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Abstract—Generative Adversarial Network (GAN) and its
variants have shown promising results in generating synthetic
data. However, the issues with GANs are: (i) the learning happens
around the training samples and the model often ends up
remembering them, consequently, compromising the privacy of
individual samples - this becomes a major concern when GANs
are applied to training data including personally identifiable
information, (ii) the randomness in generated data - there is
no control over the specificity of generated samples. To address
these issues, we propose imdpGAN - an information maximizing
differentially private Generative Adversarial Network. It is an
end-to-end framework that simultaneously achieves privacy pro-
tection and learns latent representations. With experiments on
MNIST dataset, we show that imdpGAN preserves the privacy
of the individual data point, and learns latent codes to control
the specificity of the generated samples. We perform binary
classification on digit pairs to show the utility versus privacy
trade-off. The classification accuracy decreases as we increase
privacy levels in the framework. We also experimentally show
that the training process of imdpGAN is stable but experience a
10-fold time increase as compared with other GAN frameworks.
Finally, we extend imdpGAN framework to CelebA dataset to
show how the privacy and learned representations can be used
to control the specificity of the output.

Index Terms—privacy-preserving learning, learning latent rep-
resentations, generative adversarial networks

I. INTRODUCTION

The world of today is moving towards more personalized
hardware and software, collecting sensitive information with
multiple Personally Identifiable Information (PII) attributes,
especially in domains like healthcare and Internet-of-Things
(IoT). Often times, deep learning techniques are used to solve
problems like detecting cancer patterns [1], diabetic retinopa-
thy [2], and so on. But deep learning typically needs huge
amount of data to achieve promising performance. However,
in domains like healthcare and IoT (with a lot of PII attributes),
it is impossible to get as much data as we want. Also, such
models learn finer details in training data and are shown
to compromise privacy of individuals. One such example is
successful recovery of individual samples from the training set,
by using hill climbing on output probabilities [3]. Therefore,
enforcing privacy while using deep learning techniques to
analyze such data has become an absolute necessity. In short
there are two challenges: the availability of a huge amount of
data and protecting the privacy of individual users.

Generative models have mitigated the data scarcity issue by
successfully generating patient records, sensor data, medical
records, tabular data [4]–[8]. Using the combination of game
theory and deep learning, GANs and its many other variants,
have demonstrated promising performance in modeling the

underlying data distribution [9]. These generative models can
generate high quality “fake” samples that are hard to differ-
entiate from the real ones [10]–[12]. Ideally, we can generate
these “fake” data samples to fit our needs and conduct the
desired analysis without privacy implications. Although, the
generation process is random and we cannot implicitly control
the variation in type or style of data we want to generate.

Privacy is being enforced on sensitive data using sev-
eral anonymization techniques. Some examples include k -
anonymity [13], l-diversity [14], t-closeness [15], which are
effective but vulnerable to de-anonymization attacks [16].
Since, these techniques do not solve the data scarcity issue,
researchers are trying to introduce privacy preservation in gen-
erative models [17]. The generation of “fake” samples is not
self-sufficient and is prone to disclosure of private information
about the individual training samples. The adversarial training
procedure with high model complexity often leads to learning
a distribution that just copies the training samples. Repeated
sampling from such distributions increases the chance of
recovering the training samples, hence, compromising the
privacy of the data. [18] demonstrated an inference attack that
uses generated samples to recreate the training samples.

Our contribution. With the above considerations, we try to
learn meaningful latent representations of variation, known
as latent codes, to have control over the specificity of the
generator output and use a private training procedure to pre-
serve the privacy of the individual training samples. Therefore,
in this paper, we present an amalgamation of techniques
from Information Maximizing Generative Adversarial Net-
work, (used to learn interpretable latent representations in an
unsupervised manner) and Differentially Private Generative
Adversarial Network (used to preserve privacy of the training
samples). The models are built using the machine learning
framework Pytorch [19].

We propose imdpGAN, a unified framework to:
1) Protect privacy of training samples. Protecting privacy

in images simply means that one will not be able to
recognize what is there in the image, i.e., the generator
will generate blurry images as we increase privacy
giving rise to a privacy versus accuracy trade-off. To
demonstrate the trade-off, we train a binary classifier
on digit pairs and find accuracy on corresponding test
samples (discussed in Section IV-B2). Results show that
as we increase privacy, the accuracy of binary classifier
decreases.

