances are different, whereas our part-
aware semanticsare more suitable for computing correspondences across
object instances.

or autonomous navigation in unknown environments. In this
work, we leverage visual servoing to a novel previously
unseen object instance (target) from a known object category.
Figure 1 describes a use-case scenario in which license
plate inspection is being done using a drone (quadcopter).
Given the desired pose of the front of car A (white car:
source instance) from which number plate is visible, the
drone is required to servo to the front of car B (yellow
car: target instance), which is a novel instance for the drone.
We formulate servoing to a novel instance as iterative pose
induction and alignment problem. The pose induction step
requires inferring the desired pose with respect to target
from the given desired pose with respect to the source.
This is achieved through actively moving the drone and
simultaneously reconstructing the target instance (car B)
using our part-aware semantic features. The target instance
is reconstructed in camera frame while the source is given
in the world frame. Therefore, a transformation is required
between camera and world frames, which unfortunately is
not always available. Hence, we define a canonical frame
where axis and origin are defined in a semantic sense.
Following the alignment rules of the canonical frame, both
source and target are transformed to this canonical frame.
Now, the desired camera pose could be directly transferred
from source to the target since they both are in the same
frame. Once the desired pose and current pose refer to the
target instance, the pose alignment step can be solved by a
PBVS iteration. Both pose induction and alignment steps are
solved in part-aware semantic space so that reconstruction is
accurate and requires fewer computations.

Contributions: Our primary contribution is a pose in-
duction framework for visual servoing to a novel object
(target) instance in a given desired pose using just one
standard model (or source instance) of that category as the
basis. Our framework is able to tackle large variations in
appearance and illumination through part-aware keypoint
prediction learned using a CNN. Secondly, our semantic
reconstruction of the object is more precise and fast, thanks
to accurate and sparse part-aware keypoints. Thirdly, we
propose a context based alignment scheme that could cater
for large variations in shape by using a canonical frame

and an associated alignment protocol. Finally, we showcase
results of our framework for large camera transformations in
simulation as well as on quadcopter.

A. Related work

Classical visual servoing approaches used geometrical
primitives like keypoints, lines, contours etc. as visual fea-
tures [1]. However, reliable extraction of such visual features
from real images in itself a challenging task. Using local
keypoint descriptors like SIFT, SURF and ORB as visual
features [4], results in erroneous matching which degrades
the performance of visual servoing approaches especially
when the instances are different. In recent years, information
theoretic visual features like pixel intensities [7], image
gradient [8], histogram of intensities [9], image moments
[10] etc. have been rigorously explored for visual servoing
tasks. The advantage of using these data driven features is
that tracking individual keypoints is no longer required as
statistics of the current view is matched to that of the desired
view which results in robust and precise alignment. However,
the convergence domain is compromised, since current and
desired views are no longer geometrically related. Hence,
for large camera transformations the pixel intensity values
might not correspond to desired view pixel intensities. Also,
photometric and its derivative approaches are sensitive to
illumination variations. Computing descriptors that provide
unique and accurate correspondences among multiple views
of the same instance or across different instances have been
one of the classical problems in computer vision. Previous
approaches from computer vision literature report superior
performance in keypoints matching when the keypoints were
conditioned on object category especially when the keypoints
were semantically related to object’s parts [11],[12]. Moti-
vated from recent breakthroughs in CNNs, Tulsiani et al. [13]
presented a CNN that was able to learn part-aware keypoints
through supervision. Recently [5] proposed a stacked hour-
glass architecture for CNN showcased state-of-art results for
keypoint prediction on humans. In this paper, we trained a
stacked hour-glass CNN on a combined dataset composed of
Pascal 3D [6] dataset for cars. We obtained superior results
for keypoints detection over [13] for ’car’ object category.

