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ABSTRACT
Given a retweeter network in Twitter for any event, how can we de-
tect the group of users that collude to retweet together maliciously?
A large number of retweets of a post often indicates the virality of
the post. It also helps increase the visibility and volume of hashtags,
topics or URLs, to promote the event associated with it. Our pri-
mary hunch is that there is synchronization or indicative pattern
in the behavior of such users. In this paper, we propose (i) MalReG,
a novel algorithm to detect retweeter groups, and (ii) a set of 23
group-based features (entropy-based and temporal-based) to train
a supervised model to identify malicious retweeter groups (MRG).
We present experiments on three real-world datasets with more
than 10 million retweets crawled from Twitter. MalReG identifies
1, 017 retweeter groups present in our dataset. We train a super-
vised learning model to detect MRG which achieves 0.921 ROC
AUC using Random Forest, outperforming the baseline by 7.97%
higher AUC. Additionally, we perform geographical location-based
and temporal analysis of these groups. Interestingly, we find the
presence of the same group, retweeting different political events
that took place in different continents at different times. We also
discover masquerading techniques used by MRG to evade detection.

CCS CONCEPTS
• Networks → Online social networks; • Information sys-
tems → Social networks; • Applied computing;
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1 INTRODUCTION
Nowadays, Online Social Networks (OSNs) are used not just to con-
nect with people but also to acquire social currency.1 Users explore
multifarious opportunities to earn more andmore of social currency
1https://www.entrepreneur.com/article/287702
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Figure 1: Fiverr, an online service to purchase retweets

[1, 16, 25]. For instance, retweet has become one such entity to gain
influence on Twitter [14]. There is absolutely no limit to the number
of times a post can be retweeted. As of May 2018, the most number
of retweets for a tweet is 3.6M.2 A retweet is now considered as a
sign of its social currency. The quality tweet is retweeted numer-
ous times, inferring that the author is a celebrated Twitter user.
Consequently, a large number of retweets are associated with high
influence and popularity. This has spawned a desire to gain popu-
larity among users which is conducive to the emergence of several
paid retweeting services. These paid services deploy both real-users
and bots disguised as regular Twitter users which can be purchased
at a minuscule price. There are many crowd-sourcing platforms
which are involved in hiring retweeters. Figure 1 illustrates one
such crowd-sourcing platform, Fiverr, where anyone can easily buy
retweets. Since this activity is inorganic, we call such paid users
and the bots as malicious retweeters and the users whose tweets get
retweeted as clients. We define a malicious retweeter group (MRG)
as a group of users that collude to retweet together for the same
purpose. The purpose may vary to a large extent. A purpose can
be monetary incentives or a political agenda to promote their own
party and downgrade opponent’s reputation. The members of an
MRG together retweet their client’s tweet as per the deal between
the client and the service provider.

Motivation: The presence of bots in the Twitter network is not
a new phenomenon [22]. Bots are often accused of fake activities
and polarizing the discussions in the network.3 It has been observed
that such retweeting activity upsurges whenever a news-making
incident takes place [15]. In the recent past, we have seen multiple
scenarios where OSNs are also accused of influencing the elec-
tions.4 In October 2017, an Indian politician was accused of using
bots to increase his retweet count.5 There are studies to detect the
presence of individual fraud retweeters in the network [11, 14].

2https://twitter.com/carterjwm/status/849813577770778624/photo/1
3http://time.com/5260832/malaysia-election-twitter-bots-social-media/
4https://www.cio.com/article/3137513/social-networking/twitters-impact-on-2016-
presidential-election-is-unmistakable.html
5https://timesofindia.indiatimes.com/india/bots-behind-rise-in-rahul-gandhis-
twitter-popularity/articleshow/61161857.cms
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However, the same techniques cannot be applied to detect the mali-
cious retweeter groups as collective behavior is usually more subtle
than individual behavior. At the individual level, activities might
be normal; however, at the group level, they may substantively
differ from other groups. Moreover, it is not possible to understand
the actual dynamics of a group by aggregating the behavior of
its members due to the complicated and multi-faceted nature of
inter-personal dynamics. Besides this, individuals’ behavior tend
to be interdependent, influenced by the behavior of other members.
This calls for designing a separate method for group level fraud
detection.