2) Control specificity of generated samples. There are two
kinds of variations in a data set: discrete and continuous.



Discrete variations are represented by different classes.
For example, MNIST dataset has 10 classes representing
one digit per class. Changing one class to another is a
discrete variation. The dataset has digits positioned at
varying angles and having different widths representing
continuous variation. We learn tunable latent codes to
control both types of variations.

We evaluate our proposed approach on MNIST dataset and
extend the imdpGAN framework to complex CelebA [20]
dataset. Results show that imdpGAN preserves privacy and
learns meaningful latent codes, which are varied to show class
and style variations while generating new images. Although,
the classification accuracy decreases as we increase privacy.

As privacy concerns are rising up there are multiple use
cases of our framework. For example, popular face recognition
systems (FRS) claim that they store only a representation
of users’ faces and not the actual image1. However, while
operating they require a complete face image as input to
auhenticate an user. The proposed framework, imdpGAN, can
be used to create anonymized face images that are closer to
the real face representations by learning meaningful latent
codes while generating private faces to preserve user’s privacy.
Although, there will be a trade-off between the accuracy of
the FRS and privacy of the face image, which can further be
adjusted by tunable parameters.

This paper proceeds as follows: we start with a review of the
background to explain the relevant work done on differential
privacy for deep learning and learning latent representations
in Section II. In Section III, after defining the privacy model
and mutual information maximization used to learn latent
codes, we introduce the imdpGAN framework followed by
the differential privacy guarantees. In Section IV, experiments
on MNIST dataset are described, followed by the extended
experiments on the CelebA dataset. Then we discuss the
shortcomings of imdpGAN framework in Section V and finally
conlcude in Section VI.

II. BACKGROUND

In this section, we provide a brief literature review of
relevant topics: differential privacy for deep learning and
learning disentangled representations.

A. Differential Privacy for Deep Learning

In the works that study differential privacy in deep learning,
[21] change the model’s training algorithm to make it private
by clipping and adding noise to the gradients. Authors also
propose a privacy accounting technique and introduce a mo-
ments accountant that computes the privacy costs. In [22], au-
thors use differential privacy with a parallel and asynchronous
training procedure for a multi-party privacy-preserving neural
network. It involves transmitting local parameters between
server and local task, which has a high risk of information

1Apple tweeted, “Face ID only stores a mathematical
representation of your face on iPhone, not a photo.”,
https://twitter.com/apple/status/1215224753449066497

leakage. [23] models a private convolutional deep belief net-
work by adding noise on its objective functions and an extra
softmax layer. [17] leverages the moments accountant and the
private training procedure from [21] to train a differentially
private generator. Authors add noise to the training procedure
and avoid a distributed framework to prevent any information
leaks. Advantages of DPGAN’s techniques over other methods
made them a salient choice for privacy preservation in the
proposed framework [17].

B. Learning Latent Representations

Learning latent representations in a supervised, unsuper-
vised, and semi-supervised manner is attempted by a lot of
studies. Works that use supervision (labeled data): bilinear
models [24] to separate style and content; multi-view percep-
tron [25] to separate face identity from the viewpoint, train a
subset of representation to match some supplied label using
supervised learning. Then there are semi-supervised methods
developed to eliminate the need for labels of variations.
To disentangle representations, [26] proposes a higher-order
Boltzmann machine, which uses a clamping technique. [27]
uses the clamping idea with variational autoencoders (VAEs)
to learn codes that can represent pose and light in 3D rendered
images. The model proposed by [28] can learn a representation
that supports basic linear algebra on code space using GANs
[9]. InfoGAN [29] learns disentangled representations with no
supervision of any kind. Unlike hossRBM [30], which can
learn only the discrete latent factors and has high complex-
ity, InfoGAN can learn both discrete and continuous latent
representations and can scale to complicated data. We use
the techniques from InfoGAN to learn factors of variation,
called the latent codes, to control specificity in the proposed
framework as it is easy to incorporate along with the privacy
framework.