The problem of visual servoing across object instances
was first introduced by Pandya et al. [14]. They used part-
aware keypoints for making the approach robust to textural
variation across instances in an object category. They further
proposed a linear combination of available 3D models for
a servoing iteration. However, the semantic features were
computed manually that makes the approach laborious for a
large number of object instances. Moreover, the procedure
requires a search over all models in all pre-rendered poses
for every visual servoing iteration, which makes the approach
computationally expensive. A discriminative learning based
framework was also proposed for visual servoing across
instances [15]. Where, authors proposed principal orientation
glyph (POG) as visual features and a classification error
based controller was used for achieving geometry invariance.
However, their interaction matrix was numerically computed,
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which resulted in a relatively smaller convergence domain.
In this paper, we employ a novel pose induction framework
that is able to borrow pose of a source object instance and
estimate how another instance (target) will look in this view.
This pose induction provides geometric invariance to our
approach and is used to transfer the desired pose to the target
instance. We further employ PBVS controller to attain the
estimated desired pose with respect to the target instance.

II. PROBLEM FORMULATION

We consider a global world frame F,, the current camera
frame F., the desired camera frame F. and a reference
frame attached to the target object Fx. We further assume
that the object category has been previously seen by the robot
and a 3D model of same object category with annotated 3D
semantic keypoints Y is available. The problem of servoing
to a novel target instance (X in this case) requires moving
the camera from current pose F,. to the desired pose F.-,
where .- needs to be estimated from the desired image I3
and its corresponding model Y.

III. OVERALL PIPELINE

We have divided the task of across instance visual servoing
into two sub-modules namely, pose induction and pose
alignment. The task of pose induction sub-module is to
obtain the desired pose F.« from the given image I« and its
corresponding annotated 3D model Y. We employ a CNN
to compute the part-correspondences = and y from current
and desired images [, and I respectively. Once we obtain
the projections y of source instance we use its 3D model
to compute the desired camera pose JF.« by solving the
perspective-n-point (PnP) problem. The F. computation is
required only once and hence could be performed offline.

Our framework performs real-time simultaneous recon-
struction and servoing of the target instance in a closed loop
fashion. The pipeline starts with obtaining current image I,
from the robot which is passed on to our keypoint prediction
network. Note that the reconstruction is in a camera frame
and F.- is in a global frame. Hence, we align both X
and Y in a single virtual canonical frame F,, so that the
desired pose of the camera with respect to the target instance
could be estimated from F.« through pose induction. The
induced pose is then passed on to pose alignment sub-
module, which relies on PBVS controller for generating
the velocity commands for the quadcopter. These velocity
commands are then tracked using the local controller of the
robot. The entire pipeline is repeated iteratively till PBVS
control error is within acceptable limits. This pipeline is
summarized in figure 3.

A. Keypoint Prediction

In visual servoing classical approaches used keypoints
for visual servoing, however computing keypoints which
provide accurate correspondences is still an open problem for
researchers. Previous approaches considered local descriptors
like SIFT, ORB etc. for computing keypoints [4], however,
these keyponts do not consider a global view of the image as
result the matches are not reliable. In this work, we aim to

compute keypoints that are not only robust to illumination
and pose variations but also consistent across different in-
stances. Motivated by how humans register any object as an
ensemble of parts with some semantics (for example we see
car as a composition of parts like headlight, wheels, mirrors
etc.), computer vision approaches try to learn the location of
object’s parts in a given image through supervised machine
learning approaches such as support vector machines [16].
Motivated from breakthroughs in deep learning, Tulsiani et
al. [13] presented a CNN based architecture for learning part-
aware keypoints from images. They reported a significant
improvement in keypoint prediction accuracy by condition-
ing keypoints inference using viewpoint estimations. They
proposed two different networks for keypoint predictions
both at coarser and finer scales. However, their approach
requires running three neural networks for a single image,
which makes their implementation slower and computation-
ally expensive.

