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Abstract

Continual learning has primarily focused on the issue of catastrophic forgetting
and the associated stability-plasticity tradeoffs. However, little attention has been
paid to the efficacy of continually learned representations, as representations are
learned alongside classifiers throughout the learning process. Our primary contri-
bution is empirically demonstrating that existing online continually trained deep
networks produce inferior representations compared to a simple pre-defined ran-
dom transforms. Our approach projects raw pixels using a fixed random transform,
approximating an RBF-Kernel initialized before any data is seen. We then train
a simple linear classifier on top without storing any exemplars, processing one
sample at a time in an online continual learning setting. This method, called
RanDumb, significantly outperforms state-of-the-art continually learned represen-
tations across all standard online continual learning benchmarks. Our study reveals
the significant limitations of representation learning, particularly in low-exemplar
and online continual learning scenarios. Extending our investigation to popular
exemplar-free scenarios with pretrained models, we find that training only a linear
classifier on top of pretrained representations surpasses most continual fine-tuning
and prompt-tuning strategies. Overall, our investigation challenges the prevailing
assumptions about effective representation learning in online continual learning.
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Figure 1: Our primary analysis in this work is ablating the deep feature extractor (bottom center) by
replacing it with a random projection (top center) to isolate the effect of online continual representation
learning in the deep network. We demonstrate that random projections not only match but consistently
outperform continually learned representations, highlighting the poor quality of the continually
learned representations. RanDumb (top) maps raw pixels to a high-dimensional space using random
Fourier projections, then decorrelates the features using the Mahalanobis distance [43] and classifies
based on the nearest class mean.
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1 Introduction

Continual learning aims to develop models capable of learning from non-stationary data streams,
inspired by the lifelong learning abilities exhibited by humans and the prevalence of such real-world
applications (see Verwimp et al. [64] for a survey). It is characterized by sequentially arriving tasks,
coupled with additional computational and memory constraints [33, 38, 54, 62, 49].

Building on the foundations of supervised deep learning, the prevalent approach in continual learning
has been to jointly train representations alongside classifiers. This approach simply follows from the
assumption that learned representations are expected to outperform fixed representation functions
such as kernel classifiers, as demonstrated in supervised deep learning [34, 23, 57]. However, this
assumption is never validated in continual learning, with scenarios having limited updates where
networks might not be trained until convergence, such as online continual learning (OCL).

In this paper, we study the efficacy of representations derived from continual learning algorithms.
Surprisingly, our findings suggest that these representations might not be as beneficial as presumed.
To test this, we introduce a simple baseline method named RanDumb, which combines a random
representation function with a straightforward linear classifier, illustrated in detail in Figure 1.
Our empirical evaluations, summarized in Table 1 (left, top), reveal that despite replacing the
representation learning with a pre-defined random representation, RanDumb surpasses current state-
of-the-art methods in latest online continual learning benchmarks [75].

We further expand our evaluations to scenarios incorporating methods that use pre-trained feature
extractors [67]. By substituting our random projections with these feature extractors and retaining the
linear classifier, RanDumb again outperforms leading methods as shown in Table 1 (right, top).

1.1 Technical Summary: Construction of RanDumb and Empirical Findings

Design. RanDumb first projects input pixels into a high-dimensional space using a fixed kernel
based on random Fourier basis, which is a low-rank data-independent approximation of the RBF
Kernel [52]. Then, we use a simple linear classifier which first normalizes distances across different
feature dimensions (anisotropy) with Mahalanobis distance [43] and then uses nearest class means
for classification [44]. In scenarios with pretrained feature extractors, we use the fixed pretrained
model as embedder and learn a linear classifier as described above, similar to Hayes and Kanan [27].

Key Properties. RanDumb needs no storage of exemplars and requires only one pass over the data in
a one-sample-per-timestep fashion. Furthermore, it only requires online estimation of the sample
covariance matrix and nearest class mean.

Key Finding 1: Poor Representation Learning. We compare RanDumb with leading methods: VAE-
GC [63] in Table 1 (left, middle) and SLCA [78] in Table 1 (right, middle). The primary distinction

Table 1: (Left) Online Continual Learning. Performance comparison of RanDumb on the PEC setup
[75] and VAE-GC [63]. Setup and numbers borrowed from PEC [75]. RanDumb outperforms the best
OCL method. (Right) Offline Continual Learning. Performance comparison with ImageNet21K
ViT-B16 model using 2 initial classes and 1 new class per task. RanPAC-imp is an improved version
of the RanPAC code which mitigates the instability issues in RanPAC. RanDumb nearly matches
performance of joint for both online and offline, demonstrating the inefficacy of current benchmarks.

Method MNIST CIFAR10 CIFAR100 m-IMN
Comparison with Best Method

Best (PEC) 92.3 58.9 26.5 14.9
RanDumb (Ours) 98.3 55.6 28.6 17.7
Improvement +6.0 -3.3 +2.1 +2.8

Random vs. Learned Representations

VAE-GC 84.0 42.7 19.7 12.1
RanDumb (Ours) 98.3 55.6 28.6 17.7
Improvement +14.3 +12.9 +8.9 +5.6

Scope of Improvement

Joint (One Pass) 98.3 74.2 33.0 25.3
RanDumb (Ours) 98.3 55.6 28.6 17.7
Gap Covered. (%) 100% 75% 87% 70%

Method CIFAR IN-A IN-R CUB OB VTAB Cars
Comparison with Best Method

Best (RanPAC-imp) 89.4 33.8 69.4 89.6 75.3 91.9 57.3
RanDumb (Ours) 86.8 42.2 64.9 88.5 75.3 92.4 67.1
Improvement -2.6 +8.4 -4.5 -1.1 +0.0 +0.5 +9.8

Random vs. Finetuned Representations

SLCA 86.8 - 54.2 82.1 - - 18.2
RanDumb (Ours) 86.8 42.2 64.9 88.5 75.3 92.4 67.1
Improvement +0.0 - +10.7 +6.4 - - +48.9

Scope of Improvement

Joint 93.8 70.8 86.6 91.1 83.8 95.5 86.9
RanDumb (Ours) 86.8 42.2 64.9 88.5 75.3 92.4 67.1
Gap Covered. (%) 93% 60% 75% 97% 92% 97% 77%
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Figure 2: RanDumb projects the datapoints to a high-dimensional space to create a clearer separation
between classes. Subsequently, it corrects the anisotropy across feature dimensions, scaling them
to be unit variance each. This allows cosine similarity to accurately separates classes. The figure is
adapted from [48].

between them is their representation: RanDumb uses a fixed function (random/pretrained network),
whereas VAE-GC and SLCA further continually trained deep networks. RanDumb consistently
surpasses VAE-GC and SLCA by wide margins of 5-15%. This shows that state-of-the-art online
continual learning algorithms fail to learn effective representations across standard exemplar-free
continual learning benchmarks.

