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Abstract—Stack Overflow is a Community Question Answer-
ing service that attracts millions of users to seek answers to
their questions. Maintaining high-quality content is necessary
for relevant question retrieval, question recommendation, and
enhancing the user experience. Manually removing low-quality
content from the platform is time-consuming and challenging
for site moderators. Thus, it is imperative to assess the content
quality by automatically detecting and ‘closing’ the low-quality
questions. Previous works have explored lexical, community-
based, vote-based, and style-based features to detect low-quality
questions. These approaches are limited to writing styles, textual,
and handcrafted features. However, these features fall short
in understanding semantic features and capturing the implicit
relationships between tags and questions. In contrast, we propose
LQuaD (Low-Quality Question Detection), a multi-tier hybrid
framework that, a) incorporates semantic information of ques-
tions associated with each post using transformers, b) includes the
question and tag information that enables learning via a graph
convolutional network. LQuaD outperforms the state-of-the-art
methods by a 21% higher F1-score on the dataset of 2.8 million
questions. Furthermore, we apply survival analysis which acts as
a proactive intervention to reduce the number of questions closed
by informing users to take appropriate action. We find that the
timeframe between the stages from the question’s creation till it
gets ‘closed’ varies significantly for tags and different ‘closing’
reasons for these questions.

Index Terms—Stack Overflow, Community Question Answer-
ing, Low-quality questions

I. INTRODUCTION

Stack Overflow (SO) is a popular Community Question An-
swering (CQA) service with 22.1 million questions and 16.6
million users as of 2022.1 Since SO is an open-access website
used by novice and experts, it is essential to maintain the qual-
ity of questions posted over the platform [1]. To this end, SO
issues guidelines and employs a reward-based voting mecha-
nism to incentivize users to ask good quality questions [2].
Questions not following the guidelines are ‘closed’ via a
community-based voting system. ‘Closed’ questions can not
receive answers, but the user can improve them for reopening.
Fig. 1 shows ‘closed’ questions from SO. The primary reasons

1https://stackoverflow.com/questions
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Fig. 1. A sample of ‘closed’ questions from Stack Overflow. These are
‘closed’ due to different reasons such as ‘off-topic’, ‘unclear what you’re
asking’, ‘too broad’ and ‘primarily opinion-based’.

for ‘closing’ questions from quality perspective are ‘off-topic’,
‘unclear what you’re asking’, ‘primarily opinion-based’, and
‘too broad’. There are approximately 5900+ new questions
posted daily over the SO platform.2 As a result of high traffic,
it is inefficient and difficult to review every question manually.
These questions also increase the workload of moderators and
experienced users with distinguished privileges who spend
time ‘closing’ questions. Therefore, it is imperative to identify
and close low-quality questions automatically in order to
minimize workload. Previous works focus on predicting the
quality of questions on CQA websites [1]–[4]. They rely on
textual styles like title length, body length, handcrafted features
(number of URLs), and supervised learning (e.g., Random
forest, SGBT) for binary classification tasks. Literature also
explores the question’s quality using Convolutional Neural
Network [5], Hierarchical Attention Network [6], and Gated
Recurrent Units [7], [8].
However, these approaches fall short in: a) effectively captur-
ing the semantic and structural information of the content, b)

2https://stackexchange.com/sites?view=list#traffic



detecting low-quality questions at the time of creation (cold-
start problem) when features such as votes, question scores,
answers, and comments are unavailable, c) estimating the
survival probability of a question till it gets ‘closed.’