In this work, we leveraged the more recent hourglass ar-
chitecture deep convolutional neural network for our task of
keypoint prediction. This network architecture was initially
proposed by Newell et al. [5] for human pose estimation.
The design of hourglass network captures information at
multiple scales similar to [13] in a single network, as a
result, it is faster and more accurate compared to [13].
Use of stacked hourglass in a way provides an end-to-end
solution for estimating part-aware keypoints. We trained a
deep convolutional network composed of eight hourglass
module figure 4 stacked one after the other. The highest
resolution of the hourglass is 64x64. The full network starts
with a 7x7 convolutional layer with a stride 2 followed by
residual module and a max pooling which brings down the
resolution from 256x256 to 64x64. The stacking of hourglass
modules assures both repeated bottom-up and top-down re-
evaluation of initial feature estimates. This network was
trained on annotated car models from pascal 3D dataset [6]
using Stochastic Gradient Descent (SGD) with a Euclidean
loss. The prediction accuracy of our network was approxi-
mately 93% with a tolerance of two pixels, which is better
compared to 81.3% on cars claimed by Tulsiani et al.[13].
The dataset was annotated for fourteen different keypoints
and it gives the confidence scores along with the image
coordinate corresponding to each keypoints for the given
image. The scores corresponding to occluded parts or less
guessable parts show a clear diminish which helped us to
filter out the less confident predictions by the network. These
predictions were further used in the pipeline as features for
reconstruction and error calculation for visual servoing.

B. Desired Pose Estimation

The problem of determining pose of a calibrated cam-
era from n correspondences between 3D reference points
and their 2D projections are known as ”Perspective-n-Point
problem”( PnP). The solution to this PnP problem is used
for estimating the camera extrinsics (R,#). Given a set of n
points X; in 3D and their 2D correspondences z; estimating
the camera pose can be posed as a problem of minimizing
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Pose Induction

Overall pipeline of the proposed approach. Pose Induction: given the desired view of a source instance of a car in form of an image, our deep
network predicts the keypoints which, along with source instance model information, is used to predict the desired transformations (F}

(R*,t*))ina

global frame. The keypoints predicted on the current image along with the previous views is used for semantic reconstruction using Bundle Adjustment
(BA). This reconstruction is then normalized and aligned with respect to the global frame which is then used along with desired transformations to obtain
target instance specific desired pose using perspective-n-point (PnP) solver. This pose is fed to the pose alignment sub-module that employs pose based
visual servoing (PBVS) controller for generating control commands for the quadcopter.
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Fig. 4. An hourglass module: Each box in the figure corresponds to a
convolutional layer. The skips at different scale are used for preserving the
spatial information at that resolution.

re-projection error as:
n
rglglzl K (RX; +t) — ]|
i=

subject to
R'R=1

PnP is a well established problem in 3D geometry and there
are multiple solutions to the problem. We are particularly
interested in using ASPnP since it solves the 3D-to-2D corre-
spondences using a Groebner basis solver, which guarantees
a globally optimal camera pose. In this work, we use ASPnP
[17], to determine the desired pose of the camera F - from

the keypoints of the desired view z using its corresponding
3D annotated model X. We also use ASPnP for estimating
the current camera pose with respect to the reconstructed
model.

C. Semantic Reconstruction

This approach has been referred to as semantic recon-
struction because here features used for reconstruction are
predicted keypoints which uniquely corresponds to parts of
a vehicle. This step starts with a stereo initialization i.e.
giving a translation orthogonal to the optical axis of the
camera to form a stereo image pair. Assuming the knowledge
of camera parameters, the two frames obtained are used in
triangulation for estimating 3D coordinates of the keypoints.
The triangulated points are obtained in a frame fixed to the
initial camera pose. From the third frame onwards newly
obtained keypoint is concatenated to the reconstructed target
3D model after triangulation using current and previous
frames. The predicted keypoints along with the partially
reconstructed model are also used for getting the position
and orientation of the camera using ASPnP [17]. As the
method of incremental tracking and mapping of keypoints are
prone to drift, hence we use bundle adjustment on the camera
transformations available till that instant. This helps us to
reduce the error of both reconstructed keypoints structure as
well as position and orientation information of the camera
frames.
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D. Normalization and alignment to canonical frame
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Fig. 5. Axis-alignment: The axis of the car frame is aligned parallel to
the canonical frame while the car model is centered on the canonical frame
origin.