Finding 2: Over-Constrained Benchmarks. Given the demonstrated limitations of existing continual
representation learning methods, an important question arises: Can better methods learn more
effective representations? To explore this, we evaluated the performance of RanDumb against joint
training, models trained without continual learning constraints, in both online and offline settings, as
shown in Table 1 (left, bottom) and Table 1 (right, bottom). Our straightforward baseline, RanDumb,
bridges 70-90% of the performance gap relative to the respective joint classifiers in both scenarios.
This significant recovery of performance by such a simple method suggests that if our goal is to
advance the study of representation learning, current benchmarks may be overly restrictive and not
conducive to truly effective representation learning.

We highlight that the goal in our work is not to introduce a state-of-the-art continual learning method,
but challenge prevailing assumptions and open a discussion on the efficacy of representation learning
in continual learning algorithms, especially in online and low-exemplar scenarios.

2 RanDumb: Mechanism & Intuitions

RanDumb has two main elements: random projection and the dumb learner. We illustrate the
mechanism of RanDumb using three toy examples in Figure 2. To classify a test sample xtest, we
start with a simple classifier, the nearest class mean (NCM). It predicts the class among C classes by
highest value of the similarity function f among class means µi:

ypred = argmax
i∈{1,...,|C|}

f(xtest, µi), where f(xtest, µi) := xtest
⊤µi (1)

and µi are the class-means in the pixel space: µi =
1

|Ci|
∑

x∈Ci
x. RanDumb adds two additional

components to this classifier: 1) Kernelization and 2) Decorrelation.

Kernelization: Classes are typically not linearly separable in the pixel space, unlike in the feature
space of deep models. Hence, we randomly project the pixels into a high-dimensional representation
space, computing all distances between the data and class-means in this embedding space. This
phenomena is illustrated on three toy examples to build intuitions in Figure 2 (Embed). We use an
RBF-Kernel, which for two points x and y is defined as: KRBF(x,y) = exp

(
−γ∥x− y∥2

)
where

γ is a scaling parameter. However, calculating the RBF kernel is not possible due to the online
continual learning constraints preventing computation of pairwise-distance between all points. We
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use a data-independent approximation, random Fourier projection ϕ(x), as given in [52]:

KRBF(x,y) ≈ ϕ(x)Tϕ(y)

where the random Fourier features ϕ(x) are defined by first sampling D vectors {ω1, . . . , ωD} from
a Gaussian distribution with mean zero and covariance matrix 2γI, where I is the identity matrix.
Then ϕ(x) is a 2D-dimensional feature, defined as:

ϕ(x) =
1√
D

[
cos(ωT

1 x), sin(ω
T
1 x), .., cos(ω

T
Dx), sin(ωT

Dx)
]

We keep these ω bases fixed throughout online learning. Thus, we obtain our modified similarity
function from Equation 1 as:

f(xtest, µi) := ϕ(xtest)
⊤
µ̄i (2)

where µ̄i are the class-means in the kernel space:

µ̄i =
1

|Ci|
∑
x∈Ci

ϕ(x)

Decorrelation: Projected raw pixels have feature dimensions with different variances (anisotropic).
Hence, instead of naively computing ϕ(xtest)

⊤
µ̄i, we further decorrelate the feature dimensions

using a Mahalonobis distance with the shrinked covariance matrix S using OAS shrinkage [15],
inverse obtained by least squares minimization (S+ λI). We illustrate this phenomena as well on
three toy examples in Figure 2 (Decorrelate) to build intuitions. Our similarity function finally is:

f(xtest, µi) := (ϕ(xtest)− µ̄i)
TS−1(ϕ(xtest)− µ̄i) (3)

Online Computation. Our random projection is fixed before seeing any data. During continual
learning, we only perform online update on the running class mean and empirical covariance matrix2.

3 Experiments

We compare RanDumb with algorithms across online continual learning benchmarks with an emphasis
on exemplar-free and low-exemplar storage regime. All numbers in tables with the caption (Ref:
table and citation) except our method are taken from the aforementioned table in the cited paper.

Setup Num #Classes #Samples #Stored Contrastive
Passes Per Task Per Step Exemplars Augment

Method: RanDumb 1 1 1 0 No

A (Zając et al. [75]) 1 1 10 0 No
B1 (Guo et al. [25]) 1 2 10 100-2000 No
B2 (Guo et al. [25]) 1 2 10 100-1000 Yes
C (Smith et al. [60]) Many 10 All 0 No
D (Wu et al. [70]) 1 2-10 10 1000 No
E (Ye and Bors [74]) 1 2-5 10 1000-5000 No
F (Wang et al. [67], modified) Many 1 All 0 No

Benchmarks. The benchmarks which
we used in our experiments are sum-
mized in Table on the right. We aim
for a comprehensive coverage and show
results on four standard online con-
tinual learning benchmarks (A, B, D,
E) which reflect the latest trends (’22-
’24) across exemplar-free, contrastive-
training3, meta-continual learning, and
network-expansion based approaches re-
spectively. We also evaluate on a rehearsal-free offline continual learning benchmark C. These
benchmarks are ordered by increasingly relaxed constraints, moving further away from the training
scenario of RanDumb.Benchmark A closely matches RanDumb with one class per timestep and no
stored exemplars. Benchmark B, D, E progressively relax the constraints on exemplars and classes
per timestep. Benchmark C and E remove the online constraint by allowing unrestricted training and
sample access within a task without exemplar-storage of past tasks. Benchmark F allows using large
pretrained models, modified by us with one class per task, i.e. testing learning over longer timespans.