To address these limitations, we utilize the semantic infor-
mation present in the question’s content using a transformer-
based model, i.e., BERT [9] to improve the modeling of
questions. Additionally, we utilize tag-specific information,
which plays a crucial role in determining the question’s
visibility and answering the questions. Moreover, including
relevant tags is one of the guidelines for asking a good quality
question. Recent advances in graph-based deep learning [10]
have led to the rise of graph neural networks (GNNs) that
can model the structural relationships well. Therefore, we
introduce a novel way to exploit the tag-related information
to capture implicit relationships between a question and tag
using Graph Convolutional Networks (GCNs) [11]. Towards
this end, we propose a multi-tier hybrid framework, Low-
Quality Question Detection (LQuaD), that incorporates the
content-related information associated with each question us-
ing BERT. Using GCNs over a graph of 2.9M nodes and 8.4M
edges, LQuaD can collaboratively identify patterns between
questions and tags in a transductive manner. Furthermore,
we conduct survival analysis [12] to provide various insights
on questions to inform users about a potential timeframe for
the question’s closure. We use Kaplan-Meier Estimator [13]
for survival analysis to evaluate the temporal event of low-
quality questions being ‘closed’. Our framework addresses the
cold-start problem using only pre-submission information of
questions posted over the platform. It evaluates the closure of
questions and timeframe for closing based on exact reasons
and tags. Our major contributions are:

• We propose a novel framework, LQuaD, which estab-
lishes the utility of a question-tag graph and transformers
to detect low-quality questions that are likely to get
‘closed’ at the time of posting. Our framework acts as an
early-assessment tool to assist users in composing a ques-
tion, which would remain open and receive responses.

• We also examine the impact of non-content related
characteristics of the question using survival analysis to
estimate the time duration of closure of the question.

• We evaluate LQuaD on 17.7M questions and make the
code publicly available.3

The organization of the rest of the paper is as follows:
Section II contains related work and Section III elaborates our
methodology in detail. Section IV describes the experiments;
Section V discusses results and analysis; Section VI reports
ablation study , Section VII shows error analysis followed by
conclusion and future work in Section VIII.

II. RELATED WORK

In this section, we provide an overview of related literature
on detection of low-quality questions, graph-based approaches,
and survival analysis.

3https://anonymous.4open.science/r/submission2022-41E0

a) Low-quality Questions Detection: Previous works [2],
[14] studied the handcrafted features of posts, community, and
users for detection of low-quality questions. Baltadzhieva et
al. [1] studied and analyzed the linguistic terms contained in
the post’s content to predict the question’s quality. However, it
defines question’s quality in abstract terms making it prone to
subjectivity and may result in somewhat arbitrary assessments.
Ahmed et al. [15] studied user’s behavior in guiding the feature
engineering process to determine the question’s quality. Jan et
al. [16] on identifying unclear questions as they have low-
quality. Deepak et al. [17] estimate the relative difficulty of
questions. Previous works [18], [19] demonstrate that duplicate
questions constitute 60% of the ‘closed’ questions. Liang et
al. [20] found that user reputation is a good indicator for
question quality. Roy et al. [5] contributes with a multi-
class classification of ‘closed’ questions along with the rea-
sons why questions get ‘closed’. Most of these methods [1],
[2], predict question quality by utilizing handcrafted features
like, community-based features, part-of-speech tagging, user
profile features, textual features (body length, no. of URLs,
count of words) and writing styles. These features capture
limited information related to the context and semantics of
the question’s content which is a crucial step to exploit the
maximum efficiency of the natural language processing [21].
Hence, we combine contextual and semantic properties into
our proposed framework to improve the identification of low-
quality questions, i.e., ‘closed’ questions.

b) Graph Neural Networks: Graph Neural Networks
(GNNs) have found their applications in recommender sys-
tems [22], machine translation [11], role labeling [23], image
classification [24] and many more real-world applications.
Recent advancements in GNNs [10], [25], [26] allow using
node neighborhoods to learn discriminative features collabo-
ratively. Yao et al. [26] utilize joint document-words graph
for text classification via node classification task. However,
GNNs are unexplored in capturing the information using a
heterogeneous question-tag graph. GNNs are well-equipped
to capture information flow between the questions and their
associated tags for node classification tasks.

c) Survival Analysis: Survival analysis provides statisti-
cal methods to study the time-to-event data [27]. It assists in
determining the longevity of responses on social media plat-
forms [28] and in assessing the wait time of the callers [29].
The technique incorporates valuable information about unre-
solved questions in the prior studies [30]. A previous work [31]
uses survival analysis to estimate the time till first response
and time till accepted answer of questions on Stack Overflow.
In this work, we extend the study and carry out the temporal
analysis using the Kaplan-Meier estimate [13] to provide a
time estimate in which is question is ‘closed’.
Our research is uniquely inclined towards using graph convo-
lutional networks and transformers in the cold-start scenario
for low-quality question detection. We also provide various
insights on the timeframe to ‘close’ a low-quality question
across different tags and ’closing’ reasons.