The reconstruction of target instance X by structure from
motion (SFM) pipeline is in the initial camera frame Fg.
While the desired camera pose given by PnP is in the frame
of source instance Fy. Theref\ore, to compute the desired
camera pose with respect to X, we need a transformation
between Fg and Fy, which unfortunately is not always
available. This is a common problem encountered by almost
all SFM based approaches since the transformation between
camera frame and world frame is generally unavailable.

We tackle this issue by defining a canonical frame F,
and transforming (aligning) both F¢ and Fy to F, using
an alignment protocol. A valid alignment protocol requires
exactly four rules, one rule to define an origin and two rules
to define the alignment of any two coordinate axes. Our
transformation protocol complies with and feasible because
the keypoints have semantic meaning associated with them.
For example, consider the transformation of a target instance
from Fy to F,,. Further, consider a set of four keypoints that
represent following part-aware semantics “left front wheel”,
“right front wheel”, “left rear wheel” and “right front wheel”.
A valid alignment protocol could then be defined as: (i)
define origin of F, as centroid of the four wheels, (ii) x-axis
of F, should parallel to a ray from left rear wheel” and
(iii) y-axis of F, should be parallel to a ray from “left front
wheel” to “right front wheel”. To maintain homogeneity in
the scale the models are further normalized after alignment.
Even though exact transformation between Fy and F, is
not known, it is still possible to align them based on a given
transformation protocol, this is only possible because our
keypoints have a semantic meaning associated with them.
The procedure of aligning a 3D model to our canonical frame
is shown in figure 5.

E. Pose alignment using PBVS

After projecting the keypoints in desired view and predict-
ing the coordinates in the current view, we employ PBVS
controller to servo between two views of the target instance.
Similar to classical PBVS, we consider . as current camera
frame, F - as desired camera frame and frame JF, attached

to the object. We further define translation vector ¢ t. and
rotation matrix ¢ R, as translation and rotation of F,.- with
respect to F.. The PBVS controller is then designed using
current feature vector s = (" t..), fu). In that case, we have

s* = 0, e = s that results in following control law:
ve= —X"RIt, (1
—Afu. 2)

We =

IV. EXPERIMENTS AND RESULTS
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Fig. 6. Servoing to front: (a) Camera trajectory- Red:initial pose;
Green:Final/Desired pose; (b) Camera Velocity; (c) Error between current
and desired pose
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Fig. 7.  Servoing to back: (a) Camera trajectory- Red:initial pose;
Green:Final/Desired pose; (b) Camera Velocity; (c) Error between current
and desired pose. Note the straight line trajectory beacuse of PBVS con-
troller with zero noise. Also notice how the velocity and error exponentially
decrease to zero.

We evaluated the proposed approach with a wide range of
camera transformations between initial and desired poses in
three stages namely, synthetic data, simulation in gazebo en-
vironment and with a quadcopter. Experiments on synthetic
data helps us to experimentally verify the entire pipeline
in ideal conditions i.e. when the keypoints are manually
annotated. We then elevate the experiments on synthetic data
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Fig. 8. Synthetic results with additive Gaussian noise. Experiment
considering additive Gaussian noise with increasing covariance in the
keypoint prediction is presented. (a),(d): Average of keypoints error between
final and desired pose; (b),(e): Error between desired and final camera
position;(c),(f): Error between desired and achieved yaw angles. The error
in rotation and translation increases as the variance in gaussian increases.
Note that the x-axis starts from standard deviation=0.5.

by using additive Gaussian noise in keypoints measurements
and analyzing the convergence properties. For the next set of
experiments, we aim to qualitatively analyze the efficacy of
our approach using Gazebo framework [18]. Gazebo helps
us to render a 3D model from a given viewpoint similar
to a real environment. It also simulates real world physics
and also enables variations in lighting conditions. In this
experiment keypoints were predicted on rendered images
using our keypoint network. We finally showcase servoing
results for a real car using a quadcopter. Our code for visual
servoing on synthetic data and the weights of our trained
keypoint network is available at the project webpage .