We further test on exemplar-free scenarios in offline continual learning using Benchmark F [67]
with the challenging one-class per task constraint borrowed from [75]. This benchmark allows

2Online update for the inverse of the covariance matrix is possible using the Sherman–Morrison formula.
3Benchmark B is split into two sections: (B1) methods that do not rely on contrastive learning and heavy

augmentation, and (B2) approaches that incorporate contrastive learning and extra augmentations.
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Table 2: Benchmark A (Ref: Table 1 from PEC [75]). We compare RanDumb in a 1-class per task
setting referred as ‘Dataset (num_tasks/1)’. We observe that RanDumb outperforms all approaches
across all datasets by 2-6% margins, with an exception of latest work PEC [75] on CIFAR10.

Method Memory MNIST CIFAR-10 CIFAR-100 miniImageNet
(10/1) (10/1) (100/1) (100/1)

Fine-tuning all 10.1± 0.0 10.0± 0.0 1.0± 0.0 1.0± 0.0
Joint, 1 epoch all 98.3± 0.0 74.2± 0.1 33.0± 0.2 25.3± 0.2

Rehearsal
Based
Methods

ER [13] 500 84.4± 0.3 40.6± 1.1 12.5± 0.3 5.7± 0.2
A-GEM [12] 500 59.8± 0.8 10.2± 0.1 1.0± 0.0 1.1± 0.1
iCaRL [54] 500 83.1± 0.3 37.8± 0.4 5.7± 0.1 7.5± 0.1
BiC [71] 500 86.0± 0.4 35.9± 0.4 6.4± 0.3 1.5± 0.1
ER-ACE [10] 500 87.8±0.2 39.9±0.5 8.2±0.2 5.7±0.2
DER [9] 500 91.7± 0.1 40.0± 1.5 1.0± 0.1 1.0± 0.0
DER++ [9] 500 91.9± 0.2 35.6± 2.4 6.2± 0.4 1.4± 0.1
X-DER [8] 500 83.0± 0.1 43.2± 0.5 15.6± 0.1 8.2± 0.4
GDumb [49] 500 91.0±0.2 50.7±0.7 8.2±0.2 -

Rehearsal
Free
Methods

EWC [33] 0 10.1± 0.0 10.6± 0.4 1.0± 0.0 1.0± 0.0
SI [76]) 0 12.7± 1.0 10.1± 0.1 1.1±0.0 1.0±0.1
LwF [37] 0 11.8 ± 0.6 10.1± 0.1 0.9±0.0 1.0± 0.0
LT [77] 0 10.9± 0.9 10.0± 0.2 1.1± 0.1 1.0± 0.0
Gen-NCM [31] 0 82.0± 0.0 27.7± 0.0 10.0± 0.0 7.5± 0.0
Gen-SLDA [27] 0 88.0± 0.0 41.4± 0.0 18.8± 0.0 12.9± 0.0
VAE-GC [63] 0 84.0± 0.5 42.7± 1.3 19.7± 0.1 12.1± 0.1
PEC [75] 0 92.3± 0.1 58.9± 0.1 26.5± 0.1 14.9± 0.1
RanDumb (Ours) 0 98.3 (+5.9) 55.6 (-3.3) 28.6 (+2.1) 17.7 (+2.8)

Table 3: Benchmark B.1 (Ref: Table adopted from OnPro [68], OCM[25]) We compare RanDumb in
many-classes per task setting referred as ‘Dataset (num_tasks/num_classes_per_task)’. We categorize
memory buffer sizes with ‘M’. RanDumb outperforms the competing approaches without heavy-
augmentations by 3-20% margins despite being exemplar free. Only in one case, it is second best.

Method MNIST CIFAR10 CIFAR100 CIFAR100 TinyImageNet
(5/2) (5/2) (10/10) (50/2) (100/2)

M = 0.1k M = 0.1k M = 0.2k M = 0.5k M = 1k M = 1k M = 1k M = 2k

AGEM [12] 56.9±5.2 17.7±0.3 22.7±1.8 5.8±0.2 5.9±0.1 1.8±0.2 0.8±0.1 0.9±0.1
GSS [4] 70.4±1.5 18.4±0.2 26.9±1.2 8.1±0.2 11.1±0.2 4.3±0.2 1.1±0.1 3.3±0.5
ER [13] 78.7±0.4 19.4±0.6 29.7±1.0 8.7±0.3 15.7±0.3 8.3±0.3 1.2±0.1 5.6±0.5
ASER [58] 61.6±2.1 20.0±1.0 27.8±1.0 11.0±0.3 16.4±0.3 9.6±1.3 2.2±0.1 5.3±0.3
MIR [3] 79.0±0.5 20.7±0.7 37.3±0.3 9.7±0.3 15.7±0.2 12.7±0.3 1.4±0.1 6.1±0.5
ER-AML [10] 76.5±0.1 - 40.5±0.7 - 16.1±0.4 - - 5.4±0.2
iCaRL [54] - 31.0±1.2 33.9±0.9 12.8±0.4 16.5±0.4 - 5.0±0.3 6.6±0.4
DER++ [9] 74.4±1.1 31.5±2.9 44.2±1.1 16.0±0.6 21.4±0.9 9.3±0.3 3.7±0.4 5.1±0.8
GDumb [49] 81.2±0.5 23.3±1.3 35.9±1.1 8.2±0.2 18.1±0.3 18.1±0.3 4.6±0.3 12.6±0.1
CoPE [19] - 33.5±3.2 37.3±2.2 11.6±0.4 14.6±1.3 - 2.1±0.3 2.3±0.4
DVC [25] - 35.2±1.7 41.6±2.7 15.4±0.3 20.3±1.0 - 4.9±0.6 7.5±0.5
Co²L [11] 83.1±0.1 - 42.1±1.2 - 17.1±0.4 - - 10.1±0.2
R-RT [6] 89.1±0.3 - 45.2±0.4 - 15.4±0.3 - - 6.6±0.3
CCIL [46] 86.4±0.1 - 50.5±0.2 - 18.5±0.3 - - 5.6±0.9
IL2A [81] 90.2±0.1 - 54.7±0.5 - 18.2±1.2 - - 5.5±0.7
BiC [71] 90.4±0.1 - 48.2±0.7 - 21.2±0.3 - - 10.2±0.9
SSIL [1] 88.2±0.1 - 49.5±0.2 - 26.0±0.1 - - 9.6±0.7