Our Approach: In this paper, we propose MalReG, a novel al-
gorithm to detect retweeter groups present in the Twitter network.
Here, we focus on three political events – (i) Delhi Legislative
Assembly Election (2013), (ii) Indian Banknote Demonetization
(2016), and (iii) UK General Election (2017). We create an undi-
rected weighted retweeter network for each dataset. We apply a
well-established community detection algorithm, Louvain [5], on
the retweeter network to extract the groups. To improve on the
groups obtained from Louvain, we apply MalReG on each extracted
group. MalReG is efficient enough to capture the groups that have
used several techniques to evade detection. We propose a set of 23
group-based features; both entropy-based and temporal-based, to
train a supervised learning model and detect MRG. Our method
achieves ROC-AUC of 0.921 using Random Forest classifier, out-
performing Attractor+ [28], the only available baseline with 7.97%
higher AUC. In our prefatory examination, we notice that each
MRG has disparate behavior w.r.t the retweeting time-interval and
the frequency. Few MRGs retweet the post as soon as it is created
while others wait for some time before retweeting. However, the be-
havior of the latter demonstrates a deliberate practice of the groups
to evade detection. We also observe that not every member of the
MRG retweets together. Instead, they often form subsets of the
group and retweet together. This indicates the intentional camou-
flage exercised by the expert MRGs. Giatsoglou et al. [13] observed
that despite earlier studies that showed followers-to-followees ratio
is a good indicator of fraudulent behavior, it is uninformative for
several fraudsters. It also applies to MRGs.

To the best of our knowledge, this is the second attempt af-
ter [28] to detect MRGs present in the Twitter network. Our
main contributions are four-fold:

• Methodology: We propose MalReG, a novel algorithm to
detect retweeter groups.
• Feature engineering: We investigate the synchronous be-
havior of the members of MRGs w.r.t tweet content, retweet-
ing activities and temporal properties. By this analysis, we
carefully curate 23 group-based features.
• Classifier: We train a binary classification model which
achieves 0.921 AUC using Random Forest algorithm and
beats the baseline significantly.
• Dataset: As a by-product of this study, we collected and an-
notated MRGs from three datasets, which to our knowledge
are the first publicly available datasets of this kind.

Reproducibility: The anonymized and labeled dataset of the
retweeter groups and as well as the codes are available at
https://tinyurl.com/ybgdkz2r.

2 RELATEDWORK
Various works have addressed the detection of individual fraudsters
in the Twitter network [16, 24]. Here we discuss anomaly detection
in Twitter and assess both individual and group retweeting fraud
detection techniques.

Anomaly Detection: Das et al. [9] used local anomaly de-
tectors to discern records with anomalous values. Yu et al. [30]
performed a survey on OSM anomaly detection. Chan and Ma-
honey [7] introduced two algorithms to create models frommultiple
time series for anomaly detection. The models produced anomaly
scores for real-life tracking of the tasks. Yu et al. [29] studied group
anomaly detection. NetProbe spots anomalies and online auction
fraud by applying belief propagation [23]. It can also predict which
users might perform frauds in the future. Akoglu et al. [2] pro-
posed Oddball to exploit ego-nets to spot numerous patterns in
a weighted graph. Beutel et al. [4] proposed CopyCatch, to find
suspicious lockstep behavior. In a similar work, Jiang et al. [18]
studied who-follows-whom networks. Shah et al. [26] proposed
fBox, an adversarial strategy to catch suspicious entities in the large
online networks that suffer from link fraud. Mao et al. [21] proposed
MalSpot that apply multi-linear probation with disparate time res-
olutions to detect malicious network patterns. Com2 [3] uses an
incremental tensor analysis technique to identify ephemeral and
recurrent communities. Jiang et al. [17] proposed CatchSync that
utilizes synchronized and rare behavior to find fraudulent patterns.
Giatsoglou et al. [13] curated features to detect synchronous frauds.
The proposed algorithm is called ND-Sync which is utilized to de-
tect anomalies. Kaminska et al. [19] studied the use of automated
means to disseminate enormous amount of misinformation about
politics over OSNs. Liu et al. [20] proposed contrast suspiciousness
metric to detect fraudulent users. However, there are only a few
studies that analyze the retweeting patterns in the Twitter network.

Retweet Fraud Detection: Retweet is a powerful function to
propagate information rapidly across OSNs. It has been observed
that cyber-criminals exploit this function to achieve their malignant
goals. Such incidents often occur during news-making events like
elections [15]. However, there are only a few works that deal with
retweet fraud detection or retweet fraudsters. [12] identified five
discrete classes of retweeting activity on Twitter using the entropy
of the time interval distribution and the user. Cherepnalkoski and
Mozetic [8] studied the retweet network of users that belong to
the European Parliament and detected groups of influence when
the ground-truth is known. Giatsoglou et al. [14] identified some
triangular and homogeneity related patterns to detect fake retweets.
They developed RTGen that generates both inorganic and organic
retweets by applying the weighted cascade model. Recently, Dutta
et al. [11] designed ScoRe, a supervised method to detect collusive
retweeters. However, all these works attempted to detect individual
fraud activities, not the group-level activities.

