
LLM Vocabulary Compression for Low-Compute
Environments

Sreeram Vennam
IIIT Hyderabad

sreeram.vennam@students.iiit.ac.in

Anish Joishy
IIIT Hyderabad

anish.joishy@research.iiit.ac.in

Ponnurangam Kumaraguru
IIIT Hyderabad

pk.guru@iiit.ac.in

Abstract

We present a method to compress the final linear layer of language models, re-
ducing memory usage by up to 3.4x without significant performance loss. By
grouping tokens based on Byte Pair Encoding (BPE) merges, we prevent materi-
alisation of the memory-intensive logits tensor. Evaluations on the TinyStories
dataset show that our method performs on par with GPT-Neo and GPT2 while
significantly improving throughput by up to 3x, making it suitable for low-compute
environments.

1 Introduction

The global trend in machine learning is increasingly focused on scaling with larger numbers of GPUs
Musk (2024); Morgan (2024). In contrast, many researchers operate in low-compute environments, a
disparity often referred to as the compute divide Besiroglu et al. (2024). Our work seeks to address
this gap by optimising the utilisation of compute-constrained environments. Specifically, we target
the vocabulary layer in language models. During training or fine-tuning, it becomes necessary
to materialise a tensor of shape [batch_size, sequence_length, vocab_size]. Even with
conservative values for the batch size and sequence length, such as a tensor of shape [32, 512,
50000], this alone consumes approximately 3.32 GB of memory. For the remainder of this text, we
will refer to this tensor as the logits tensor.

Although no research has directly addressed this specific tensor, several studies have acknowledged the
vocabulary layer as a computational bottleneck and have proposed methods to reduce its computational
complexity Jozefowicz et al. (2016). One of the earliest efforts was by Goodman (2001), who
introduced a class-based approach by organising tokens into classes and training two separate models:
one for predicting the class and another for predicting the actual token. Later, Joulin et al. (2017)
proposed a hierarchical organisation of tokens based on their frequency, although computing these
frequencies remains computationally expensive. Building on this, Baevski and Auli (2018) extended
the hierarchical approach to allow for variable capacity inputs. However, a comprehensive analysis of
memory usage in this context is still lacking.

In this work, we propose a method to reduce the memory footprint of the final embedding layer
by grouping tokens and predicting the final token in a two-step process effectively compressing
the vocabulary layer. Our approach differentiates from the work of Joulin et al. (2017); Goodman
(2001) through two key innovations. First, rather than grouping tokens based on their frequency—a
process that necessitates significant pre-processing—we group tokens according to the ordering of
BPE Sennrich et al. (2016) merges, which inherently exploits token occurrence patterns. Second,
we observe that it is unnecessary to use two separate models to predict the group and the token.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Instead, simple linear layers over the hidden states can simultaneously learn both the group and
token predictors. We empirically demonstrate that our modification does not negatively impact model
performance.

2 Methodology

2.1 Problem Formulation

Our goal is to produce a mapping from the hidden state h to a probability distribution over the entire
vocabulary. The resulting probability distribution is used with top_k, sampling and other techniques
during decoding.

P (v | h) = Softmax(Wh+ b)

Where P (v | h) is the probability distribution over the vocabulary given the hidden state h, W is the
large weight matrix, and b is the bias vector.

Producing this distribution for every single token leads to materialising the logits tensor, therefore,
to avoid this, during training, we want to materialise only a subset of this distribution, and during
inference, we only need to produce this distribution for the last hidden state which is used to predict
the next token in combination with techniques such as top_k and sampling.

2.2 Definitions and Notation

Grouping First, we divide the vocabulary into G groups based on their token indices. Each group
contains tokens from consecutive index ranges. Let Sg and Eg be the starting index and ending index
respectively for tokens part of group g = 0, 1, . . . , G− 1.

Sg =

⌊
|v| · g
G

⌋
, Eg =

⌊
|v| · (g + 1)

G

⌋
− 1

For example, if we only had two groups; group 0 contains tokens from 0 to ⌊|v|/2⌋ − 1 and group
1 contains tokens from ⌊|v|/2⌋ to |v| − 1. This partitioning implicitly makes use of BPE merging
order, which is representative of the frequency of tokens.