Rehearsal-Free

PASS [81] - 33.7±2.2 33.7±2.2 7.5±0.7 7.5±0.7 - 0.5±0.1 0.5±0.1
RanDumb (Ours) 98.3 (+7.8) 55.6 (+20.4) 55.6 (+5.9) 28.6 (+12.6) 28.6 (+2.6) 28.6 (+10.5) 11.6 (+6.6) 11.6 (-1.0)

using pretrained models along with unrestricted training time and access to all class samples at each
timestep. However, RanDumb is restricted to learning from a single pass seeing only one sample at a
time. RanDumb only learns a linear classifier over a given pretrained model in Benchmark F.

We use LAMDA-PILOT [61] codebase for all methods, except RanPAC and SLDA for which use
their codebases. We use the original hyperparameters. We only change initial classes to 2 and number
of classes per task to 1 and test using both ImageNet21K and ImageNet1K ViT-B/16 models.

Implementation Details (RanDumb). We evaluate RanDumb using five datasets: MNIST, CIFAR10,
CIFAR100, TinyImageNet200, and miniImageNet100. For the latter two, we downscale all images to
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Table 4: (Left) Benchmark B.2 (Ref: Table from OnPro [68]) We compare RanDumb with contrastive
representation learning based approaches which additionally use sophisticated augmentations. We
observe that RanDumb often outperforms these sophisticated methods despite all of these factors on
small-exemplar settings. (Right) Benchmark C (Ref: Table 2 from [60]). We compare RanDumb
with latest rehearsal-free methods. RanDumb outperforms them by 4% margin.

Method MNIST (5/2) CIFAR10 (5/2) CIFAR100 (10/10) TinyImageNet (100/2)
M = 0.1k M = 0.1k M = 0.5k M = 1k

SCR [40] 86.2±0.5 40.2±1.3 19.3±0.6 8.9±0.3
OCM [25] 90.7±0.1 47.5±1.7 19.7±0.5 10.8±0.4
OnPro [68] - 57.8±1.1 22.7±0.7 11.9±0.3

Rehearsal-Free

RanDumb 98.3 (+7.5) 55.6 (-2.2) 28.6 (+5.9) 11.6 (-0.3)

Method CIFAR100
(10/10)

Rehearsal-Free

PredKD [37] 24.6
PredKD + FeatKD 12.4
PredKD + EWC 23.3
PredKD + L2 21.5
RanDumb (Ours) 28.6 (+4.0)

32x32. We augment each datapoint with flipped version, hence two images are seen by the classifier
at each timestep (except for MNIST and Benchmark F). We normalize all images and flatten them into
vectors, obtaining 784-dim input vectors for MNIST and 3072-dim input vectors for all the other. For
Benchmark F, we compare RanDumb on seven datasets used in LAMDA-PILOT, replacing ObjectNet
with Stanford Cars as ObjectNet license prohibits training models. We use the 768-dimensional
features from the same pretrained ViT-B models used in this benchmark. We measure accuracy on the
test set of all past seen classes after completing the full one-pass. We take the average accuracy after
the last task on all past tasks [75, 25, 67]. In Benchmark A and F, since we have one class per task, the
average accuracy across past tasks is the same regardless of the task ordering. In Benchmarks A-E,
all datasets have the same number of samples, hence similarly the average accuracy across past tasks
is the same regardless of the task ordering. We used the Scikit-Learn implementation of Random
Fourier Features [52] with 25K embedding size, γ = 1.0. We use progressively increasing ridge
regression parameter (λ) with dataset complexity, λ = 10−6 for MNIST, λ = 10−5 for CIFAR10/100
and λ = 10−4 for TinyImageNet200/miniImageNet100.

3.1 Results

Benchmark A (single-class per task). We assess continual learning models in the challenging
setup of one class per timestep, closely mirroring our training assumptions, and present our results
in Table 2. Comparing across rows, and see that RanDumb improves over prior state-of-the-art
across all datasets with 2-6% margins. The only exception is PEC on CIFAR10, where RanDumb
underperforms by 3.3%. Nonetheless, it outperforms the second-best model, GDumb with a 500
memory size, by 4.9%.

Benchmark B.1 (many-classes per task). We present our results comparing with non-contrastive
methods in Table 3. We notice that scenario allows two classes per task and relaxes the memory
constraints for online continual learning methods, allowing for higher accuracies compared to
Benchmark A. Despite that, RanDumb outperforms latest OCL algorithms on MNIST, CIFAR10
and CIFAR100—often by margins exceeding 10%. The lone exception is GDumb achieving a
higher performance with 2K memory samples on TinyImageNet, indicating that this already is in the
high-memory regime.

Benchmark B.2 (many-classes per task, with contrastive losses and data augmentations). We
additionally compare our performance with the latest OCL approaches using contrastive losses with
sophisticated data augmentations. As shown in in Table 4 (Left), these advancements provide large
performance improvements over methods from Benchmark B.1. To compensate, we compare on lower
exemplar budgets. The best approach, OnPro [68], outperforms RanDumb on CIFAR10 by 2.2%
and TinyImageNet by 0.3%, but falls significantly short on CIFAR100 by 5.9%. Overall, RanDumb
achieves strong results compared to representation learning using state-of-the-art contrastive learning
approaches customized to continual learning, despite storing no exemplars.