III. METHODOLOGY

We unify the techniques to stabilize the GAN training [31]
with techniques to make a differentially private generator
[17], and learning latent representations [29]. In this paper,
we propose an information maximizing differentially private
Generative Adversarial Network (imdpGAN) that preserves
privacy of the training samples and learns latent codes to
control specificity of generated output. We discuss the privacy
model in Section III-A. Then we discuss the mutual informa-
tion regularization used to learn factors of variation from the
data in Section III-B. Then we explain imdpGAN framework,
the objective function, and the private training procedure used
to introduce differential privacy in Section III-C. Finally, we
explain the privacy guarantees of imdpGAN in Section III-D.

A. Differential Privacy

We used differential privacy, as defined by [32], as the
privacy model for imdpGAN framework:

Definition 1. (Differential Privacy, DP) A randomized algo-
rithm AP is (ε,δ )-differentially private if for any two databases



D and D′ differing in a single point and for any subset of
outputs S:

P(AP(D) ∈ S) ≤ eε .P(AP(D′) ∈ S) + δ

where AP(D) and AP(D′) are the outputs of the algorithm
for input databases D and D′, respectively, and P is the
randomness of the noise in the algorithm.

[17] shows that definition in Theorem 1 is equivalent to:∣∣∣∣log
P(AP(D) = s)
P(AP(D′) = s)

∣∣∣∣ ≤ ε

with probability 1− δ for every s ∈ out put, where ε is the
privacy level. A small ε value indicates the AP’s output
probabilities differ by a small value at s indicating high
fluctuations of ground truth outputs and hence high privacy.
On the other hand, ε = ∞ means no noise or simply the non-
private case.

According to Definition 1, and the above intuition, the ε

values represent what level of privacy is protected of individual
sample from the dataset. For example, when collecting sensi-
tive information for some experiment, sometimes an individual
does not want an observer to know their involvement in
the experiment. This is because then the observer can harm
that individual’s interest. Preserving this involvement would
ensure the protection of individual’s privacy. It will also make
sure that the result will not affect too much if we replace
this individual with someone else, which is what we plan to
achieve using differential privacy.

B. Mutual Information Regularization

In traditional GANs [9], the generator uses a simple input
noise vector z and imposes no constraints on how the noise
is used. As a result, noise is used in a highly entangled way
and prevents from learning mappings of z to semantic features
in the data. The results from the generator of such GANs is,
therefore, highly random. However, many datasets decompose
into a set of meaningful factors of variation. For example, the
MNIST dataset has ten classes, and within the dataset, the
thickness and angle of the digits vary. Ideally, a model should
automatically learn a discrete random variable to represent

the classes and a continuous random variable to represent the
thickness and angle properties for such dataset.

To target the structured semantic features of data distribu-
tion, [29] decomposes the input noise vector into two parts:
the noise vector z and the latent code c. The output of the
generator becomes G(z,c). In traditional training, the generator
can freely ignore the additional latent code, c. Therefore,
to introduce dependency between c and G(z,c), a mutual
information term, I(c;G(z,c)) is used as a regularization term
given as:

I(c;G(z,c)) = H(c)−H(c|G(z,c))

= H(G(z,c))−H(G(z,c)|c)
(1)

where H(c|G(z,c)), H(G(z,c)|c) are conditional entropies
and H(c), H(G(z,c)) are entropies.

The regularization ensures high mutual information between
latent code c and generator output G(z,c). It helps the model
learn meaningful latent representations. The mutual infor-
mation term maximizes the dependency between the latent
codes and generator output. If c and G(z,c) are independent,
then the term I(c;G(z,c)) becomes zero, i.e., one variable
does not reveal anything about the other. In contrast, to
maximize I(c;G(z,c)), we relate c and G(z,c) using a non-
linear mapping. In the framework, the non-linear mapping is
realized using a neural network, Q. The term I(c;G(z,c)) is
hard to maximize directly, therefore, we define a variational
lower bound, LI(G,Q) to maximize the mutual information
[33].

C. imdpGAN framework

We started from a basic GAN architecture but replaced the
K-L, J-S divergence with Wasserstein distance as it makes the
training stable [31]. We passed an additional input, i.e. the
latent code, to the generator and added a mutual information
regularization term to introduce dependency between the latent
code and the generator output to learn meaningful latent
representations.