III. METHODOLOGY

In this section, we discuss the problem definition and frame-
work, which consists of two parts a) Low Quality Questions
Detection b) Temporal Event Analysis.

A. Preliminary & Problem Definition

Consider the set of questions Q = {q1, q2, · · · · · · , qi},
a question qi ∈ Q is a tuple (ci, Ti, yi) where ci, Ti, yi
represents the content, tag set, and label of the ith question,
respectively. The content is represented by the concatenation
of title and body of the question. The tag set is represented
as, Ti = {ti1, ti2, ti3.....tik} ∀ 1 ≤ k ≤ 6 and tik represents the
kth tag of the ith question. Also, yi ∈ {0, 1}, where yi = 0
corresponds to the ‘closed’ class i.e., the question is unfit for
the SO platform, and yi= 1 corresponds to the non-‘closed’
class. Then, we construct an undirected question-tag graph G
= (V, E), where V and E are the set of nodes and edges
respectively. Here V consists of questions belonging to Q and
tagset T = {T1 ∪T2 ∪ ...∪T|Q|}. We construct an edge e ∈ E
between qi and tik where E ⊂ Q × T. Additionally, for each
question qi, we represent its content ci and each tag tik with
d-dimensional vectors. Let C ∈ Rn×d be the feature matrix
with each row containing vector representation of question’s
content ci or tag tik where n = |V|.

B. Low Quality Question Detection (LQuaD)

a) Module I: In this module, our goal is to capture
semantic features from content ci of the question. First, we
pre-process the question’s content to remove code snippets,
HTML tags, non-ASCII characters, and hypertext references.
Then, we fine-tune BERTOverflow [32] model, trained on
152 million sentences from the Stack Overflow’s ten-year
archive, for our classification task. The BERT model consists
of 12 layers, with each layer consisting of an attention
mechanism [21] to capture the hidden styles, context, and
complexities of low-quality questions effectively. We obtain
m-dimensional vector gi after applying the dropout layer to
the pooled output from BERT. Furthermore, the final output
is returned by classification layer as shown in Eq. 1.

pberti = σ (Wggi + bg) (1)

where σ is softmax; pberti are the final predictions; weight
matrix Wg and bias bg are trainable parameters.

b) Module II: This module captures the structural rela-
tionships between the questions and their corresponding tags.
Specifically, we construct a heterogeneous graph consisting
of question and tag nodes. We initialize the feature matrix
C by fine-tuning the fastText skip-gram model [33] on the
SO data in an unsupervised manner as shown in Fig. 2. Each
node v ∈ V is associated with a row of matrix C that gets
updated during training. Let A be the adjacency matrix which
represents the connection between the nodes of G. We add
self-connections with the equation Ã = A + βI where β is
a trainable trade-off parameter. The degree matrix is given as
Dii = Σn

j=0Ãij . The normalized adjacency matrix is given by
Â = D− 1

2 ÃD− 1
2 . Eq. 2 shows the GCN layer that updates

the node representation using a weighted sum of neighboring
node features.
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where Ni be the set of neighboring nodes of a ith node; di =
|Ni|, h(l)

i be the representation of the ith node after layer l,
and W (l) be the weight matrix of layer l. Eq. 3 represents the
output feature matrix after l layers of GCN.