Benchmark C (rehearsal-free). We compare against offline rehearsal-free continual learning
approaches in Table 4 (Right) on CIFAR100. Despite online training, RanDumb outperforms PredKD
by over 4% margins.
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Table 5: (Left) Benchmark D (Ref: Table 2 from VR-MCL [70]) We compare RanDumb with meta-
continual learning approaches operating in a high memory setting, allowing buffer sizes up to 1K
exemplars. RanDumb outperforms all methods except VR-MCL on TinyImageNet. RanDumb also
surpasses all prior work by a substantial 9.1% on CIFAR100. Allowing generous replay buffers shifts
scenarios to a high exemplar regime where GDumb performs the best on CIFAR10. Yet RanDumb
competes favorably even under these conditions. (Right) Benchmark E (Ref: Table 1 from SEDEM
[74]) We compare RanDumb with network expansion based approaches. Despite allowing access
to much larger memory buffers, RanDumb matches the performance of best method SEDEM on
MNIST, while exceeding it by 0.3% on CIFAR10 and 3.8% on CIFAR100.

Method CIFAR10 CIFAR100 TinyImageNet
(5/2) (10/10) (20/10)

M = 1k M = 1k M = 1k

Finetune 17.0 ± 0.6 5.3 ± 0.3 3.9 ± 0.2
LWF [37] 18.8 ± 0.1 5.6 ± 0.4 4.0 ± 0.3
A-GEM [12] 18.4 ± 0.2 6.0 ± 0.2 4.0 ± 0.2
IS [76] 17.4 ± 0.2 5.2 ± 0.2 3.3 ± 0.3
MER [55] 36.9 ± 2.4 – –
La-MAML [26] 33.4 ± 1.2 11.8 ± 0.6 6.74 ± 0.4
GDumb [49] 61.2 ± 1.0 18.1 ± 0.3 4.6 ± 0.3
ER [13] 43.8 ± 4.8 16.1 ± 0.9 11.1 ± 0.4
DER [9] 29.9 ± 2.9 6.1 ± 0.1 4.1 ± 0.1
DER++ [9] 52.3 ± 1.9 11.8 ± 0.7 8.3 ± 0.3
CLSER [5] 52.8 ± 1.7 17.9 ± 0.7 11.1 ± 0.2
OCM [25] 53.4 ± 1.0 14.4 ± 0.8 4.5 ± 0.5
ER-OBC [18] 54.8 ± 2.2 17.2 ± 0.9 11.5 ± 0.2
VR-MCL [70] 56.5 ± 1.8 19.5 ± 0.7 13.3 ± 0.4

Rehearsal-Free

RanDumb (Ours) 55.6 (-5.6) 28.6 (+9.1) 11.6 (-1.7)

Method MNIST CIFAR10 CIFAR100
(5/2) (5/2) (20/5)

M = 2k M = 1k M = 5k

Finetune 19.8 ± 0.1 18.5 ± 0.3 3.5 ± 0.1
MIR [3] 93.2 ± 0.4 42.8 ± 2.2 20.0 ± 0.6
GEM [12] 93.2 ± 0.4 24.1 ± 2.5 11.1 ± 2.4
iCARL [54] 83.9 ± 0.2 37.3 ± 2.7 10.8 ± 0.4
G-MED [32] 82.2 ± 2.9 47.5 ± 3.2 19.6 ± 1.5
GSS [4] 92.5 ± 0.9 38.5 ± 1.4 13.1 ± 0.9
CoPE [19] 93.9 ± 0.2 48.9 ± 1.3 21.6 ± 0.7
CURL [53] 92.6 ± 0.7 - -
CNDPM [36] 95.4 ± 0.2 48.8 ± 0.3 22.5 ± 1.3
Dynamic-OCM [73] 94.0 ± 0.2 49.2 ± 1.5 21.8 ± 0.7
SEDEM [74] 98.3 ± 0.2 55.3 ± 1.3 24.8 ± 1.2

Rehearsal-Free

RanDumb (Ours) 98.3 (0.0) 55.6 (+0.3) 28.6 (+3.8)

Benchmark D (meta-continual learning). We compare performance of RanDumb against meta-
continual learning methods, which require large exemplars with buffer sizes of 1K in Table 5 (left).
RanDumb achieves strong performance under these conditions, exceeding all prior work by a large
margin of 9.1% on CIFAR100 and outperforms all but VR-MCL approach on the TinyImageNet
dataset. GDumb performs the best on CIFAR10, indicating this is already in a large-exemplar regime
uniquely unsuited for RanDumb.

Benchmark E (network-expansion). We compare RanDumb against network expansion-based
online continual learning methods in Table 5 (right). These approaches grow model capacity to
mitigate forgetting while dealing with shifts in the data distribution, and are allowed larger memory
buffers. RanDumb matches the performance of the state-of-the-art method SEDEM [74] on MNIST,
while exceeding it by 0.3% on CIFAR10 and 3.8% on CIFAR100.

3.2 Analysis of RanDumb

Ablating Components of RanDumb. We ablate the contribution of only using Random Fourier
features for embedding and decorrelation to the overall performance of RanDumb in Table 6 (left,
top). Ablating the decorrelation and relying solely on random Fourier features, colloquially dubbed
Kernel-NCM, has performance drops ranging from 6-25% across the datasets. Replacing random
Fourier features with raw features, ie. the SLDA baseline, leads to pronounced drop in performance
ranging from 3-14% across the datasets. Moreover, ablating both components results in the base
nearest class mean classifier, and exhibits the poorest performance with an average reduction of 17%.
Therefore, both decorrelation and random embedding are crucial for RanDumb.