Group Retweet Fraud Detection: Here we focus on identify-
ing malicious retweeter groups. There is not much research done to
find such retweeter groups. Our work is inspired by the only study
done by Vo et al. [28] to address the same problem. They proposed
Attractor+ to detect retweeter groups such that the retweeting be-
havior of each member is similar. In our work, we propose a novel
algorithm called MalReG to extract and prune the retweeter groups.

https://tinyurl.com/ybgdkz2r
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Besides, the technique we use for pruning the groups is different
and efficient from the one devised in [28]. They decomposed a
component on the basis of pair-wise screen name similarity. How-
ever, in our preliminary study, we found that a significant fraction
of retweeter groups do not have similar screen names. Therefore,
decomposing on the basis of just screen names might not be a
good practice. MalReG is robust enough to uncover the groups that
exhibit various complex retweeting patterns.

3 PROBLEM DEFINITION
Our goal is to find malicious retweeter groups in Twitter network.
Given: A set of usersU of size N.
Identify: Groups of users involved in collective retweeting activities.
To determine: Whether the retweeter group is malicious or benign.

During our preliminary analysis, we discover that often retweeter
groups have two types of members. The first type of the members
are the most frequent retweeters. They form the core-part of the
group. The second type of retweeters are the less-active members.
The other significant difference lies in the users whose tweet they
retweet. To understand it, let us assume a user A and a retweeter
group G that has 20 members –m1,m2,m3, ..,m20. User A may or
may not be a part of G. Let us consider a scenario where user A
posts a tweet t1. Five members,m1,m2, ..,m5 retweet t1 that we call
rt1, rt2, ..., rt5. The remaining 15 members form four subgroups,
sд1, sд2, sд3, sд4 of size 3, 4, 5, and 3 respectively, and sд1 retweets
rt1, sд2 retweets rt2, and sд3 retweets rt3. Now, sд4 retweets one of
the retweets by a member of sд2. In this way, not all the members
directly retweet t1 but form a sort of retweeting cascade. Again,
user A tweets t2, and like the previous case,m1,m2, ..,m5 retweet
it. However, unlike before, not all the remaining members form
identical subgroups or some members may not even retweet. There-
fore, we call membersm1,m2, ..,m5 as seed members of the group
and the remaining users as guest members, as they retweet occa-
sionally. We can see this behavior in the Figure 2. The network
represents one the retweeter groups from our UK dataset. Figure 2a
shows the complete retweeter network, Figure 2b shows the seed
members, while Figures 2c and 2d show some guest users that are
connected to primary source user via few seed members. Most the
existing algorithms fail to capture this behavior of a retweeter group.
They focus on the detection of only seed members of the group. The
beauty of our algorithm, MalReG, lies in its capability to detect the
seed members along with the guest members that lends a few extra
hands to the seed members. In this paper, we focus on detecting the
malicious retweeter groups using the features based on the network
connections, the temporal behavior of retweeters, the content of
the retweet, and the retweeter’s profile that distinguish them from
the benign retweeter groups (BRG).

4 METHODOLOGY
In this Section, we describe our proposed methodology to detect the
presence of MRGs in the Twitter network. AnMRG can be defined as
a set of real users or bots that collude together to retweet either a post
of a Twitter user or all the posts related to a particular event. For this
study, we aim to find MRGs of size at least 3. To extract MRGs from
the network, we propose an algorithm called MalReG. It follows a 5-
step process: (i) create an undirected weighted network, (ii) extract

(a) Complete retweeter network (b) Seed members of the group

(c) Set of guest members (I) (d) Set of guest members (II)

Figure 2: Network graphs of a retweeter group extracted
from our UK dataset.

candidate groups, (iii) decompose the candidate group on the basis
of connectedness and common retweets, (iv) extract features from
each retweeter group, and (v) train a supervised model to classify
it as malicious or benign.