1) Objective Function: As shown in Figure 1, we passed
a noise vector z and a latent code vector c as input to the
generator, G. The output from the generator, G(z,c), and the

Fig. 1. imdpGAN Architecture: addition of the private training procedure, the mutual information regularization and the Wasserstein distance.



real samples, x, were given to the discriminator, D. Recall that
the objective function of a traditional GAN is:

min
G

max
D

V (D,G) = Ex∼Pdata [logD(x)]

+ Ez∼Pnoise [log(1−D(G(z)))]
(2)

When we use Wasserstein distance [31] instead of the K-L,
J-S divergence, the objective function in equation 2 changes
as:

min
G

max
w∈W

Ex∼Pdata [ fw(x)] − Ez∼Pnoise [ fw(G(z))] (3)

where functions fw(x)w∈W are K-Lipschitz, which is a
condition required to solve equation 3.

Further, when we incorporated the mutual information reg-
ularization term and the auxiliary distribution Q, the objective
function in equation 3 becomes:

Vimd pGAN( fw,G,Q) = min
G,Q

max
w∈W

Ex∼Pdata [ fw(x)]

− Ez∼Pnoise [ fw(G(z))]−λLI(G,Q)
(4)

where LI(G,Q) is variational lower bound used to optimize
the mutual information term. λ is an extra hyperparameter
used to scale the mutual information according to the GAN
objectives.

From Figure 1, D is trained using the private procedure
explained in next section. Q is trained in a manner to maximize
the mutual information. The learned latent code, c′, can be
used to control the specificity of the output.

2) Private training Procedure: [21] describes a differen-
tially private training procedure for stochastic gradient descent
that involves adding noise to the gradients and clipping the
parameters of the discriminator. [17] extended the procedure to
DPGANs. We use the extended version to formulate a private
training procedure. The private procedure used in imdpGAN
is summarized in Algorithm 1. Adding noise to each gradient
step ensures local differential privacy. We get a differentially
private generator at the end of the training.

D. Privacy Guarantees of imdpGAN

To prove the privacy guarantees of imdpGAN, we show that
the output of generator (through parameters of discriminator,
wd) guarantees differential privacy with respect to the training
samples. Therefore, no generated output from G will compro-
mise the privacy of training points. We can compute the final
privacy value, ε , using the moments accountant mechanism.

Assume two generator iterations t1 and t2. By treating the
parameters of discriminator, wd at t1 as one point in outer
space, it can be seen that the procedure to update wd from
Algorithm 1 for fixed t2 is just the algorithm Ap in Definition
1. So, we have Ap(D) =M(aux,D), where aux is just auxiliary
input, which refers to wd at iteration t1. On combining with
Definition 1, the privacy loss at point o can be defined as:

Definition 2. Privacy Loss

c(o;M,aux,D,D′), log
Pr[M(aux,D) = o]
Pr[M(aux,D′) = o]

Algorithm 1: Private Training Procedure
Input: Noise - z, real samples - x, parameter clip

constant - cp, batch size - m, total number of
training samples - M, number of generator and
discriminator iterations - ng and nd , weights of
generator and discriminator - wg and wd , noise
- N, noise scale - σ .

Output: Differentially private Generator
for Generator Iterations,ng do

for Discriminator Iterations,nd do
Sample

{
z(i)
}m

i=1
∼ p(z) a batch of samples ;

Sample
{

x(i)
}m

i=1
∼ pdata(x) a batch of real

data points ;
For each sample i, compute gradient of WGAN
- gwd (x

(i),z(i)) ;
Add noise to the gradient ;
gwd ← gwd +N(0,σ2

n c2
pI) ;

Update discriminator weights, wd ;
Clip the parameters ;
wd ← clip(wd ,−cp,+cp) ;

end
Sample

{
z(i)
}m

i=1
∼ p(z) another batch of samples ;

Update generator gradient, gwg and weights, wg ;
end
return Generator ;

The state of discriminator weights is updated by sequentially
applying differentially private mechanisms. This is an instance
of adaptive mechanism modelled by letting aux of kth mecha-
nism, Mk, to be the output of all previous mechanisms. For a
given mechanism, M, we define λ th moment αM(λ ;aux,D,D′)
as the log of moment generating function evaluated at λ :

Definition 3. Log moment generating function

αM(λ ;aux,D,D′), logEo∼M(aux,D)[exp(λC(M,aux,D,D′))]

The worst case scenario of moment generating function,
known as the moments accountant, can be written as:

Definition 4. Moments accountant

αM(λ ), max
aux,D,D′

αM(λ ;aux,D,D′)

The definition of moments accountant has properties as
explained in [21] (Theorem 2): i) composability - the overall
moments accountant can be bounded by the sum of moments
accountant in each iteration, i.e, privacy is proportional to
iterations, ii) the tail bound can also be applied in privacy
guarantee.