Impact of Embedding Dimensions. We vary the dimensions of the random Fourier features ranging
from compressing 3K input dimensions to 1K to projecting it to 25K dimensions and evaluate its
impact on performance in Figure 3. Surprisingly, the random projection to a 3x compressed 1K
dimensional space allows for significant performance improvement over not using embedding, given
in Table 6 (left, top). Furthermore, increasing the dimension from 1K to 25K results in improvements
of 3.6%, 10.4%, 7.0%, and 2.5% on MNIST, CIFAR10, CIFAR100, and TinyImageNet respectively.
Increasing the embedding sizes beyond 15K, however, only results in modest improvements of 0.1%,
1.4%, 1.1% and 0.2% on the same datasets, indicating 15K dimensions would be a good point for a
performance-computational cost tradeoff.
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Figure 3: Accuracy of RanDumb with respect to embedding dimensionality across datasets.

Table 6: (Left) Analysis of RanDumb: We study contributions of decorrelation, random embedding,
and data augmentation. We further vary the embedding sizes and regularisation parameter. Finally,
we compare with alternate embeddings. (Right) Architectures (Ref: Table 1 from Mirzadeh et al.
[45]) RanDumb surpasses continual representation learning across a wide range of architectures,
achieving close to 94% of the joint performance.

Method MNIST CIFAR10 CIFAR100 T-ImNet m-ImNet
(10/1) (10/1) (10/1) (200/1) (100/1)

Ablating Components of RanDumb

RanDumb 98.3 55.6 28.6 11.1 17.7
-Decorrelate 83.8 (-14.5) 30.0 (-25.6) 12.0 (-16.6) 4.7 (-6.4) 8.9 (-8.8)
-Embed 88.0 (-10.3) 41.6 (-14.0) 19.0 (-9.6) 8.0 (-3.1) 12.9 (-4.8)
-Both 82.1 (-16.2) 28.5 (-27.1) 10.4 (-18.2) 4.1 (-7.0) 7.28 (-10.4)

Effect of Adding Flip Augmentation

With - 55.6 28.6 11.1 17.7
Without 98.3 52.5 (-3.1) 26.9 (-1.7) 10.7 (-0.4) 16.6 (-1.1)

Variation with Ridge Parameter λ

λ = 10−6 98.3 53.9 27.8 10.3 15.8
λ = 10−5 - 55.6 28.6 11.1 15.9
λ = 10−4 96.6 52.6 26.1 11.6 17.7

Variation Across Embedding Projections

No-Embed 88.0 41.6 19.0 8.0 12.9
RP+ReLU (RanPAC) 95.2 48.8 23.1 9.7 15.7
RanDumb (Ours) 98.3 (+3.1) 55.6 (+6.8) 28.6 (+5.5) 11.1 (+1.4) 17.7 (+2.0)

Model CIFAR100
Joint 79.58

CNN x1 62.2 ±1.35
CNN x2 66.3 ±1.12
CNN x4 68.1 ±0.5
CNN x8 69.9 ±0.62
CNN x16 76.8 ±0.76
ResNet-18 45.0 ±0.63
ResNet-34 44.8 ±2.34
ResNet-50 56.2 ±0.88
ResNet-101 56.8 ±1.62
WRN-10-2 50.5 ±2.65
WRN-10-10 56.8 ±2.03
WRN-16-2 44.6 ±2.81
WRN-16-10 51.3 ±1.47
WRN-28-2 46.6 ±2.27
WRN-28-10 49.3 ±2.02
ViT-512/1024 51.7 ±1.4
ViT-1024/1546 60.4 ±1.56

RanDumb (Ours) 74.8 (-2.0)

Impact of Flip Augmentation. We evaluate the impact of adding the flip augmentation on the perfor-
mance of RanDumb in Table 6 (left, middle). Note that MNIST was not augmented. Augmentation
provided large gains of 3.1% on CIFAR10, 1.7% on CIFAR100, and 0.4% on TinyImageNet. We did
not augment the data further with RandomCrop transform as done with standard augmentations.

Impact of Varying Ridge Parameter. All prior experiments use a ridge parameter (λ) that increases
with dataset complexity: λ = 10−6 for MNIST, 10−5 for CIFAR10 and CIFAR100, and 10−4 for
TinyImageNet and miniImageNet. Table 6 (left, middle) shows the effect of varying λ on RanDumb’s
performance. With a smaller λ = 10−6, CIFAR10, CIFAR100, TinyImageNet and miniImageNet all
exhibit minor drops of 0.1%-1.7%, 0.8%, 0.8%. Increasing shrinkage to a λ = 10−4 reduces CIFAR10
and CIFAR100 performance more substantially by 3% and 2.5% versus their optimal λ = 10−5.
On the other hand, this larger λ leads to improvements of 0.5% and 1.8% on TinyImageNet and
miniImageNet. This aligns with the trend that datasets with greater complexity benefit from more
regularisation, with the optimal λ balancing under- and over-regularisation effects.

Comparison with Extreme Learning Machines. We compared our random Fourier features with
random projections based extreme learning machines, as recently adapted to continual learning by
RP+ReLU [41] in Table 6 (left, bottom) with their best embedding size. Our method performs
significantly better on each dataset, averaging a gain of 3.4%.

Comparisons across Architectures. In table 6 (right), we compare whether using random Fourier
features as embeddings outperforms models across various architectures for continual representa-
tion learning. We use experience replay (ER) baseline in the task-incremental CIFAR100 setup
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Figure 4: In previous experiments, models were trained from scratch, so we used random projec-
tion. Here, with a pretrained backbone, RanDumb starts with the frozen pretrained backbone to
explore whether continual representation learning is necessary. By comparing this frozen backbone
(RanDumb) with a continually trained one, we show that using the pretrained features consistently
matches the best continually learned representations, similarly challenging the value of continual
representation learning.

Table 7: Benchmark F We compare RanDumb
with prompt-tuning approaches using ViT-B/16
ImageNet-21K/1K pretrained models using 2 init
classes and 1 class per task setting. Most prompt-
tuning based methods collapse and RanDumb
achieves either state-of-the-art or second-best per-
formance. RanPAC-imp is an improved version of
the RanPAC mitigating the instability issues identi-
fied in a previous version of this work.