H(l+1) = ReLU
(
ÂH(l)W (l)

)
(3)

where H0 = C i.e. the input feature matrix when l = 0 depicts
initialization of network. We utilize ReLU as non-linearity
and use dropout layers between successive convolutions. The
first message passing layer facilitates the information flow be-
tween questions and their respective tags. Here, the questions
capture the aggregate information from their neighborhood
nodes (tags). The second layer captures information between
questions connected via common tags. Module II employs two
layers to execute transductive learning via GCN and employs
a classification layer for predictions as shown in Eq. 4.

pgcni = σ(Whh
(l+1)
i + bh) (4)

where σ is softmax; pgcni are the final predictions; weight
matrix Wh and bias bh are trainable parameters.

c) Module III: In this module, we combine the predic-
tions (pberti and pgcni ) from Module I and Module II using late
fusion techniques [34] in two different settings, i.e., maximum
and weighted mean. Eq. 5 and Eq. 6 fuses the predictions from
both modules for maximum and weighted mean.

ppredi = argmax(max(pbertci , pgcnci ),

max(pbertnci , pgcnnci )) (5)

ppredi = argmax(λ ∗ pbertci + (1− λ) ∗ pgcnci ,

λ ∗ pbertnci + (1− λ) ∗ pgcnnci ) (6)

where λ is a trainable parameter. For Module I, pbertci and
pbertnci are the probabilities obtained for ‘closed’ and non-
‘closed’ class respectively. Similarly, for Module II, pgcnci and
pgcnnci are the probabilities obtained for ‘closed’ and non-
‘closed’ respectively.

C. Temporal Event Analysis

We perform survival analysis, a statistical tool to examine
the duration until a particular Event Of Interest (EOI) occurs.
We define EOI as the time elapsed from the question’s creation
to when it gets ‘closed’. We explore the temporal aspects of
the questions before they get ‘closed’ using non-parametric
Kaplan-Meier estimator [13] as shown in Eq. 7. Our dataset
is represented more accurately by median than mean using
Kaplan-Meier estimator due to its non-parametric nature.

Ŝ(t) =
∏

i:ti≤t

(1− di
ni

) (7)
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Fig. 3. Kaplan-Meier estimator of survival function for time period for ‘closed’ questions based on different reasons of ‘closing’. Plot (a) specifies the tag
category whereas Plot (b) specifies the reasons due to which the question get ‘closed’.

where ti is time at which at question is ‘closed’, di denotes
no. of posts ‘closed’ at time ti, and ni denotes no. of posts
which haven’t been ‘closed’ upto time ti but will get ‘closed’
at some point after ti. We perform survival analysis by
categorizing questions based on the reason for ‘closing’ and
tag categories (see Section IV-A). Table I reports mean time
to close the question, and median statistics of the survival
function for ‘closing reasons’ and tag category. We observe
that ‘primarily opinion-based’ has the highest mean time till
EOI and median Ŝ(t) while ‘unclear what you’re asking’ has
the least mean till EOI and median Ŝ(t). This suggests that
primarily opinion-based questions remain open for longer time
duration than ‘unclear what you’re asking’ questions. We also

observe that cloud and other frameworks have higher mean
time till EOI and median Ŝ(t) than other categories. This
suggests that question with tags in these categories are not
‘closed’ for relatively longer time periods. Fig. 3 (a) shows
‘primarily opinion-based’ questions have a higher probability
of survival than ‘unclear what you are asking’ questions for
most of the time period after a question’s creation. These
trends show that the SO community promotes and encourages
users to discuss and share opinions on the highly subjective,
‘primarily opinion-based’ questions by not ‘closing’ them
during their early stages. On the other hand, the community
doesn’t support unclear questions by ‘closing’ them relatively
early that inhibits users from spending time in answering these



ambiguous questions.
Fig. 3 (b) shows that the questions with tags related to cloud
and other frameworks consistently have higher survivability
(i.e., less chance of getting ‘closed’ in the future) than question
with tags related to database, web frameworks, and program-
ming languages.

IV. EXPERIMENTS

This section provides dataset description, baselines, and
experimental setup.