We need gwd (x
(i),z(i)) to be bounded (by clipping the norm

and adding noise according to this bound in Algorithm 1) to
use the moments accountant. [17] (Lemma 3.5) proposes that
by only clipping on wd , we can automatically guarantee a
bound on gwd (x

(i),z(i)). The lemma is given as:



Definition 5. Under the condition of Algorithm 1, assume
that the activation function of the discriminator has a
bounded range and bounded derivatives everywhere: σ(.) ≤
Bσ and σ(.) ≤ Bσ ′ , and every data point ||x|| ≤ Bx, then
||gwd (x

(i),z(i))|| ≤ cp for some constant cp.

[17] proves that the Definition 5 holds true if the following
condition on derivatives of objective function is met:

||gwd (x
(i),z(i))||=

∣∣∣∣∣∣∇w

(
fw(x(i))− fw(g(z(i)))

)∣∣∣∣∣∣
≤ 2

∣∣∣∣∣∣∇w fw(x(i))
∣∣∣∣∣∣ (5)

The derivative of our objective function, defined in Equation
4 is: ∣∣∣∣∣∣∇w

(
fw(x(i))− fw(g(z(i)))−λLI(g(z(i),c(i)),Q)

)∣∣∣∣∣∣
Since the additional mutual information regularization term,

λLI(g(z(i),c(i)),Q) is always positive, the condition in Equa-
tion 5 holds true for this objective function as well. Therefore,
in Algorithm 1, we only clip wd to guarantee a bound on
gwd (x

(i),z(i)).
Using Definition 5, [17] (Lemma 1.) proves the following

Definition 6. The definition holds true for our objective func-
tion as well,and therefore, guarantees differential privacy for
discriminator training procedure.

Definition 6. Given the sampling probability q = m
M with M

as total number of samples and m as batch size, the number
of discriminator iterations in each inner loop nd and privacy
violation δ , for any positive ε , the parameters of discriminator
guarantee (ε,δ )-differential privacy with respect to all the
data points used in that outer loop, generator Iterations,ng
if we choose:

σ =
2q
√

nd log 1
δ

ε
(6)

Equation 6 quantifies the relationship between privacy level
ε and noise level σ . Tuning the noise level is required to have
a reasonable privacy level. Note that for a fixed value of σ ,
larger q will lead to less privacy guarantee because when more
samples are involved less privacy is assigned on each of them.
Also, as the iterations (nd) increase less privacy is guaranteed
because the training reveals more information about the data
(specifically, more accurate gradients). Therefore, there is a
need to choose a reasonable privacy level.

To achieve different levels of privacy, we use a noise
distribution with zero mean and varying standard deviation.

IV. EXPERIMENTS

A. Experimental Setup

The training of traditional GANs [9] has problems with
vanishing gradient and stability. [31] proposed the use of
Wasserstein distance between the generator and the data distri-
bution replacing the loss function such that a non-zero gradient
always exists. We used the same network architecture given
by [29]. However, we added the private training procedure and

used Wasserstein distance for training. Note that the mutual
information regularization was already available with the base
architecture.

1) Introducing Privacy : We make the training procedure
private by adding noise to discriminator gradients and clipping
parameters of the discriminator as explained in Algorithm 1.
Instead of adding noise on the final output directly (global
differential privacy), we focused on preserving privacy during
the training (local differential privacy) as it generally results
in high utility. We used Gaussian noise with zero mean (no
bias) and varying standard deviation, σ . Gaussian noise is a
popular choice for privacy preservation [34] and usually results
in (ε,δ )-differential privacy. From equation 6, σ and ε are
inversely corelated. Therefore, more noise results in smaller
ε values. The batch size for all experiments is 64, and the
number of samples is 60,000 and 202,599 for MNIST and
CelebA, respectively. We set the sampling probability to q =
64/number o f samples, the clip constant (cp) to 0.01 such
that weights of discriminator are clipped back to [−cp,cp],
privacy violation (δ ) to 10−5, and number of discriminator
iterations (nd) to 5.