Method CIFAR IN-A IN-R CUB VTAB
ViT-B/16 (IN-1K Pretrained)

Finetune 1.0 1.2 1.1 1.0 2.1
L2P [67] 2.4 0.3 0.8 1.4 1.3
DualPrompt [66] 2.3 0.3 0.8 0.9 4.2
CODA-Prompt [59] 2.6 0.3 0.8 1.9 6.3
Adam-Adapt [80]) 76.7 49.3 62.0 85.2 83.6
Adam-SSF [80] 76.0 47.3 64.2 85.6 84.2
Adam-VPT [80] 79.3 35.8 61.2 83.8 86.9
Adam-FT [80] 72.6 49.3 61.0 85.2 83.8
Memo [79] 69.8 - - 81.4 -
iCARL [54] 72.4 - 35.2 72.4 -
Foster [65] 52.2 - 76.8 86.6 -
NCM [31] 78.3 44.3 62.5 84.8 88.2
SLCA [78] 86.3 - 52.8 84.7 -
RanPAC [41] 88.2 39.0 72.8 77.7 93.0
RanPAC-imp [41] 87.8 43.5 72.6 89.6 93.0
RanDumb (Ours) 84.5 49.5 66.9 88.0 93.6

ViT-B/16 (IN-21K Pretrained)

Finetune 2.8 0.5 1.2 1.2 0.5
Adam-Adapt [80] 82.4 48.8 55.4 86.7 84.4
Adam-SSF [80] 82.7 46.0 59.7 86.2 84.9
Adam-VPT [80] 70.8 34.8 53.9 84.0 81.1
Adam-FT [80] 65.7 48.5 56.1 86.5 84.4
Foster [65] 87.3 - 5.1 86.9 -
iCARL [54] 71.6 - 35.1 71.6 -
NCM [31] 83.5 41.4 54.8 86.5 88.5
SLCA [78] 86.8 - 54.2 82.1 -
RanPAC [41] 89.6 26.8 67.3 87.2 88.2
RanPAC-imp [41] 89.4 33.8 69.4 89.6 91.9
RanDumb (Ours) 86.8 42.2 64.9 88.5 92.4

(for details, see Mirzadeh et al. [45] as it differs
significantly from earlier setups). Our compari-
son spanned various architectures. The findings
revealed that RanDumb surpassed the perfor-
mance of nearly all considered architectures,
and achieved close to 94% of the joint multi-
task performance. This suggests that RanDumb
outperforms continual representation learning
across architectures.

Conclusion. Overall, both random embedding
and decorrelation are critical components in
the performance of RanDumb. Using random
Fourier features is substantially better than Ran-
PAC. Lastly, one can substantially reduce the
embedding dimension without a large drop in
performance for large gains in computational
cost, additional augmentation may further sig-
nificantly help performance and optimal shrink-
age parameter increases with dataset complexity.
RanDumb outperforms continual representation
learning across a wide range of architectures.

3.3 Should we learn representations when
strong pre-trained features are available?

Say for a specific application (e.g., where the
test data distribution is more or less known dur-
ing training), practitioners should use strong
pretrained models as a starting point as they
are likely to perform better. However, we still
ask the key question of whether representation
learning is necessary by fixing the pretrained
backbone and only training the linear classifier,
as illustrated in Figure 4 in the next benchmark.

Benchmark F. We compare performance of ap-
proaches which do not further train the deep
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network like RanDumb against popular continual finetuning and prompt-tuning approaches in Table 7.
We discover that prompt-tuning approaches completely collapse under large timesteps and approaches
which do not finetune their pretrained model achieve strong performance, even under challenging one
class per timestep constraint. Note that RanPAC [41] adds a RP+ReLU and finetunes in a first-session
adaptation fashion over RanDumb, yet fails to achieve higher accuracies.

Overall, despite RanDumb being exemplar-free, it outperforms nearly all online continual learning
methods across various tasks when exemplar storage is limited. We specifically benchmark on lower
exemplar sizes to complement settings in which GDumb does not perform well.

4 Related Works

Random Representations. There have been extensive theoretical and empirical investigations into
random representations in machine learning, compressed sensing, and other fields, often utilizing
extreme learning machines [56, 14, 21] (see [30, 29] for a survey). Other investigations include
efficient kernel methods using Fourier features and Nyström approximations [52, 69], and extensions
to efficiently parameterize linear classifiers [2]. They are also embedded into deep networks [17, 35,
72, 16]. We tailored the already successful random fourier representations [52] to the problem at
hand and applied to the online continual learning problem for the first time.

Continual Representation Learning. There are various works focusing on continual representation
learning itself [53, 20, 39, 28], but they address the problem of alleviating the stability-plasticity
dilemma in high-exemplar and offline continual learning scenarios where models are trained until
convergence. In comparison, we focus on online and low-examplar regime.

Representation Learning Free Methods in CL. Several works have developed the idea of using
fixed pretrained networks after adapting on the first task across various settings [50, 41, 24]. Our
work contributes to this growing evidence, however, we do not perform first-task adaptation [47], and
propose OAS-shrinked SLDA as structurally simplest but highly accurate continual linear classifier
without any extra bells-and-whistles. Moreover, we are the first work to introduce a representation
learning free method with random features for continually learning from scratch.

Equivalent formulations to RanDumb. If the classes are equiprobable, which is the case for most
datasets here, nearest class mean classifier with the Mahalanobis distance metric is equivalent to linear
discriminant analysis (LDA) classifier [42]. Hence, one could say RanDumb is exactly equivalent to
a Streaming LDA classifier with an approximate RBF Kernel. Alternatively, one could think of the
decorrelation operation as explicitly decorrelating the features with ZCA whitening [7].

5 Discussion and Concluding Remarks

Our investigation reveals a surprising result — simply using random embedding (RanDumb) consis-
tently outperforms learned representations from methods specifically designed for online continual
training. Furthermore, using random/pretrained features also recovers 70-90% of the gap to joint
learning, leaving limited room for improvement in representation learning techniques on standard
benchmarks. Overall, our investigation questions our understanding of how to effectively design and
train models that require efficient continual representation learning, and necessitates a re-investigation
of the widely explored problem formulation itself. We believe adoption of computationally bounded
scenarios without memory constraints and corresponding benchmarks [51, 50, 22] could be a promis-
ing way forward.