A. Dataset Description

We describe our dataset creation methodology for LQuaD
(Module I and II ) and temporal event analysis.

a) LQuaD (Module I) dataset: We create a dataset of
‘closed’ and non-‘closed’ questions using a data dump of
17.7M questions from SO platform. First, we filter 847,721
‘closed’ questions from the data dump of SO posts from Au-
gust 2008 until June 2019. Table II reports our dataset statistics
from SO platform. When SO went live, questions were closed
due to seven different reasons. However, SO changed the rea-
sons to close the questions after June 2013. The new reasons
to close the question are ‘duplicate’, ‘off-topic’, ‘unclear what
you’re asking’, ‘too broad’, and ‘primarily opinion-based’.
We filter out ‘duplicate’ questions while making the ‘closed’
dataset because these are not necessarily low-quality questions.
SO closes duplicate questions to eliminate redundancy over
the platform. We consider the pre-submission information of
questions present when the question gets ‘closed.’ It ensures
the retention of the original content before the owner makes
any edits to improve its quality. We consider only those
questions that are ‘closed’ only once since their creation and
not reopened after that. The number of questions in the‘closed’
class is significantly less than that of the non-‘closed’ class.
Therefore, we randomly sample non-‘closed’ questions from
the data dump such that its size is ten times the size of the
‘closed’ dataset, which leads to the formation of an imbalanced
dataset. We utilize weighted loss [35] to handle the class
imbalance problem for our dataset.

b) LQuaD (Module II) dataset: For Module II, we ex-
tract the tag-related information corresponding to the questions
dataset created in the previous module. A question can have
a maximum of five tags as per SO guidelines.4 However,
it turns out that a question has a maximum of six tags in
the data dump.5 Therefore, we find 344,491 questions with
only 1-tag, 740,264 questions with 2-tags, 825,405 with 3-
tags, 567,209 questions with 4-tags, 374,295 questions with
5-tags, and 173 questions with 6-tags, respectively. Finally,
we construct a bipartite graph G by connecting questions to
their corresponding tags. Table II reports the number of nodes,
edges, and tags for Module II.

4https://stackoverflow.com/help/tagging
5https://stackoverflow.com/questions/14071930/creating-a-playlist-out-of-

songs-from-selected-artists

c) Temporal event analysis dataset: We use the ‘closed’
questions dataset (Module I) and define our EOI for sur-
vival analysis as the ‘time until a question gets closed.’ We
collect the temporal data of the question’s creation and the
‘closing’ date for these questions. We filter out the questions
from closed dataset with unknown timestamps and ‘closing’
reasons. To compute the time elapsed for each question, we
find the difference between the timestamp of a question’s
‘closed’ date and its creation date. We extract the reasons for
closing these questions and found 118,048 off-topic, 49,391
unclear what you’re asking, 52,023 too broad, and 22,132
primarily opinion-based questions. We also categorize6 the
corresponding tags into 17,774 database, 1,438 cloud, 20,912
web frameworks, 132,875 programming languages, and 6,684
other frameworks.

B. Baselines

We compare LQuaD with the following state-of-the-art
baseline models.
Denzil et al. [14] carry out the characterization study and de-
tection of ‘closed’ questions using Stochasitc Gradient Boost-
ing Trees (SGBT) classifier to predict whether the question
will get ‘closed’ or not.
Toth et al. [8] introduce a gated-recurrent-unit-based (GRU)
classifier that uses textual features of the post to accomplish
binary classification task.
CountVec + LR [36] We utilize count vectorizer as a feature
extractor module for post’s textual data and pass it through
the logistic regression model.
CountVec + XGBoost [37] We utilize count vectorizer to
extract features from textual data and pass it through the
XGBoost classifier model.
FastText + LR [33] We extract the pre-trained embeddings
using fastText and pass it through the Logistic regression
model.
Distilled-BERT + LR [38] We utilize the pre-trained em-
beddings using DistilBERT and pass it through the Logistic
Regression classifier model.
GCN (fastText) [39] We initialize the node embedddings using
pre-trained embeddings from fastText [33] model and pass it
through the Module II of LQuaD.