Grouping Tensor We define weight block Wg ∈ Rd×G where d is the hidden dimension of the
transformer. This tensor is used to predict the group index from a hidden state.

Scale and Shift Tensors We define a 3 weight blocks, Ws ∈ Rd×S , WPg ∈ RS , and WQg ∈ RS

where S is the number of tokens per group and g = 0, 1, . . . , G− 1.

Ws ∈ Rd×S it the shared linear tensor that is applied for all groups. WPg ∈ RS is the scaling linear
tensor specific to the group g. WQg ∈ RS is the shifting linear tensor specific to the group g. These
tensors are used to predict the exact token from the hidden state, once the group has been identified.
We detail the operation in Section 2.3.1.

2.3 Method

Our method works differently during training vs inference since these modes of operation have
different requirements. Training requires extensive parallelism but our knowledge of the labels tell
us what group to choose. Inference requires the complete probability distribution over the entire
vocabulary, but it requires it only for the last hidden state.

2.3.1 Training

During training, since we know the labels apriori, we already know what group each hidden state
belongs to. Therefore, we only need to materialise the distribution for a token within a group, which
is of size S ≤ v.

2

We also train the grouping tensor during training, therefore, we have two objectives we are trying to
minimise. The grouping tensor loss Lgroup coming from predicting which group each hidden state
belongs to, and the token loss Ltoken coming from predicting tokens within a group.

Assume h ∈ Rd is a single hidden state of dimension d. We know that this hidden state belongs to
group g and token t within group g. First, we apply the grouping tensor on h and calculate Lgroup.
To calculate Ltoken, we first apply the linear block shared across groups Ws on h. We then apply the
scale and shift tensors for group g which becomes WPg ◦ (Ws · h) +WQg . This tensor is then used
against the label token t to produce Ltoken. We refer to this scale and shift transformation as "applying
linears". The final objective we minimise is the sum of both losses.

Lgroup = CrossEntropy(Wg · h, g),

Ltoken = CrossEntropy(WPg ◦ (Ws · h) +WQg, t)

L = Lgroup + Ltoken,

Note that this transformation is not linear due to grouping, it forms a deeper network. An implemen-
tation for "applying linears" can be found in the Appendix A.

2.3.2 Inference

In the inference phase, the model generates the probability distribution over the entire vocabulary v
from the last hidden state. We construct this distribution by using the token probability conditioning
on the group probability.

Assume h ∈ Rd is a single hidden state of dimension d. We know that this hidden state belongs to
group g and token t within group g. First, we apply the grouping tensor and Softmax to obtain a
distribution over the groups for h. Then, for each group, we compute the token probability distribution
by "applying linears" 2.3.1 and Softmax on h. We then multiply the token probabilities with their
respective group probability. Finally we concatenate these distributions and the result is used in next
token prediction.

Pgroup ⇒ Softmax(Wg · h, g),

Ptoken|g ⇒ Softmax(WPg ◦ (Ws · h) +WQg, t)

Pvocab ⇒ Concat
(
Pgroup[0] · Ptoken|0(t),Pgroup[1] · Ptoken|1(t), . . . ,Pgroup[G− 1] · Ptoken|G−1(t)

)
Where Pgroup refers the the probability distribution over the groups, Ptoken|g refers to the probability
distribution over tokens within the group g, and Pvocab refers to the probability distribution over the
entire vocabulary.

2.4 Optimal Memory Configuration

From the above description of our method, instead of materialising the logits ten-
sor, we materialise [batch_size, sequence_length, group_size] and [batch_size,
sequence_length, num_groups]. Let b be the batch size, s be the sequence length, S be the
group size and G be the number of groups. We wish to minimise the memory usage of the combined
tensors [b, s, S] and [b, s,G] under the condition that G = v

S . It is clear that this minima is achieved
when S = G =

√
v, that is, we have

√
v groups each containing

√
v tokens.

3

3 Performance

3.1 Language Modelling

We test our approach on language modelling a task infamous for being infeasible on low compute
devices. We apply our method on the GPT-2 architecture and compare memory usage against the
base GPT-2 model and the GPT-Neo model.

Dataset We train on the TinyStories Eldan and Li (2023) dataset, the standard for testing small
language models.