Limitations & Future Directions. We currently do not provide theory or justification for why
training dynamics of continual learning algorithms fails to effectively learn good representations;
doing so would provide deeper insights into continual learning algorithms. Moreover, our proposed
method, RanDumb with random Fourier features is limited in scope towards low-exemplar scenarios
and online-continual learning. Extending studies on representation learning to high-exemplar and
offline continual learning scenarios might be exciting directions to investigate.

Social Impact. RanDumb is an algorithm solely designed to perform a scientific study and we do not
recommend use of RanDumb for any application in real-world production systems, hence no direct
societal impact or explicit limitations on use in production systems is discussed.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and/or introduction should clearly state the claims made, including
the contributions made in the paper along with important assumptions.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitation Section is provided in the supplementary material.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Rahimi and Recht [52] from our references details the theory for why random
fourier representations perform so well quite beautifully. The random representations do
not change (no continual aspect), hence the theory can be applied as-is in our case with no
changes. We do not claim any novel theoretical contributions.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: RanDumb is fairly simple to implement. We dedicated half a page towards
explaining hyperparameters and other information needed to reproduce all of our results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide code in the supplementary material to reproduce our results.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We use standard datasets and splits, we provide hyperparameters in experimen-
tal details along with ablations in experiment sections to understand the contribution of each
component in our algorithm.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We state here that the only random component being the random fourier
features kernel across, otherwise our method is simple and exactly reproducible. We
conducted experiments with three different initialisations corresponding to seeds of the
random kernel in sklearn to investigate this and different kernel initialisations lead to around
±0.2 variation in the reported results.
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8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Detailed in Section 3 in Implementation Details. For easy access, we restate:
All experiments were conducted on a CPU server with a153 48-core Intel Xeon Platinum
8268 CPU and 392GB of RAM, requiring less than 30 minutes per experiment.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the ethics guidelines and confirm that we do not use human
subjects, use existing datasets, explicitly discuss social impacts.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The primary contribution in RanDumb was not to introduce a novel state-
of-the-art continual learning method, but challenge prevailing assumptions and open a
discussion on the efficacy of representation learning in continual learning algorithms. As
such, we do not recommend use of RanDumb for deployment in real-world production
systems, hence no direct societal impact or explicit limitations on use in production systems
is discussed.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not have any high-risk model or dataset introduced.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: MNIST, CIFAR-10, CIFAR-100, tinyImageNet and miniImagenet are cited
appropriately. The licenses for these datasets is not explicitly released, hence we do not
include that information.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, we provide RanDumb with proper documentation under a GPL3 license.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing or research with human subjects was performed.

16

https://neurips.cc/public/EthicsGuidelines


15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing or research with human subjects was performed.
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A Conceptual and Methodological Differences from GDumb [49]

Our core claim is that random representations from raw image pixels consistently outperform deep-
learning-based representations designed for online continual learning. In contrast, GDumb’s central
claim is that continual learning methods need not actually minimize forgetting of previous online
samples as their performance can be entirely recovered simply by a baseline using the latest memory.

The key differences between thee two works is as follows:

• Forgetting of Online Samples (GDumb): GDumb argues that continual learning methods
suffer from forgetting online samples and addresses this by relying entirely on memory.
This dismisses the value of directly learning from online data, as GDumb does not retain
or utilize information from online samples. RanDumb, in contrast, exclusively learns from
online samples without using memory, emphasizing the significance of ongoing data streams
for performance.

• Inadequate Representation Learning (RanDumb): GDumb’s approach to representation
learning mirrors the experience replay (ER) baseline but does not address the quality
of the learned representations. RanDumb explicitly focuses on the inadequacy of these
representations and ablates their role to highlight their impact on continual learning. This
reveals a key distinction in how each method evaluates representation quality in online
learning settings.

Furthermore, the experimental setups for RanDumb and GDumb highlight their complementary
nature:

• Memory Settings: RanDumb primarily targets low-memory environments, whereas GDumb
excels in high-memory scenarios. For example, in rehearsal-free settings without exemplar
storage, a common trend in continual learning, GDumb would inherently produce random
performance due to its dependence on memory. RanDumb, on the other hand, thrives in
these low-memory contexts, providing an alternative solution when memory is constrained.

• Complementary Nature: RanDumb and GDumb occupy complementary spaces within the
continual learning landscape. RanDumb performs well in benchmarks where GDumb falters,
and vice versa. As GDumb has been acknowledged as a valuable baseline, we argue that
RanDumb similarly deserves recognition in the continual learning literature for its distinct
strengths.

In summary, the only commonality between RanDumb and GDumb is that they serve as simple
baselines. The points above underscore the fundamental distinctions between the two methods and
the specific aims behind their development, as emphasized here and in the title of this work.
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B Online Continual Learning: Our Setting

Current Problem formulation. We formally define the online continual learning (OCL) problem as
follows. In classification settings, we aim to continually learn a function f : X → Y , parameterized
by θt at time t. OCL is an iterative process where each step consists of a learner receiving information
and updating its model. For RanDumb, at each step t of the interaction,

1. One data point (xt, yt) ∼ πt sampled from a non-stationary distribution πt is revealed.

2. Learner updates the model θt+1 using a compute budget, Blearn
t and discards the datapoint.

Simplifications by Compared Approaches. Traditional online continual learning literature makes
several concessions over this which makes the problem easier by allowing the datapoint to be saved
for more timesteps. Training deep networks requires those simplifications as more data per batch
helps stabilize the gradient updates. Typically, compared approaches store samples across for 10
timesteps, and performs an update with that batch of samples before discarding it. Most works further
relax this by storing a memory buffer of samples indefinitely.

Drawbacks. Traditional online continual learning setups cannot effectively test for rapid adaptation
because they use a class-incremental setup. Online learning is generally intended to enable quick
adaptation to changing data and label distributions in a data stream. We believe a better formulation
for online continual learning is described in [50].
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