4.1 Creating an Undirected Weighted Network
For each user ui , RT (ui ) denotes the set of all the retweets of ui
that belong to set U . We calculate weight wi j of each pair of ui
and uj such thatwi j is the number of common tweets of ui and uj
i.e., wi j = | RT (ui )

⋂
RT (uj ) |. We create an undirected weighted

network G(V ,E) such that V is the set of users and E is the set of
edges, E = {(ui ,uj ) | ui ,uj ∈ V ,wi j > r }, where r is the threshold
(set as 3 in this case).

4.2 Extracting and Pruning Retweeter Groups
Here, we discuss our technique to extract the groups and then prune
them using the steps presented in Algorithm 1.

Extraction: In order to extract groups from an undirected
weighted graph, G(V ,E), we apply the Louvain community de-
tection algorithm [5]. The Louvain algorithm is a heuristic method
that is based on modularity optimization. It is extremely fast, and it
outperforms many existing baselines [6]. On manual inspection of
the extracted group, we find that the Louvain gives coarse grained
groups. As a result, many false positives are also present within
the group. This calls for pruning of the groups to remove the false
positives. Therefore, the extracted groups form an initial set of can-
didate groups (ζ ). From now onwards, we consider one candidate
group at a time and prune it. We repeat the entire procedure for
all the candidate groups one by one. To prune a candidate group,
we need to create an undirected weighted retweeter network. Note
that, here we create Gi (V ,E) for a candidate group only, and not
for the entire network. To create a Gi (V ,E), first we generate a
bipartite graph, BG(v ′, e ′), for a candidate group such that one set
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of nodes represent users and another set represents all the retweets
of those users. We place an edge from a user node to retweet node
if ui has retweeted ti . We apply one mode projection on the user
set of BG(v ′, e ′). It results in an undirected weighted retweeter
network for a candidate group. Now, our candidate group is ready
for pruning. But before that, we drop all the edges from Gi (V ,E)
that has weight less than r (set to 3). By removing the edge, we
intuitively break the bond of an inactive user from the entire group.

Pruning: For pruning, our input is Gi (V ,E). The first step is to
check ifGi (V ,E) is a connected component or not. If there are some
disjoint nodes, intuitively, such nodes cannot be part of the same
group. Therefore, we further decomposeGi (V ,E) into n-subgraphs
where n is the number of connected components present in it. Now,
each component is considered as a separate candidate group. To
further prune the candidate groups, we find the maximal cliques
(MC) from each group such that the intersection of the nodes of all
the maximal cliques is null. It means that there should be no overlap
between the nodes of two maximal cliques. The idea behind it is
to obtain all the close-knit users together asMC. We compute the
frequency of retweets for eachMC and sort them in descending
order of frequency of retweets. We discover that in some cases,
there is a huge difference between the retweeting frequency of
MC. As expected, this is a result of cascading retweeting behavior
mentioned in Section 3. In order to capture this behavior, we com-
pute a threshold, α which denotes the point from where there is a
drastic fall in retweeting frequency. We divide the set ofMC by α ,
such that allMC with the number of retweets greater than α form
seed groups, and all the remainingMC are combined to form a set
of candidate nodes, CN. Let us understand this with the help of an
example. Letmc1,mc2,...,mcn be a set ofMC with f1, f2,...,fn be
their respective retweeting frequency sorted in descending order.
α is the threshold here, and it dividesMC into two parts. Let f1,
f2,...fq be greater than α . Therefore,mc1,mc2,...,mcq would form
a set of q seed groups and members of mcq+1, mcq+2,...,mcn are
combined to form a set of CN.

Now, we compute the number of common retweets between a
candidate node and a seed group. We perform this computation for
all the candidate nodes and seed groups. We add a candidate node
to the seed group with which it has maximum common retweets.
Hence, we add all the candidate nodes to the appropriate seed
groups. The resultant seed groups are the final retweeter groups.
From the algorithm, it is evident that we perform a fine-grained de-
tection by improving upon the results of the Louvain algorithm and
are able to obtain several retweeter groups from a single candidate
group. We apply this entire procedure on all the candidate groups
and get a set of retweeter groups as a result. Further, it is important
to remember that the threshold α is different for each candidate
group. However, if a candidate group consists of n members such
that all the members have the same retweeting frequency, then α
would be 0, and the entire candidate group becomes a retweeter
group.

4.3 Feature Selection
In order to detect MRGs, we identify two types of group-based
features. Table 1 gives a list of all the features which we use for our
experiments. We curate a set of 23 group-based features.

