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ABSTRACT

Graph neural networks (GNNs) are increasingly being used on sensitive graph-structured data, ne-
cessitating techniques for handling unlearning requests on the trained models, particularly node un-
learning. However, unlearning nodes on GNNs is challenging due to the interdependence between
the nodes in a graph. We compare MEGU, a state-of-the-art graph unlearning method, and SCRUB,
a general unlearning method for classification, to investigate the efficacy of graph unlearning meth-
ods over traditional unlearning methods. Surprisingly, we find that SCRUB performs comparably
or better than MEGU on random node removal and on removing an adversarial node injection at-
tack. Our results suggest that 1) graph unlearning studies should incorporate general unlearning
methods like SCRUB as baselines, and 2) there is a need for more rigorous behavioral evaluations
that reveal the differential advantages of proposed graph unlearning methods. Our work, therefore,
motivates future research into more comprehensive evaluations for assessing the true utility of graph
unlearning algorithms.

1 INTRODUCTION

Graph Neural Networks (GNNs) have found widespread application across various domains, ranging from biology to
weather forecasting (Kipf & Welling, 2017; Perozzi et al., 2014; Veličković et al., 2018), primarily for tasks involving
node classification on graph-structured data. These models often leverage sensitive data during training, such as
personal details about individuals used in recommendation systems (Friedman et al., 2015). Requests to “remove”
information from the model were a primary motivation for unlearning (Bourtoule et al., 2021). However, unlearning
is also motivated by the need to address poisoning attacks, noisy labels, and outdated information, where retraining
from scratch is expensive (Goel et al., 2024). In graphs, unlearning requests typically take the form of node, feature,
or edge unlearning (Cheng et al., 2023). Node unlearning involves removing the influence of a specific set of nodes
from a model, which is challenging due to the interdependence between nodes resulting from the graph structure and
the message-passing mechanisms commonly employed by GNNs.

Recent studies have proposed graph unlearning methods specifically designed for node unlearning, where removing
one node can impact the representations of its neighboring nodes (Said et al., 2023). A common evaluation setup
involves randomly deleting a subset of nodes, modeling user privacy requests (Qu et al., 2023). However, the develop-
ment of new graph-specific unlearning algorithms is warranted only if standard unlearning techniques (such as those
from fields like image classification) perform worse than graph methods on these tasks.

In our review of the existing graph unlearning literature, we find that papers do not comprehensively validate the
assumptions regarding the need for graph-specific unlearning methods and evaluation setups. We compare a state-
of-the-art graph unlearning method, MEGU (Li et al., 2024), with SCRUB (Kurmanji et al., 2024), a recently pro-
posed technique for general classification unlearning tasks. Surprisingly, we find that SCRUB matches or outperforms
MEGU’s performance on the random node deletion setup commonly used in the graph unlearning literature (Li et al.,
2024; Cheng et al., 2023). As a first step towards stronger evaluations designed to highlight interdependencies, we
propose testing unlearning to remove the adverse effects of a node injection poisoning attack. Our preliminary inves-
tigation sheds light on two main points:

1. Incorporate methods from other areas, such as SCRUB from image classification, as baseline comparisons.
Even though they are not tailored for graph-specific properties, these methods perform surprisingly well in
current evaluations.

2. Need for more rigorous evaluations of graph unlearning, that isolate graph-specific properties and show
the differential effectiveness of unlearning methods targeted toward graph tasks.
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2 PROBLEM SETTING

We perform a semi-supervised multi-label classification using a Graph Convolutional Network (GCN) (Kipf &
Welling, 2017) and compute loss using cross-validation. Node unlearning in graph neural networks involves removing
the influence of specific nodes, which may have manipulated features or perturb the topology of the original graph. We
perform node-level unlearning in two settings: the random node removal (a benign form of unlearning request common
in graph unlearning evaluations) and node injection attack removal, an adversarial form of unlearning requests.

2.1 DESIDERATA

The overarching objective for all unlearning requests is to forget efficiently, while minimising the impact on the overall
model utility (Kurmanji et al., 2024). Ideally, the performance of the unlearned GCN should resemble that of a fresh
GCN retrained solely on clean samples. We aim to move away from the current forget set labels without assuming
ground truth label knowledge.

In graph unlearning literature, various proxies measure “forgetting” - Accuracy (Guo et al., 2019), F1 scores (Cong &
Mahdavi, 2023; Wu et al., 2023), and Membership Inference Attacks (Yeom et al., 2018; Cheng et al., 2023; Olatunji
et al., 2021) (commonly used in privacy settings). Our evaluation considers two settings: random deletion requests
and poisoned node deletion. We compute Micro-F1 score, which is the main metric used to report MEGU’s results (Li
et al., 2024), as well as Accuracy and Poison Success Rate (Lin et al., 2021).

2.2 FORMULATION AND NOTATION

Graph Notation. We formalize node unlearning similar to Li et al. (2024),

• G = (V, E ,X ) represents a graph G with |V| = n nodes, |E| = m edges, and X (i) corresponding to the
feature vector of node i, where Vtr corresponds to the set of nodes used for training and Vtest corresponds to
the set of nodes used for testing.