C. Experimental setup

Table III reports the optimal values after tuning hyperpa-
rameters of Module I and II of LQuaD. In Module I, we use
the coarse grid-search algorithm to search the hyperparam-
eter space. The BERTOverflow model converges before one
epoch during the fine-tuning task. In Module II, we initialize
nodes with d-dimensional vector representation using fine-
tuned fastText model where d=300 and run it for 500 epochs.
We find that the trainable trade-off parameter, β, has optimal
value two. We use the train-validation-test (60:20:20) split and
perform 10-fold calculations for classification run of Module
I and II. For Module III, the optimal value of λ for weighted

6https://insights.stackoverflow.com/survey/2021



TABLE I
WE REPORT THE MEAN TIME (DAYS) TILL EOI AND MEDIAN SURVIVAL TIME (HRS) CORRESPONDING TO REASONS AND TAG CATEGORIES. THE HIGHEST

VALUES IN RESPECTIVE ROWS ARE SHOWN IN BOLD AND THE LOWEST VALUES ARE UNDERLINED.

Reasons Tag Categories

Category Off-topic Unclear what
you’re asking Too broad Primarily

opinion-based Database Cloud Web
frameworks

Programming
languages

Other
frameworks

Mean Time
Till EOI (days) 330.76 65.91 230.87 531.81 145.54 228.13 185.03 177.89 482.89

Median Survival
Time (hrs) 12.89 7.51 8.57 15.07 9.04 27.33 8.17 7.27 16.51

TABLE II
DATASET STATISTICS FROM THE STACK OVERFLOW PLATFORM.

Module I Module II

Dataset
No. of
train
samples

No. of val.
(test)
samples

Total Graph Total

‘Closed’ 155,554 51,852 259,258 Nodes
(questions) 2,851,838

Non-‘Closed’ 1,555,548 518,516 2,592,580 Nodes
(unique tags) 48,374

Total questions 1,711,102 570,368 2,851,838 Edges 8,442,584

TABLE III
HYPERPARAMETER SETTINGS FOR MODULE I AND MODULE II OF

LQUAD.

Module I Module II
Hyperparameter Value Hyperparameter Value
Batch size 8 No. of layers 2
Learning rate 1e−5 Learning rate 1e−2

Weight Decay 0.01
No. of output channels
after each GCN layer 64

Dropout 0.1 Dropout 0.5

mean technique is obtained by tuning its value in the uniform
distribution U{0, 1}. Further, we apply 5-Fold cross-validation
during late fusion to obtain λ = 0.55. We use cross-entropy
loss and the Adam optimizer [40] to train LQuaD.

TABLE IV
AVERAGE PERFORMANCE METRICS (WEIGHTED) ON THE STACK

OVERFLOW DATASET.

Model Precision Recall F1
Denzil et al. [14] 70.25 70.25 70.24
Toth et al. [8] 73.78 73.33 73.66
Count Vectorizer + LR [36] 89.94 76.90 81.38
Count Vectorizer + XGBoost [37] 90.17 77.48 81.82
FastText + LR [33] 90.52 79.71 83.44
DistilBERT + LR [38] 92.19 85.26 87.59
GCN (fastText) [39] 90.69 83.98 86.42
LQuaD (LF [mean]) 94.85 95.20 94.86

V. RESULTS AND ANALYSIS

We compare LQuaD with different state-of-the-art base-
lines (see Table IV). Denzil et al. [14] also predicted closed
questions based on various predictive features using post-
submission information with F1-score of 70.24%. Toth et
al. [8] similar to our work, predicted question closing based
on pre-submission information using a gated recurrent unit
and obtained an F1-score of 73.66%. LQuaD (LF[max])
and LQuaD (LF[mean]) outperforms by 19% and 21% as