Metrics & Evaluation We adopt the LLM evaluation metrics from TinyStories. This includes
evaluating grammar, creativity, consistency, plot coherency and the estimated age of the writer.

Setting We replicate the settings used in TinyStories, we use batch size 32 with sequence length
512. GPT-Neo uses a window size of 256. We don’t however use a trained tokenizer since the
vocabulary size was relatively small and isn’t much of a bottleneck.

We train 3 different sized models based on hidden size per architecture to extensively evaluate our
approach. Every model uses 8 layers and 8 heads per layer. All models were trained for a single
epoch over the entire dataset. This is because we had limited access to compute and training multiple
models for several epochs would take months for the compute we had available.

Table 1: Comparing Model Performance on TinyStories
Model Hidden Size Grammar Creativity Consistency Plot Age

GPT-2
128 3.8 4.22 3.7 2.95 4.55
256 4.65 3.6 6.05 4.82 4.75
512 5.82 3.9 7.15 5.75 4.9

GPT-Neo
128 3.7 3.72 4.05 2.97 4.5
256 4.77 4.1 5.85 4.57 4.65
512 5.15 4.17 6.65 5.22 5.0

Ours
128 3.53 3.62 4.5 3.25 4.55
256 4.85 4.3 5.87 4.47 4.7
512 5.15 4.025 6.7 5.475 4.96

Results Table 1 contains the results for the models we trained. First we see that model performance
does increase with model size validating our setup. Our approach performs on par with GPT-Neo and
GPT-2. These results strongly suggest that our approach is able to compress the vocabulary layer
without significant loss in performance.

3.2 Multiclass Classification

For robustness, we evaluate our approach on a task disconnected from language modelling, image
classification. Here grouping is arbitrary, but even in such conditions, our approach works surprisingly
well. The implementation details for this experiment including the architecture used can be found in
the Appendix B.

Dataset We generate 100× 100 images with different attributes and style, each such combination
of attributes is a label. We produce a synthetic dataset since real world datasets don’t often have a
large number of labels. Our dataset has 184320 unique labels. Some examples from the dataset are
presented in Figure 1. A comprehensive description of the dataset is present in the Appendix B.1.

Results Figure 2 plots validation accuracy across training steps. We find that our approach enables
learning in scenarios in which learning would otherwise not have occurred despite using significantly
fewer parameters. Our method improves performance since learning the group B.4 is simpler.

4

A medium-sized red circle with an 'A' label. A large green triangle with striped pattern and dashed border.

Figure 1: Example images from the synthetic dataset for image classification.

Figure 2: Validation accuracy vs Train steps for the synthetic image classification dataset.

4 Memory Usage

We empirically verify that our approach significantly saves on memory and is upto 3.4x times more
efficient in certain scenarios.

Setting We monitor the memory usage during a short training epoch (100 batches) and a single
validation epoch. We report the peak memory reserved by the program for training. We analyze 4
models per architecture with varying hidden sizes. All models use 8 layers and 8 heads per layer. The
model of size 8.1 M uses h = 128, the 19.3 M uses h = 256, the 152 M uses h = 1024, and the 659
M uses h = 2048.

Results Table 2 contains the results of this experiment, "oom" stands for out of memory. We see
that we achieve non-trivial memory efficiency simply by compressing the vocabulary layer. Our
results show that we can double (T4) or in some cases triple (A10G) the model size and still train the
model on the same GPU.

5 Computational Efficiency

Our model significantly reduces the number of parameters required in the vocabulary layer. This not
only reduces the average flops, but it also significantly speeds up the performance of the forward pass.

Setting Similar to memory usage, we run a single short training loop and report the average
throughput in terms of tokens per second. We also report the average FLOPs used per forward pass
which is another strong measure of computational efficiency.

Results Table 3 showcases our results for performance in terms of throughput and flops. We
see a staggering 3x (8.1 M) increase in throughput and a 5x (8.1 M) decrease in FLOPs used all
while maintaining performance on language modelling. We see that the improvement decreases with
increase in model size as the vocabulary layer becomes less of a bottleneck.

5

Table 2: Memory Usage Comparison for GPT-2, GPT-Neo, and Our Implementation on TinyStories
during a training loop. "oom" stands for out of memory.