• Forget Set: Let Vf ⊆ Vtr denote the set of nodes to be unlearnt.

• Retain Set: Let Vr ⊆ Vtr denote the set of nodes to be retained.

Model Utility. We operationalise this by computing the Micro-F1 score on Vtest. An ideal unlearning method should
minimally impair the performance of the model, as tested against clean data points.

Influence of Samples to be Removed. We operationalize this as the Micro-F1 score on samples that are in the forget
set (Vf ⊆ Vtr). An effective unlearning method aims to minimise this score. In case of unlearning injection attacks,
however, we measure this by applying the poison to a copy of the test nodes, where it is also referred to as Poison
Success Rate.

2.3 METHODS TESTED

SCalable Remembering and Unlearning unBound (SCRUB) (Kurmanji et al., 2024) is a relatively new general un-
learning method proposed for a variety of tasks, such as preserving user privacy, resolving confusion, and removing
biases. SCRUB employs a teacher-student framework to handle unlearning requests. It is not bound by any assump-
tions or constrained definitions of unlearning, such as closeness to the retrained model in the state space. SCRUB
highlights the need to consider diverse applications, requirements, and evaluations for proposed unlearning methods,
which partially motivates us to test it on graph unlearning tasks. Despite being a state-of-the-art unlearning method in
the image classification literature, it has not been used as a baseline in the graph unlearning literature.

Mutual Evolution Graph Unlearning (MEGU) (Li et al., 2024), the current SOTA for graph unlearning, has a mu-
tually trained Linear Unlearning Module which aims to remove the influence of Vf , and a Predictive Module which
aims to retain the performance on Vr. It uses a mutual evolution approach relying on the forgetting capability of the
unlearning module, and the reasoning capability of the predictive module. Unlike SCRUB, MEGU leverages graph
topology by identifying the Highly Influenced Nodes (HINs) to act as anchors in its loss formulation and employs a
topology-aware unlearning propagation using homophily and feature smoothing.
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3 EXPERIMENTS

3.1 SETUP

We evaluate on two benchmark datasets, Cora and CiteSeer (Bojchevski & Günnemann, 2017), commonly used in
graph unlearning literature. Cora contains 2,708 nodes, each with 1,433 features belonging to one of its 7 classes and
5,429 unique edges. CiteSeer contains 3,327 nodes, each with 3,703 features belonging to one of its 6 classes and
4,732 unique edges.

We split both datasets following the guidelines of recent graph unlearning approaches (Cheng et al., 2023; Li et al.,
2024), randomly assigning 80% of nodes for training and 20% for testing. For simplicity and generalizability, we limit
the scope of our experiments to the GCN model. In all experiments, we train a 2-layer GCN with a hidden dimension
of 16, using an Adam Optimizer with a learning rate of 0.025 and weight decay of 5× 10−4, and train for 200 epochs.

To ensure a fair comparison between the unlearning methods, both SCRUB and MEGU are run for 100 epochs. For
each dataset, we also conduct an extensive search on the hyperparameters recommended in the respective papers, as
described in Appendix A.

3.2 EVALUATION 1 - RANDOM UNLEARNING

Motivation. Unlearning random nodes is the prevalent evaluation to benchmark Graph Unlearning works (Said et al.,
2023). This form of unlearning request is typical in privacy related scenarios. In this setting, a subset of nodes
belonging to Vtr are randomly chosen to be deleted from the graph. We vary the size of the deletion set from 5% to
50% of the total nodes in the training set.

Table 1: Random node unlearning results on Cora and CiteSeer. F1Vtest indicates F1 score on the Vtest where higher
indicates more model utility. F1Vf

indicates the F1 score on Vf , where lower indicates more forgetting.

Deletion Size Retrain From Scratch SCRUB MEGU
F1Vtest

F1Vf
F1Vtest

F1Vf
F1Vtest

F1Vf

Cora
5% 86.24% 83.33% 85.87% 87.50% 85.87% 87.50%
10% 86.61% 84.97% 85.87% 87.56% 85.69% 87.56%
20% 85.32% 86.53% 86.06% 89.64% 85.87% 89.64%
30% 85.14% 87.22% 86.06% 89.81% 85.87% 87.50%
40% 86.24% 83.33% 85.87% 87.50% 85.87% 90.80%
50% 85.69% 86.74% 86.24% 90.36% 85.87% 90.36%

CiteSeer
5% 81.91% 72.36% 80.57% 75.61% 80.12% 75.61%
10% 81.32% 74.09% 81.02% 76.11% 80.27% 76.11%
20% 83.11% 72.93% 80.57% 75.56% 80.42% 75.56%
30% 82.36% 73.22% 81.02% 75.64% 80.42% 75.64%
40% 81.91% 74.27% 81.02% 76.59% 80.42% 76.19%
50% 82.06% 74.01% 80.57% 76.92% 79.97% 76.76%

Results. Random node unlearning results are presented in Table 1. SCRUB performs on par with MEGU on both
retaining model utility and lowering accuracy on the forget set across deletion sizes. Both methods are worse than the
retrain-from-scratch gold standard. These results suggest that general unlearning methods may perform just as well as
specialised graph unlearning methods under this evaluation.