A. Experiment on synthetic data

For this experiment, ten 3D models of cars were annotated
with 14 keypoints. As the models were of different scales,
as an initial step, keypoints were centered and normalized.
The evaluation was performed using two different set of 3D
points to simulate car keypoints. A random view projection
from the first set was used as the desired view while the
second set was used for projection from target instance.
(figures 6 & 7) shows the efficacy of the proposed algorithm
by servoing successfully despite the large transformation
between the initial pose and the desired pose. For better
visualization, a 3D model made of polygons with keypoints
as its vertices are added in the simulation. Results show error
and velocity decreasing exponentially with time, which is
desirable for visual servoing task.

To test the robustness of our approach, Gaussian noise
generated with a range of covariance was added to the
projected keypoints. Quantitative results of this experiment

'http://robotics.iiit.ac.in/urls/vs_induction

is reported in Figure 8. As can be seen in the graphs, the
convergence error in terms of yaw error, translation error and
feature (keypoints) error, all increases with increasing value
covariance of the added Gaussian noise. The experiment
show similar trend for both small and large desired camera
transformations.

Previously harit et al.[14] used a linear combination of 3D
models to estimate target. This results in reconstruction errors
even without considering noise. Authors report an average
10 % noise in translation and rotation. However, since we
are explicitly reconstructing the target and transferring the
desired pose from source after axis alignment, hence in the
absence of noise we achieve no translational and rotational
error.

©

Translation Error

£
g =
a

(® ()

Fig. 9. Quadcopter experiment Experiment with a quadcopter on a real
car in an outdoor environment. (a): Desired view of a standard car(source
instance); (b): Current view of the car(target instance); (c): Final view of the
car (target instance); (d): 3D trajectory taken by the quadcopter;(e): Starting
pose of the quadcopter (shown in red box); (f): Final pose of the quadcopter
(shown in red box); (g): Translational error with time; (h): Yaw error with
time. Note that although we are using PBVS controller the trajectory is
curved due to noisy keypoints and reconstruction error. Also, notice the
gradual decrease in translation and rotation error as the approach proceeds.

B. Qualitative Results on Gazebo simulation:

Second we performed the simulation in using a quadcopter
model in an environment with car a model in Gazebo
[18] with Robot Operating System (ROS). We tested the
simulation with varying car models, desired transformations
and lighting conditions. The performance of the simulation
is shown in figure 10. Second column of the figures shows
the desired view in the source model. The last column
represents the error between the desired view and the final

Preprint submitted to 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems. Received March 1, 2017.



CONFIDENTIAL. Limited circulation. For review only.

(a) Start pose of target (b) Desired pose of source

(c) Final pose of target | (d) Resultant error image
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Fig. 10. Qualitative results. (a) Initial pose captured by the robot. (b) Desired camera pose of a different instance. (c) Resultant positioning of camera
achieved by our approach. (d) Resultant error image. Note the similarity in the resultant pose achieved by the proposed approach compared to the desired

pose provided, even for large camera transformations.

view captured by the quadcopter.