Memory Usage (GB)

GPU Model Size GPT-2 GPT-Neo Ours Efficiency

T4

8.1 M oom 13.0 3.80 3.4x
19.3 M oom oom 5.20 na
152 M oom oom oom na
659 M oom oom oom na

A10G

8.1 M 14.0 13.0 3.80 3.4x
19.3 M 16.0 18.0 5.20 3.4x
152 M oom oom 16.6 na
659 M oom oom oom na

L40s

8.1 M 14.0 13.0 3.80 3.4x
19.3 M 16.0 18.0 5.20 3.4x
152 M 28.0 30.0 16.6 1.8x
659 M oom oom 39.0 na

Table 3: Token Throughput and FLOPs Comparison for GPT-2, GPT-Neo, and Our Implementation
on a single L40s.

Throughput (Tokens/s) FLOPs (GFLOPs)

Model Size GPT-2 GPT-Neo Ours GPT-2 GPT-Neo Ours

8.1 M 108373 80757 313049 4.10 4.64 0.83
19.3 M 90458 69967 234268 9.00 10.0 3.30
152 M 32194 31523 59106 72.0 82.0 52.0

6 Ablation Studies

The group size is a key hyper parameter that can greatly impact the performance and efficiency of our
method. We perform an ablation study varying the group size while monitoring Lval and memory
used.

Setting We train a series of model on TinyStories, and for the purpose of the ablation, we train a
small model with hidden size 64, 4 layers and 2 heads per layer for half an epoch.

Results Figure 3 showcases the study. As discussed in Section 2.4, we see optimal memory usage
when group size is equal to the square root of the vocabulary. We also see that this is the maxima in
terms of val loss. This makes sense as we have the most inter-group confusion at this point, however,
the performance difference isn’t very large varying between 3.7 and 3.9 for most group sizes around√
v.

7 Limitations & Conclusion

While our method improves memory efficiency and computational performance, several limitations
remain. Despite surpassing GPT-2 and GPT-Neo models, we were unable to empirically compare
with other vocabulary compression techniques due to compute constraints. Additionally, our method
shows sensitivity to the group size hyperparameter, as noted in our ablation study. Limited training
epochs also impacts results, but we believe they are representative of low-compute settings.

In this work, we introduced a novel approach to compressing the final vocabulary layer, achieving
both memory efficiency and high performance. We hope this work contributes to low-compute
machine learning and demonstrates how simple optimisations can highly effective and practical.

6

0 1000 2000 3000 4000
Group Size

0.8

1.0

1.2

1.4

1.6

M
em

or
y(

GB
)

Group Size vs Memory

V

0 1000 2000 3000 4000
Group Size

3.5

3.6

3.7

3.8

3.9

Va
l L

os
s

Group Size vs Val Loss
V

Figure 3: Ablation studies

8 Acknowledgement

The authors of this paper would like to thank Shashwat Singh, Abhinav S. Menon, and Vamshi
Krishna Bonagiri for their help and thoughtful comments. We also thank Lightning.ai for free access
to quality GPUs for our experiments.

References
Baevski, A. and Auli, M. (2018). Adaptive input representations for neural language modeling. arXiv

preprint arXiv:1809.10853.

Besiroglu, T., Bergerson, S. A., Michael, A., Heim, L., Luo, X., and Thompson, N. (2024). The
compute divide in machine learning: A threat to academic contribution and scrutiny?

Eldan, R. and Li, Y. (2023). Tinystories: How small can language models be and still speak coherent
english? arXiv preprint arXiv:2305.07759.

Goodman, J. (2001). Classes for fast maximum entropy training. In 2001 IEEE International
Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 01CH37221),
volume 1, pages 561–564. IEEE.

Joulin, A., Cissé, M., Grangier, D., Jégou, H., et al. (2017). Efficient softmax approximation for gpus.
In International conference on machine learning, pages 1302–1310. PMLR.

Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., and Wu, Y. (2016). Exploring the limits of
language modeling.

Morgan, T. P. (2024). Inside the massive gpu buildout at meta platforms. The Next Platform. Accessed:
2024-10-01.