Algorithm 1: Pruning Algorithm
Input :Candidate Groups, ζ
Output :Retweeter Groups G(v, e)
foreach c ∈ ζ do

Generate a bipartite graph, BG(v ′, e ′)
▷ Set1 ← users, Set2 ← retweets

One mode projection of BG(v ′, e ′) on the user set
▷ Computes weighted undirected retweeter graph

Find all the connected components, CC(u)
if size of CC(u) < τ then

Discard CC(u) ▷ CC of size less than 3

end
foreach ω ∈ CC(u) do

Extract maximal cliques,MC
foreach µ ∈ MC do

Compute drastic fall of α values ▷ steepest

slope

SG(v ′′, e ′′), CN =MC(α)
foreach k ∈ CN do
G(v, e) = GetRetweeterGroup(SG(v ′′, e ′′), k)
return G(v, e)

end
end

end
end

Procedure GetRetweeterGroup(SG, k)
Input :SG(v ′′, e ′′), k
Output :Updated SG(v, e)
if k ≥ τ then

foreach δ ∈ SG(v ′′, e ′′) do
I = | rt(δ ) ⋂ rt(k) | ▷ finding common RTs

end
Add k to δ with max I
return δ (v, e)

end

Entropy-based features: In [12], entropy-based features were
reported to be a good measure to classify retweeting behavior. Here,
our goal is to look for synchronous behavior of such groups. The
lower the entropy more is the synchronicity in the group behavior.
Thus, we carefully curate a set of 15 entropy-based group features
to identify malicious retweeting behavior. Let Xa be a feature, e.g.,
favorites count and {x1,x2,x3, ...,x j , ...,xm } are the favorites count
of each member of Gi . If there are n occurrences of x j , then p(x j )
denotes the probability of observing x j :

p(x j) =
n

m
(1)

wherem is the number of members in a group Gi . The entropyHi
of the distribution of the favorites count of Gi is:

Hi (Xa ) = −
m∑
j=1

p(x j ) logp(x j ) (2)
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Table 1: Features used for supervised learning experiments.
We extracted features of two types, viz. Entropy-based, and
Temporal features.

Source Feature

Entropy based

retweeters (favorite count, listed count, status
count ), digits in screen names, hashtags in
username, eccentricity, average degree conn-
ectivity, average neighbour degree, number
of special characters in (screen names, user-
name), no. of URLs in bio, no. of mentions
in bio, no. of hashtags in bio, screen name
length, username length

Temporal based

inter posting time compactness, retweeting
time distribution (standard deviation, mean,
coefficient of variance), coefficient of varia-
nce of response times, User creation time
distribution (standard deviation, mean,
and coefficient of variance)
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(a) User-listed count entropy
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(b) Mention in bio entropy
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(c) Hashtags in bio entropy
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(d) User favorites count entropy

Figure 3: Cumulative distribution function of the entropy-
based features for malicious and other groups.

Similarly, we calculate the entropy of other group-based features
as mentioned in Table 1. The entropy of MRG is always less than
that of benign groups. As we can see in Figure (3a), the entropy
of the user-listed count for MRG groups is quite low. It has been
observed that often such malicious accounts are created during
any high-impact event; thus the number of lists of which it is part
of would be eventually less, decreasing the overall entropy of the
group [15]. The same pattern can be seen in the Figure (3b-3d), the
overall entropy of the MRGs is low in comparison with the other
groups in the network.

Temporal features: Here we discuss the temporal features that
we use to train our learning algorithm. Vo et al. [28] showed that
the temporal features are a good indicator of malicious group be-
havior. Therefore, we use 8 temporal features to train our model as
explained below.

(a) Inter-posting time compactness (ITC): For each retweeter ui ∈
G, we create a list of time when a post was retweeted by ui . We
merge all the listsT = [t1, t2, t3, ...., tq ] and sort it to calculate inter-
posting time ∆ of T (e.g., t2 − t1, t3 − t2, ..., tq − tq−1). Then we
pair each consecutive inter-posting time and logarithmically bin
into a grid in two-dimensional space. In order to make a grid, we
calculate the number of vertical lines and the horizontal lines and
then use the maximum value to create a gridMs×s . To find the value
of s, for each pair of coordinates (log2 ∆i , log2 ∆i+1), we round it
off to nearest integer. Let int(log2 ∆i ) be f and int(log2 ∆i+1) be д
such that F = [f1, f2, f3, ...., fq−1] andG = [д1,д2,д3, ....,дq−1]. We
compute the value of fmax and fmin . Similarly, we determine дmax
and дmin . The maximum of fmax − fmin + 1 and дmax − дmin + 1
yields the value of s . We count the number of pairs in each grid
cell and save it in C ∈ Ms×s . We finally calculate inter-posting
time compactness as the maximum of the ratio of number of pair
in a cell to sum of pairs in the grid as shown in Equation 3. This
is worth mentioning that the value of s changes for every group
due the variation in the number of members and the number of
retweets by each group.