3.3 EVALUATION 2 - UNLEARNING INJECTION ATTACKS

Motivation. The interconnected nature of graph data introduces a critical vulnerability: a small number of manipulated
or poisoned nodes in the graph can adversely affect the performance across the entire network. These manipulations
can arise from various sources, such as adversarial attacks, data biases, or even errors in the feature or label collection
process (Goel et al., 2024). Consequently, there may be scenarios where we identify these manipulated nodes after
training a GNN model and wish to remove their influence without retraining the entire model from scratch.
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Adversary’s Perspective. From the adversary’s point of view, they can inject an arbitrary number of nodes with
a feature vector of their choice into the graph. This simulates scenarios that necessitate unlearning requests, such as
removing backdoors, biases, and confusions, manifesting as spurious correlations learned due to mislabeling or feature
errors.

Poisoning Attack. For Cora, we inject 50 poisoned nodes with a trigger size of 50 features, targeting Class 1 as the
poisoned label. For CiteSeer, we inject 30 poisoned nodes with a trigger size of 150 features, targeting Class 0 as the
poisoned label. The target classes are chosen to be consistent with MEGU’s evaluation setting.

Table 2: Poisoned node unlearning results on Cora and CiteSeer. SCRUB as proficient as MEGU at retaining model
utility, and even outperforms MEGU in deleting the effects of the poison as measured by the decrease in the poison
success rate. F1 Score results, which indicate model utility, are presented on the clean test set of the data. (↑) indicates
a higher value is better, while (↓) indicates a lower value is better. Best performance is indicated in bold.

Cora CiteSeer
Unlearning Method F1 Score (↑) Poison Success Rate (↓) F1 Score (↑) Poison Success Rate (↓)

No Unlearning 90.83% 98.53% 80.41% 99.70%
SCRUB 91.19% 0% 78.62% 0%
MEGU 93.39% 9.17% 76.53% 11.95%

Metrics. We evaluate the unlearning methods using the following metrics:

1. Retention of Model Utility (F1) To assess the model’s overall performance after unlearning, we measure
the F1 score on the original test set Vtest. The F1 score, which aggregates the contributions of all classes, is
particularly useful for evaluating multi-class accuracy, especially in imbalanced datasets.

2. Poison Success Rate (PSR) The proportion of times the model predicts the adversary’s intended labels
(poison labels) in the poisoned dataset, or formally, F1Vf

. A higher PSR (closer to 1) indicates a more
successful poison attack. On the other hand, the unlearning method’s ability to mitigate the adverse effects of
the poisoned nodes is measured by the decrease in PSR after unlearning.

Results. The results of the evaluation are presented in Table 2. We observe that GCN is highly susceptible to these
attacks, as the classical poisoning attack achieves a high poison trigger success rate while maintaining the overall
model utility. We find that not only is SCRUB as proficient as MEGU at retaining model utility, it even outperforms
MEGU in deleting the effects of the poison. These results suggest that general unlearning methods are an important
baseline even for graph unlearning settings. Further, given that both evaluations fail to differentiate SCRUB and
MEGU, there is a need for evaluations that better measure the unlearning of propagated poisoning due to message
passing in GNNs.

4 CONCLUSION

In this work, we compare a state-of-the-art method proposed specifically for graph unlearning (MEGU) with a generic
classification unlearning method (SCRUB) and note that their performances are comparable in the commonly tested
setting of random node deletions. We hypothesize that this may be because the random node deletion evaluation is not
strong enough to test the interesting aspect of graph unlearning, i.e., the interdependence of node representations. We
then test the unlearning using a simple node injection poisoning attack and find that on the same metrics used to report
MEGU’s performance, SCRUB outperforms on this task. Thus, our work shows the importance of including standard
unlearning baselines in the graph unlearning setting, as they may be surprisingly effective. It also follows that there is
a need to design rigorous evaluations for graph unlearning.
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A HYPERPARAMETER TUNING

This section contains details about the hyperparameter tuning performed for both MEGU and SCRUB. We follow the
authors and use the same set of hyperparameters for evaluations.

Table 3: Candidate values used for hyperparameter tuning

Hyperparameter Values
SCRUB

α [0.5, 1, 2]
msteps [10, 25, 50]

Learning Rate [0.025, 0.01, 0.001]
MEGU

α1 [0.1, 0.5, 0.8, 0.24]
α2 [0.1, 0.5, 0.8, 0.12]
κ [0.01, 0.1, 0.05]

Learning Rate [0.01, 0.05, 0.09, 0.1]

Table 4: Selected hyperparameters for hyperparameter tuning for SCRUB and MEGU over Cora and CiteSeer

Dataset SCRUB MEGU
α msteps Learning Rate α1 α1 κ Learning Rate

Cora 1 10 0.01 0.8 0.5 0.01 0.09
CiteSeer 0.05 25 0.01 0.8 0.5 0.1 0.1
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