C. Real world experiment

Lastly, as a final proof of concept and viability of our
approach, we tested over real quadcopter with a monocular
camera and local velocity controller with a car in an outdoor
environment figure 9. In this experiment, we evaluate our
approach on real world scenarios using a Parrot Bebop drone.
Since, quadcopters are under-actuated, only 4 DOF tasks
were selected for visual servoing. In real world, it is difficult
to accurately predict the position of a drone. Hence, we
report the qualitative results and an approximate trajectory
generated and reported by the drone by fusion of inertial
measurement unit (IMU), sonar sensor and optical flow
sensor facing downward. Again, the transformation between
the initial and the desired pose is large. The quadcopter local
controller tracks the velocity commands generated by our
PBVS controller. The keypoints are predicted by our CNN
network. As our CNN takes the bounding box of the car

along with the image, we run a separate object detection
network YOLO (you only look once) by Redmon et al. [19]
in parallel. The CNN forward pass for keypoint prediction
as well as object detecton was performed using a laptop
computer with Core i7 CPU, Nvidia Quadro M2000M GPU
and 16 GB RAM. It took 140 ms for one forward pass to
complete on the machine. The image captured by the drone
and corresponding control commands generated by the PBVS
controller were exchanged between the system and drone
over wifi channel. The robustness of this system made it
possible to conduct successful outdoors experiment.

V. CONCLUSION

In This work, we have introduced a novel pose induction
and alignment pipeline for across instance visual servoing
for an object category. We also have trained a CNN that
is able to achieve state-of-art results for semantic keypoint
predictions on vehicles. We evaluated our approach though
various experiments on synthetic data, in Gazebo simulation
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environment as well as on actual quadcopter. Our approach
is able to achieve acceptable camera pose even for large
initial transformations in camera pose and high intra-category
variation in appearance and shape among object instances.
Although we have tested our approach only for vehicle class
objects, this approach can be easily extended to other object
categories as well. The motivation behind selecting car as ob-
ject category was to automate vehicular inspection. We have
made our code publicly available for further contribution.

REFERENCES

[11 F. Chaumette and S. Hutchinson, “Visual servo control. i. basic
approaches,” in MRA, 2006.

[2] P.Rives, “Visual servoing based on epipolar geometry,” in IROS, 2000.

[3] F. Chaumette, “Potential problems of stability and convergence in
image-based and position-based visual servoing,” in The confluence
of vision and control, 1998.

[4] F. Hoffmann, T. Nierobisch, T. Seyffarth, and G. Rudolph, “Visual
servoing with moments of sift features,” in SMC, 2006.

[5] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for
human pose estimation,” in ECCV. Springer, 2016.

[6] Y. Xiang, R. Mottaghi, and S. Savarese, “Beyond pascal: A benchmark
for 3d object detection in the wild,” in (WACV), 2014.

[7] M. Bakthavatchalam, F. Chaumette, and E. Marchand, “Photometric
moments: New promising candidates for visual servoing,” in /CRA.

[8] E. Marchand and C. Collewet, “Using image gradient as a visual
feature for visual servoing,” in IROS, 2007.

[9] A. Dame and E. Marchand, “Mutual information-based visual servo-
ing,” in TRO, 2011.

[10] F. Chaumette, “Image moments: a general and useful set of features
for visual servoing,” in TRO, 2004.

[11] S. Maji and G. Shakhnarovich, “Part annotations via pairwise corre-
spondence,” in Workshops at the Twenty-Sixth AAAI Conference on
Artificial Intelligence, 2012.

[12] F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part based models,” in
PAMI, 2010.

[13] S. Tulsiani and J. Malik, “Viewpoints and keypoints,” in CVPR, 2015.

[14] H. Pandya, K. M. Krishna, and C. V. Jawahar, “Servoing across object
instances: Visual servoing for object category,” in ICRA,2015.

[15] H. Pandya, K. M. Krishna, and C. Jawahar, “Discriminative learning
based visual servoing across object instances,” in (ICRA). IEEE,
2016.

[16] L. Bourdev and J. Malik, “Poselets: Body part detectors trained using
3d human pose annotations,” in ICCV, 2009.

[17] Y. Zheng, S. Sugimoto, and M. Okutomi, “Aspnp: An accurate and
scalable solution to the perspective-n-point problem,” /IEICE TRANS-
ACTIONS on Information and Systems, 2013.

[18] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in (IROS). 1EEE, 2004.

[19] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in CVPR, 2016.

Preprint submitted to 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems. Received March 1, 2017.