2) Learning Latent Representations : The term
I(c;G(z,c)), from equation 1, is hard to maximize directly.
Therefore, we defined an auxiliary distribution, Q, and used
variational information maximizing term, LI(G,Q) [33] to
maximize the mutual information. In imdpGAN, we formu-
lated Q as a neural network. Q and the discriminator share
all convolutional layers. To learn latent representations, we
modeled discrete codes with uniform categorical distribution,
Cat(K = k, p = k/100) that model the discontinuous variation
in data, i.e., classes. We also modeled continuous codes with
a uniform continuous distribution, Uni f (−1,1) that capture
continuous variations in data, like writing style (width) in
MNIST, color variation in CelebA, etc.

B. imdpGAN Generation

In this experiment, we study the effect of noise2 on the
generator samples. We use MNIST data with 60,000 training
samples to train imdpGAN. The experiment is run several
times with varying privacy levels, 1 ≤ ε ≤ 10. The samples
generated with ε ≥ 10 looked similar to the samples generated
with ε = ∞. To show the results we pick three ε values, 1.22,
2.2 and 5.5 as the samples generated with these values looked
significantly different.

We wanted to see the output change as we make changes
to the latent codes. The experiment is performed on MNIST
dataset, with 60,000 training samples, 10 classes, and continu-
ous variations like the rotation and width of the digit. We use a
discrete-valued latent code, c1∼Cat(K = 10, p = 0.1), which
models the discontinuous variation in data, i.e., classes and
a continuous latent code, c2 ∼ Uni f (−1,1), which captures
continuous variation in data such as the writing style. The
generator is differentially private, so the samples generated

2Noise here refers to the Gaussian noise we add to the training procedure
to introduce local differential privacy and not the noise vector z we pass as
input to the generator.



(a) ε = ∞ (b) ε = 5.5

(c) ε = 2.2 (d) ε = 1.22

Fig. 2. Varying latent codes to generate images on MNIST dataset. In all the images, the categorical discrete latent code is varied from left to right. For
different ε values the change in the discrete latent code can be seen as the class of generated image is changing. The continuous latent code c2 is varied from
-1 to +1 (top to bottom). A change in width of the generated samples can be observed with varying c2.

(a) ε = ∞ (b) ε = 5.5 (c) ε = 2.2 (d) ε = 1.22

Fig. 3. Wasserstein distance versus generator iterations on MNIST dataset. As ε values decrease, curves exhibit more fluctuations (due to more noise being
added) and larger variance but converge proving training stability.

with the model trained with smaller ε values (more noise
added during training) are highly distorted. Due to distortion,
the specificity in such images is not clearly visible. Although
the learned representations are evident in at least one or more
columns, as shown in Figure 2.

1) Convergence of network: The experiment is performed
on MNIST dataset with 60,000 training samples to see the
behavior of Wasserstein distance. We plot the Wasserstein
distance versus generator iterations for every batch in MNIST
dataset. The min-max training causes some fluctuations itself;
therefore, to perform this experiment, only the amount of
noise is changed, keeping the rest of the parameters fixed. As
shown in Figure 3, the Wasserstein distance decreases during
the training and converges in the end. We observed that a
smaller ε , indicating more noise, leads to more fluctuations
and larger variance. The trend is visible in the later half of the
plot. Intuitively, more noise should result in more fluctuations
and hence, blurry images, which shows the experiment’s
consistency with the results of the previous experiment.

2) Binary Classification on Digit Pairs: In this experi-
ment, we use a binary classification task to demonstrate the

trade-off between utility and privacy of the framework. The
classification acts as a quantitative measure to evaluate the
utility of proposed framework. Since the images are blurred
due to private training, we choose the classes which are still
somewhat recognizable from all cases of ε . We make pairs
of these, viz. 3-8, 9-1, to perform binary classification. We
choose 2,000 samples for each class for the no noise case and
for ε = 5.5,2.2,1.22. Then we build binary classifiers using
the 4,000 samples (2,000 of each class) for class pairs 3-8 and
9-1. We perform the training for 100 epochs and report the
accuracy of built classifiers on MNIST’s test set. The results
are shown in Figure 4. As expected, as the privacy level (ε)
increases, the accuracy of the classifiers decrease.