ITC(G) = max
i j

(
Ci j∑s

i=1, j=1 Ci j

)
(3)

(b) Retweeting time distribution: For each retweeter ui ∈ G, we
extract a list of retweeting time for each retweet thread6 and com-
pute the standard deviation of this list. From this list of standard
deviations, we measure three features - standard deviation, mean,
and coefficient of variance.

(c) Coefficient of variance of response times: For each retweeter
ui ∈ G, we calculate the median of response time. Response time is
the time difference between the actual time when the tweet was
posted and the retweeting time. We then calculate the coefficient
of variance of this list.

(d) User creation time distribution: In our analysis we observe
that within a malicious group, several users are created within a
small time span. In order to capture this, we calculate the mean,
standard deviation and coefficient of variance of the time difference
of the user creation.

5 DATA COLLECTION AND ANNOTATION
We now discuss our technique to collect data and to annotate the
retweeter group as malicious or benign. The dataset curation is a
three-step process; (i) collecting data from Twitter, (ii) extracting
and pruning retweeter group, and (iii) labeling the retweeter group
as malicious or benign.

5.1 Data Collection
It has been observed that the cyber-criminal activities increase
during the high impact events [15]. Therefore, we select three polit-
ical events for this study; (1) UK General Election, 2017, (2) Indian

6Given a tweet twi , a retweet thread is the set of all the retweets of twi
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banknote demonetization, 2016, and (3) Delhi Legislative Assem-
bly Election, 2013. All these events created quite a buzz globally.
Note that this is the first work to use the Twitter data of Indian
banknote demonetization (2016) and Delhi Legislative Assembly
Election (2013). To collect tweets for each of the event, firstly, we
curated a list of trending hashtags and then collected the tweets
using Twitter’s streaming API. 7. We filtered out all the tweets that
were retweeted less than 3 times. Table 2 shows the descriptive
statistics of the Twitter data.

Table 2: Descriptive statistics of Twitter data

Event # Retweets # Retweeters

UK General Election 1,459,205 443,913
Indian Banknote
Demonetization 2,015,101 288,487

Delhi Legislative
Assembly Election 6,800,687 297,793

5.2 Extracting and Pruning Retweeter Groups
As described in Section 4, for each dataset, we create a weighted
undirected retweeter network, G(V ,E). We extract an initial set of
candidate groups by applying the Louvain community detection
algorithm. We prune the groups using Algorithm 1. After pruning,
we get a set of 1,017 retweeter groups including all the three datasets.
The number of members in a retweeter group varies from 3 to 402.
However, it is important to mention here, since there is no ground
truth available for the retweeter groups we could not evaluate the
detected groups.

5.3 Annotating Retweeter Groups
Annotating a retweeter group as benign or malicious requires a rig-
orous assessment than annotating an individual user. Every group
was labeled by exactly three people8. We provide Twitter Rules9 to
all the annotators as a reference. The inter-annotator agreement
based on Cronbach α for all the 1,017 groups is 0.73. If the value of
α is greater than 0.7, it implies high agreement between annotators
[27]. Finally, out of 1,017 groups, 690 groups are labeled as mali-
cious and 327 as benign. Table 3 shows the description of retweeter
groups for each dataset.

Table 3: Description of retweeter groups

Event # Groups # MRG # BRG
UK General Election 196 89 107
Indian Banknote
Demonetization 458 313 145

Delhi Legislative
Assembly Election 363 288 75

6 EXPERIMENTAL RESULTS
In this Section, we elaborate the results based on the classification
mechanism using the features described in Section 4.3. We also
present a baseline algorithm and compare our results with it. All
results are reported after 10-fold cross-validation.
7https://developer.twitter.com/en/docs/tweets/filter-realtime/overview
8The annotators were experts on social media, and their age ranged between 20 to 30.
9https://help.twitter.com/en/rules-and-policies/twitter-rules

6.1 Baseline Algorithm
Vo et al. [28] proposed Attractor+ to extract the retweeter groups
from a retweeter graph such that the members of each of group
have similar retweeting behavior. It measures various types of in-
teractions such as common interaction, direct linked interaction,
and exclusive interaction. It measures pair-wise screen name sim-
ilarity and the density of a connected component to determine if
further decomposition is required. It examines the characteristics
of malicious and legitimate retweeter groups and uses group-based
features to detect synchronized behavior and to build a model to
predict if a group is malicious. However, Attractor+ does not take
into consideration the cascading retweeting effects. Moreover, Mal-
ReG is efficient enough to detect groups that have used deliberate
techniques to evade detection.