compared to the best baseline [8] for the binary classification
task. Table IV shows the average over the results obtained from
10-fold calculations. We perform the student’s t-test [41] test
to compare the results obtained from the modules. The t-test
results of Module I and II follow the distribution and differ
significantly from each other at the applied significance level
p < 0.01.
Analysis: We analyze the attention layers of fine-tuned model
in Module I. Fig. 4 (a) shows that the model gives higher
attention to words like ‘tutorial’ and ‘beginner’. The model
is able to capture the newbie behavior over the platform,
and the question is correctly predicted as ‘closed’. Similarly,
Fig. 4 (d) shows that the model give higher attention to
words like {‘error’, ‘array’, ‘code’, ‘compile’}. Therefore, the
model can capture semantic and contextual information about
the ‘debugging a coding error’ which represents the relevant
question posted over the platform. LQuaD is able to capture
tag information such as ‘agile’ and ‘open-source’ as majority
of questions containing these tags are ‘closed’. The questions
containing these tags are correctly predicted as ‘closed’. The
SO website also clarifies that questions using ‘open-source’
and ‘agile’ tags would be considered off-topic.7 Therefore,
LQuaD is able to model the structural relationships between
the questions and tags effectively. Fig. 5 depicts the node
representations before and after training of Module II using
PCA [42]. We observe that Module II learns tags patterns
associated with questions in a transductive manner.

VI. ABLATION STUDY

Table V shows the ablation study of Module I and II
separately. Module I achieves Weighted performance metrics,
i.e., Precision, Recall, and F1-score of 94.81, 95.08, and 94.53,
respectively. Similarly, Module II, i.e., GCN model initialized
with fine-tuned fastText embeddings achieves Precision, Recall
and F1-score of 91.86, 84.38, and 86.92 respectively. These
results show that GCNs achieved comparable precision and
relatively lower recall than transformer-based models.

VII. ERROR ANALYSIS

We demonstrate some of the errors encountered by LQuaD.
For example, words like ‘java programming’ and ‘MYSQL
database’ are weighted more by the underlying attention
mechanism. However, due to these words, the model incor-
rectly predicted the ‘closed’ as non-‘closed’. Additionally,

7https://stackoverflow.com/questions/tagged
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(b) (d)

(c)

Fig. 4. Some examples of predictions using Module I. For each token
in the input, we show the visualization of self-attention averaged over all
12- attention heads of fine-tuned BERT Overflow. Higher attention weights
corresponds to darker color (red). Plot (a) is an example of ‘closed’ predicted
correctly, Plot (b) is an example of non-‘closed’ predicted as ‘closed’, Plot (c)
is an example of ‘closed’ predicted as non-‘closed’ and Plot (d) is an example
of non-‘closed’ predicted correctly.

TABLE V
EFFECTIVENESS OF LQUAD (AND VARIANCES) AS COMPARED TO

MODULE I AND MODULE II.

Model Precision Recall F1
Module I 94.81 (0.03) 95.08 (0.04) 94.53 (0.01)
Module II 91.86 (0.07) 84.38 (0.07) 86.92 (0.08)
LQuaD (LF [max]) 93.62 (0.02) 92.85 (0.04) 93.16 (0.07)
LQuaD (LF [mean]) 94.85 (0.03) 95.20 (0.05) 94.86 (0.02)

Fig. 5. PCA visualizations of node representations for ‘closed’ and ‘non’-
closed questions before (left) and after (right) training.

‘Where can ........with’ shows that the actual class is non-
‘closed’ whereas the model predicted it ‘closed’ which is an
example of false positive. Our transformer-based model is able
to look at some words like ‘array’ and ‘error’ to make the
decision for non-‘closed’ class. ‘Compile ........code’ shows
that the actual class is non-‘closed’ and our model predicted
it correctly as well.

VIII. CONCLUSION AND FUTURE WORK

We propose LQuaD that incorporates semantic information
of questions associated with each post using transformers and
learns question and tag graphs in a transductive manner using
GCNs. Our graph consists of 2.9M nodes and 8.4M edges.
LQuaD detects low-quality questions that are likely to get
‘closed’ at the time of posting. Our framework acts as an early-
assessment tool to assist users in composing a question, which
would remain open and receive responses. Further, we use
survival analysis that reduces the number of questions closed

by informing users to take appropriate action. We find that
the timeframe between the stages from the question’s creation
till it gets ‘closed’ varies significantly for tags and different
‘closing’ reasons for these questions. LQuaD outperforms the
state-of-the-art methods by a 21% in F1-score on the dataset of
2.8M questions. We have made the code and dataset available
for reproducibility. In the future, we plan to study the ‘closed’
questions that gets re-open after edits.
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