Musk, E. (2024). Elon musk buys thousands of gpus for twitter’s generative ai project. Tom’s
Hardware.

Sennrich, R., Haddow, B., and Birch, A. (2016). Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin, Germany. Association for
Computational Linguistics.

7

A Psuedocode

An alternative that we initially explored involved storing a unique linear tensor for each group
(Implementation 4) instead of a shared linear with a scale and shift (Implementation 5). This forced us
to loop over the groups if we wished to keep memory usage low. Even with a clever implementation
using masks, this approach was significantly slower and was replaced with the scale and shift tensors.

1 def apply_linear(self, h, groups):
2 batch_size, sequence_length, hidden_size = h.shape
3 output = torch.zeros(batch_size, sequence_length,
4 self.group_size, device=h.device)
5

6 h_flat = h.view(-1, hidden_size)
7 output_flat = output.view(-1, self.group_size)
8 groups_flat = groups.view(-1)
9

10 for i in range(self.num_groups):
11 mask = (groups_flat == i)
12 if mask.any():
13 group_input = h_flat[mask]
14 group_output = self.linears[i](group_input)
15 output_flat[mask] = group_output
16

17 return output_flat.view(batch_size, sequence_length, self.group_size)

Figure 4: Slow implementation which requires looping over the groups

1 def apply_linear(self, h, groups):
2 shared_output = self.shared_linear(h)
3

4 groups_flat = groups.view(-1)
5 shared_output_flat = shared_output.view(-1, self.group_size)
6

7 scale = self.scale(groups_flat)
8 shift = self.shift(groups_flat)
9

10 modulated_output_flat = shared_output_flat * scale + shift
11 modulated_output = modulated_output_flat.view_as(shared_output)
12

13 return modulated_output

Figure 5: Fast implementation applying the scale and shift transformation.

B Multi Class Classification

B.1 Dataset

The Dataset comprised of 184k classes each containing about 10 images. Each class comprised of the
following attributes.

One attribute from each class was randomly chosen to generate about 2M images. Every possible
class was mapped to an index and stored along with the images.

B.2 Model Architecture

We used a 3 layer CNN with Kernel Size = 3 and padding = 1. Channels were taken from 3 to 32
in the first layer and doubled in each subsequent layer. The output was flattened and subsequently
encoded into a 512-dimensional embedding through a fully connected layer along with Relu non
linearity.

8

Attribute Options
Shapes Circle, Square, Triangle, Pentagon, Hexagon, Octagon, Star, Cross
Patterns Solid, Striped, Dotted, Checkered
Rotations 0°, 60°, 120°, 180°, 240°, 300°
Colors Red, Green, Blue, Yellow, Purple, Orange, Pink, Brown, Cyan, Magenta, Lime, Teal
Sizes Tiny, Small, Medium, Large, Huge
Textures None, Noise
Opacities 0.25, 0.5, 0.75, 1.0
Border Styles Solid, Dashed

Table 4: Attributes and Options

The baseline model linearly mapped this to the vocab size, whereas our method mapped it into one of
the

√
V groups and subsequently mapped to a particular token.

B.3 Training

The training was conducted for 10 epochs with a batch size of 64 and gradient accumulation over 4
batches. Learning rate was set to 0.001 and Adam optimizer was used to update the weights. Cross
Entropy Loss was used to train and evaluate the model’s performance. Accuracy was recorded at the
end of each epoch over the Validation set.

B.4 Train Plots

Surprisingly, the group accuracy is quite high, this suggests that groups might be easier to learn than
the complete task and sheds light on why our approach performs so well in practice despite its loss in
theoretical expressivity.

Figure 6: Train loss curve comparison on multi-class classification

Figure 7: Group prediction accuracy of our model. We see that out model takes advantage of the fact
that smaller groups are easier to learn than the whole dataset

9

	Introduction
	Methodology
	Problem Formulation
	Definitions and Notation
	Method
	Training
	Inference

	Optimal Memory Configuration

	Performance
	Language Modelling
	Multiclass Classification

	Memory Usage
	Computational Efficiency
	Ablation Studies
	Limitations & Conclusion
	Acknowledgement
	Psuedocode
	Multi Class Classification
	Dataset
	Model Architecture
	Training
	Train Plots