6.2 Evaluation Metrics
In order to assess the efficacy of our classification method based on
the group-based features, we use twomeasures – accuracy and ROC-
AUC value. Accuracy can be defined as the ratio of the correctly
classified elements of either class to the total number of elements.
AUC measures the performance of a two-class classifier system as
its discrimination threshold is varied.

6.3 Comparative Evaluation
To evaluate MalReG to identify MRGs on Twitter, we use four classi-
fication methods viz. Logistic Regression, Random Forest, Gradient
Boosting, and Linear Discriminant Analysis. We present the results
of the classification task for the above mentioned algorithms. Since
our dataset is imbalanced, we downsample to the minority class.
The results from the four classification algorithms are described in
Table 4. Random Forest turns out to be the best classifier with both
types of features. We, therefore, use it as the default classifier in
our experiments.

Table 4: Results of individual classifiers with different fea-
ture sets.

Classifier Feature set Acc. (%) ROC AUC

Logistic Regression
Entropy
Temporal
Both

76.22
78.05
71.34

0.854
0.857
0.775

Random Forest
Entropy
Temporal
Both

74.39
81.54
82.88

0.824
0.884
0.921

Gradient Boosting
Entropy
Temporal
Both

76.83
80.49
78.05

0854
0.874
0.864

Linear Discriminant
Analysis

Entropy
Temporal
Both

73.17
79.88
81.10

0.843
0.854
0.884

Now, we compare the results of our classifier with the baseline
model. Table 5 shows the performance of our best classifier and the
baseline. MalReG outperforms the baseline model by 7.97% higher
ROC AUC value and 8.45% higher accuracy (relative).
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Table 5: Performance of MalReG and the baseline [28].

Method Accuracy (%) ROC AUC

Attractor+ 76.42 0.853
MalReG 82.88 0.921

7 ANALYSIS
In this Section, we discuss several interesting characteristics of
MRGs based on geographical location and temporal pattern.

7.1 Geographical Locations
We collect and study the geographical location of each group. We
observe that 20.43% of the MRGs have not mentioned the locations
in their profiles while for benign retweeter groups (BRG) this be-
havior is observed in only 3% of the total (Figure 4). Moreover, a
significant number of MRG have mentioned phoney locations; e.g.,
Follow me! and retweet New’s, #ButtBounceSec #Bucket,MSG Fan. We
also try to ascertain the locations of the MRG in our dataset. We
filter out all the phoney locations and plot the remaining ones on a
map (Figure 5). Since the political events considered in this work
happened in India and the UK, the density of the MRG is higher in
these regions. However, we can see that a large count of MRG are
indeed from the USA.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of groups with no location information                         
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Malicious
Other

Figure 4: Cumulative distribution function of the geograph-
ical location pattern of the retweeter group.

Figure 5: Geographical locations of themalicious retweeters.

7.2 Temporal Analysis
We analyze the temporal behavior of retweeter groups and discover
some interesting patterns. One of the key observations is that the
temporal behavior of each MRG is different. Therefore, we can-
not generalize the behavior of all such groups. However, in some
cases, there is a pattern within the group itself. For example, all
the members of the group might retweet together always (Figure
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Figure 6: Difference in the temporal behavior of the
retweeter groups. X axis represents the number of the
retweets. Each color indicates a different retweet thread
while Y axis is the time difference (in seconds) between ac-
tual tweet and retweet. (Best viewed in color)

6a). In our dataset, nearly 3.34% groups fall into this category and
are bots (detected by Botometer [10]); while in some instances, a
subset of members retweet together at the same time (Figure 6b) or
at different time (Figure 6c). However, the subsets may differ in size
and members. There are some groups that never retweet together
but with a same time difference, ∆ (Figure 6d). There are some
other complex cases in which the group follow different retweeting
technique for different retweet threads (Figure 6e). In contrast with
MRG, there are no such visible patterns in the behavior of BRG
(Figure 6f). It is worth noticing that in the examples given in Figure
6, the tweets were not retweeted as soon as they were posted. Some
MRGs start retweeting even after several days from the time of
creation of the post. This is possibly one of the techniques used
by MRGs to evade detection. However, this is not the case always.
There are some naive MRGs that start retweeting instantly. To ana-
lyze this, we take some MRGs and observe their retweeting threads
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for two days. Interestingly, for a specific group, 18.3% of retweets
are done with no time difference (TD). It is a clear indicator that
bots are utilized by MRGs to boost retweet count. We also find that
the TD for over 50% retweets is less than a minute (Figure 7) and
98.79% retweeting is done within a day. Such MRGs retweet rapidly
but their rate of retweeting drops within an hour. Another inter-
esting observation is the presence of identical MRGs in different
political events that took place in different continents at different
times. However, not every MRG remains intact over the years. Over
5.5% of MRGs re-form the group for different events. This seems
like an intentional step to escape detection.
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Figure 7: Cumulative distribution of TD between post cre-
ation time and retweeting time.