3) Mutual Information Maximization: The experiment
demonstrates the changes in the mutual information, between
the generator and the latent codes, with changing privacy
levels. We trained imdpGAN on MNIST dataset with 60,000
training samples. We defined the latent code using a cate-
gorical uniform distribution, c ∼ Cat(K = 10, p = 0.1). We
trained imdpGAN with different privacy levels. As shown in
Figure 5, as we add more noise (decreasing ε values), the



Fig. 4. Binary Classification task on MNIST test set using samples generated
with different ε values as training set. From left to right, we use generated data
ε = ∞ (without noise), and generated data with values ε = 5.5,2.2,1.22 (with
noise). We can see as more noise is added, i.e., more privacy is introduced, the
accuracy of classifier decreases, which indicates a trade-off between choosing
a promising privacy level and an acceptable accuracy threshold.

mutual information gain decreases. The pattern demonstrates
that the lower bound, LI , is quickly maximized but due to
the addition of noise at each iteration, its value decreases.
Therefore, noise must be chosen very carefully to maintain a
good value of LI , which ensures the learning of meaningful
latent representations.

Fig. 5. The Lower Bound, LI , versus Iterations on MNIST dataset. The lower
bound decreases with decreasing ε values. The plot demonstrates that ε values
must be chosen carefully to learn meaningful latent representations.

C. E3: Results on CelebA dataset

We extended the experiments on CelebA dataset, which
includes 202,599 celebrity face images with variations like
pose and brightness. The experiment is performed several
times with different values of ε . We show the generated
samples for ε = 5.5 as the generated images are lesser likely
to be visually identifiable. As shown in Figure 6, varying
latent codes on CelebA dataset can generate images with
varying faces, hair styles, and brightness. We used a uniform
categorical latent code to capture variations in the face, and
a uniform continuous latent code to capture style variations.
Figure 6(a) shows the variation in continuous code brings
change in the hairstyles of generated images. In Figure 6(b),

the continuous code captures the brightness of generated
images, and varying it allows us to generate images with
specific brightness.

(a) Changing hair style

(b) Changing brightness

Fig. 6. Varying latent codes on CelebA dataset. The images in both sub-figures
are generated using a fixed, ε = 5.5. In both sub-figures, the discrete latent
code is varied from top to bottom to generate a new face. In (a), the continuous
latent code is varied from -1 to +1 (left to right) and shows variation in the
hairstyle of generated images. In (b), the continuous latent code is varied from
-1 to +1 (left to right) and shows variation in the brightness of generated
images.

V. DISCUSSION

imdpGAN framework can alleviate problems faced while
working with imbalanced data by controlling the specificity
of the generator output. For example, if the number of in-
stances belonging to some class in a dataset is small, we can
selectively generate samples (using the representative latent
code) for that class to increase its samples. But the problem
is, imdpGAN framework itself needs a sufficient amount of
samples to learn the distributions before generating good
quality data. Therefore, to solve the class imbalance problem
using imdpGAN, we must have adequate samples belonging
to the class having less number of samples in the dataset.

[29] shows that mutual information regularization only adds
a negligible complexity to GAN training. Therefore, to see
how adding the private procedure effects the training time,
we observed the training time without the private procedure,
and with the private procedure for different noise levels. As
shown in Figure 7, the private training procedure introduces an
approximately 10-fold increase in training time. Without the
private procedure, the model takes 955 seconds for 50 epochs
to train. On the other hand, with the private procedure added



Fig. 7. The time taken by the model with and without the private training pro-
cedure. Training time increases 10-fold with the private procedure. However,
it is not affected by changing values of ε .

to the training, the same model takes 8,850 seconds for the
same number of epochs. Note that the training time does not
change much with varying noise levels (ε = ∞ is the no noise
case).

VI. CONCLUSION

In this paper, we have proposed an Information maxi-
mizing Differentially Private Generative Adversarial Network
(imdpGAN), a unified framework to simultaneously preserve
privacy and learn latent representations. imdpGAN preserves
privacy and successfully learns meaningful latent representa-
tions. However, the private procedure added to imdpGAN’s
training results in a 10-fold increase in the training time.

For future work, the core idea of using the private pro-
cedure and mutual information to learn latent representation
can be applied to other datasets, which do not necessarily
contain images. imdpGAN shows promising results on the
image datasets: MNIST and CelebA. The architecture of the
Generator and the Discriminator can be changed to extend
imdpGAN to other data types.
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