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on social media

Causal inference 
on social data

Addiction detection 

Trend analysis 

Forecast drug overdose, 
abuse

Simulating RCT using 
online social data 

Applications have been 
shown in weight loss, 
alcohol consumption, 
content quality 

Self-harm to improve 
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80%
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(84% in user study)

54%

Users Posts Comments

84%

indicate drug consumption indicate drug consumption
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Treatment Group

Control Group

All Pairs Propensity 
matching

Balance 
Confounders

Treatment 
Effect

First and continues positive  
feedback increased drug  
consumption by upto 2x

User belief 
Scores  2.2/5 

Comments 2.5/5 
(Little to Moderate impact) 

“Illusion of control” 
(Lyng 1990)
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Seeking support in during phase increases longevity

Giving support in early phase increases longevity

Receiving support has no effect on longevity
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📈 Past trends of 3 months and 1 year 
➗ Ratio of RTO/Total orders 

👤 User 
📦 Product 
🏭 Seller 
🗃 Product category 
📍 Pincode 
🛣 Street name 
🌆 City 
⏰ Hour of the day 
🗓 Day of the week 
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Features - Social

Is student
Is direct link available
# of jobs
# of educations
Years of jobs
Years of education
# of skills
# of connections
# of followers
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Goodness =
P

P + N
−

P − PPred and True

P + N − PPred

× 104

FPR =
PPred − PPred and True

PPred
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Challenges & Future Scope

Data collection Data validation Modeling

Remove review intersection 
dependency 

Scale crawling setup 
(potentially via VMs) 

Collect data from platforms 
apart from LinkedIn 

Heuristics for edge 
cases e.g. Chennai vs 
Madras 

Add other modalities of 
validation 

Language 
Images 
Network behaviour 

More features 

Finetuned language features 

Nonlinear dimensionality 
reduction (UMAP) 

Categorical embeddings 

Pre-trained tasks and vectors 

Transfer learning to other 
tasks 
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Behavioural Momentum Theory 
(Dai et al. 2011)

What is the extent of users trying to 
pursue simultaneous goals? How 
does it affect the success rate? 
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Habit Stacking 
(Fogg 2019)



Research Questions

What is the prevalence and success rate of 
commitments started on such dates? 

What is the extent of accountability methods and their 
effect on success rate? 

Does monetary stake affect the probability of success in 
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simultaneous goals? How does it affect the success rate? 
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•📺 TV News 

•👤 Face Generation 

•⚔ Capitol Riots 

•🤡 Trolling 

•🙂🙁 Sentiment Analysis 

•😡🥰 Emotional Classification

6 
Peer Reviewed 

(KDD, WWW, BigMM etc)

6 
Technical Reports 

Book Chapters
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