8 KEY FINDINGS
In this Section, we discuss some of the interesting and critical
findings of this work. Before that, we would like to mention that
here we only report the findings and refrain from mentioning the
exact Twitter handles involved in the malicious activities for the
obvious reasons.

We studied each MRG and discovered that in the context of the
politics, malicious retweeting takes place only for two reasons; to
promote one’s political affiliations and to downgrade opponents
reputation. To our surprise, we found that even the big-shot candi-
dates of the elections with verified Twitter handles use MRG for
campaigning. They use not only one but multiple MRGs at a time.
We also discover some characteristic differences among MRGs. A
set of MRGs are solely created for a political party. Let us call them
MRG Type-I (MT-I). A quick analysis of their Twitter timeline re-
veals that all the retweets are linked to one topic. Additionally, they
are often created at the time of the event. During our analysis, we
found an MRG of 52 members that were created within 2 days to
promote one of the candidates during elections. Whereas there are
another set of MRGs that retweet a variety of users and versatile
topics. Let us call them MRG Type-II (MT-II). We found another

striking difference between MT-I and MT-II. We observed that the
members of former often retweet each other whereas the members
of the latter never do that. A simple explanation of this behavior
is the common purpose of the MT-I. On the other hand, MT-II has
no real purpose. They just retweet on the basis of the deal between
the client and the service provider and keep retweeting for the new
set of clients. Another fascinating finding is the re-use of MT-I. We
discovered that a set of MRGs used in 2013 Delhi Election, were re-
used in 2015 Delhi Elections. We also spotted that over 7.2% MRGs
deleted all the tweets from previous elections and again became
active only at the time of the next elections. This could possibly
help them evade suspension and maintain their presence on the
network for a long time. Also, not only at the time of the elections
but even after being elected, politicians use MRGs to maintain their
popularity. We found Twitter handles of the Union Ministers being
retweeted by bots on a regular basis.

Twitter has a strict user-agreement and suspends the account
if found violating any policy. We observed that after some time t
many users from MRGs were suspended. They were not suspended
at once, but few at a time. This shows that Twitter suspension
mechanism works for individual users and not for groups. That is
why they are not able to detect such groups and suspend all the
members at once. Therefore, there is a need for algorithms like
MalReG to address this issue.

9 CONCLUSION
In this paper, we addressed a novel problem of detecting and analyz-
ing malicious retweeter groups present in the Twitter network.We
used three political event-based datasets; (i) Delhi Legislative As-
sembly Election (2013), (ii) Indian Banknote Demonetization (2016),
and (iii) UK General Election (2017). This is the first work to study
the Twitter dataset of 2013 Delhi Legislative Assembly Election
and 2016 Indian Banknote Demonetization. We created undirected
weighted retweeter network for each dataset. We applied the Lou-
vain community detection algorithm to extract an initial set of
candidate groups. We proposed a novel algorithm, called MalReG,
to detect and prune the candidate retweeter groups. We were able
to identify 1,017 retweeter groups in our datasets. We proposed a
set of 23 features – entropy-based features and temporal features,
to identify MRGs from all the identified 1,017 groups. We trained a
supervised model to detect MRG which achieved 0.921 AUC using
Random Forest. This is 7.97% higher than the baseline. Furthermore,
we performed geographical location based and temporal based anal-
ysis. We observed that 20.43% MRG have not publicly disclosed
their locations. Besides, there are a significant number of MRGs that
use phoney locations. In our temporal analysis, we discovered that
MRG use multiple techniques to evade detection, e.g., retweeting
not immediately after the original tweet was posted, using different
subgroups to retweet different tweets, etc. In the future, we would
like to model user behavior. Besides, we also intend to study the
behavior of such groups across different social media platforms.
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