
Code Mixing “computationally bahut challenging hai”
Comprehensive Viva Report

Prashant Kodali - PhD CSE - 2018801011

August 2021

Contents

1 Introduction 3

1.1 Utility of Code mixing . 4

2 Typological Frameworks for Code mixing 6

2.1 Difference Between Word Borrowing and Code mixing 6

2.2 Constraint Based Grammatical Theories for Code mixing 6

3 Challenges In Processing Code Mix Text 10

3.1 Data Availability and Collection . 10

3.2 Source of Code Mix Data . 10

3.2.1 Code Mixing in Social Media . 11

3.3 Language Identification . 11

3.4 Transliteration, Lack of Standard Spellings and Need for Appropriate Pre-processing . 12

3.5 Language Pairs - The sheet variety . 12

4 Measures of Code Mixing 13

5 Data, Resources and Tasks 17

5.1 Datasets and Tasks . 17

1

5.2 Benchmarks . 19

5.3 Computational Approaches . 21

6 Gaps Identified 22

6.1 Efficient Code mix Data Collection, Pre-processing and Annotation Methods 22

6.2 Transfer Learning from Large Multilingual Models, Monolingual Corpora for Richer
Representations for Code Mixing Tasks . 22

6.3 Lack of Standard Pipelines for Processing Code Mix Text for Applicaitons 23

7 Current Work Under Progress 24

7.1 Code Mix Data Collection . 24

7.2 Quantitative and Qualitative Analysis of Code Mix Utterances 25

7.3 Publications . 25

8 Future Work 26

8.1 Bias Evaluation of Different Models . 26

8.2 Machine Translation and Generation . 27

8.3 Comparison of Different Multilingual Representations 27

9 Limitations 28

10 Selected Papers 29

References 31

2

1 Introduction

Code mixing and Code switching refer to the phenomena where in a multilingual person will alternate
between two or more languages. Code Switching is “juxtaposition within the same speech exchange of
passages of speech belonging to two different grammatical systems or subsystems” [1]. Code mixing
refer to all cases where lexical items and grammatical features from two languages appear in one
sentence [2]. In language contact literature [2, 3, 4], sometimes researchers have distinguished between
the terms Code mixing and Code switching. In terms of the definition,

• Code mixing refers to the mixing of various linguistic units (morphemes, words, modifiers,
phrases, clauses and sentences) primarily from two participating grammatical systems within a
sentence.

• Code switching refer to the use of various linguistic units (words, phrases, clauses, and sen-
tences) primarily from two participating grammatical systems across sentence boundaries within
a speech event.

Usually, Code Switching is inter-sentences while Code mixing is intra-sentential phenomena. The dis-
tinction between Code mixing and Code Switching is controversial, and there are differing perspective
among scholars on the specific definition of the two terms, and some have questioned the utility of
maintaining such distinction[3].

In this report, we discuss state of current computational pipelines for processing sentences (as part
of larger speech act, or on its own) which have entities from more than one language. Irrespective
of the nature of mixing two languages: word borrowing, Code mixing, Code switching - computa-
tionally, all these manifestations pose a challenge for automatic text processing pipelines. Hence, we
don’t make the distinction between Code mixing, Code switching. We have used these terms, Code
mixing/switching interchangeably through out this report.

In the following chapters, we attempt to understand the existing computational methodologies
(data, pipelines etc) proposed for handling Code mix sentences, and identify aspects which can be
improved for enhancing the performance of automatic processing of Code mix sentences.

To quote a few examples of Code mixing :

1. Language Pair: Hindi-English
Example: Hum khelne jaa raha hain. Why don’t you join us?
Translation: We are going to play. Why don’t you join us?

2. Language Pair: Malyalam-English
Example: nee naale evng shoppingnu varunnundo?[5]
Translation Are you coming for shopping tomorrow evening?

3. Language Pair: Bengali-English
Example: Yaar tu to, GOD hain. tui JU te ki korchis? Hail u man! [6]

3

Translation: Buddy you are GOD. What are you doing in JU? Hail u man!

4. Language Pair: Hindi-English
Example: Main kal movie dekhne jaa rahithi and raaste me I met Sudha. [7]
Translation : I was going for a movie yesterday and on the way I met Sudha.

5. Language Pair: German-Turkish
Example: Frau Kummer. Echte Name-si Christa. [8]
Translation: ‘Ms. Kummer. (Her) real name is Christa’

Example (1) demonstrates inter-sentential Code mixing between english and hindi , where first part
of the example is in romanized Hindi, and the second part is in English. Example (2,5) are examples
of intra-sentential Code mixing involving English - Malyalam, and Turkish-German, respectively.
Example (2) exhibits two additional properties: a) Spelling of ”evening” ; b) the inflection of the word
”shopping” to ”shoppingnu”, which is accusative case for the word ”shopping” in Malyalam. Similarly,
in Example (5) a Turkish possessive case marker (-si) is attached to a German noun. Example (3)
showcases Code mixing involving English Hindi and Bangla, and is a mixture of inter-sentential and
intra-sentential Code mixing. Example (4) demonstrates intra-sentential Code mixing in Hindi and
English. Both inter-sentential and intra-sentential Code mixing occurrences pose various challenges
to the computational tools used to automatically process text. Various linguistic studies have made
distinction between Code mixing and Code switching based on certain criteria, while others have
used either of these terms as an umbrella term to represent any kind of language mixing. In this
report, Code mixing and Code switch are used as umbrella terms for all types of mixing and are used
interchangeably, as all of these phenomena pose challenges, of varying degrees, for computational
systems used to automatically process such text.

1.1 Utility of Code mixing

Twitter users are known to generate multilingual texts (Ling et al., 2013, 2014), with Rijhwani et al.
(2017) estimating that 3.5% of tweets are Code switched [9, 10, 11]. Further, users also modulate
their writing style for different social registers (Eisenstein, 2015; Tatman, 2015).

It may also be motivated by social, psychological and conversational factors. When bilinguals
switch or mix two languages, there might be underlying reasons causing that particular way of Code
switching and Code mixing. [12] lists some of the reasons and motivations behind Code mixing. There
are number of factors such as the participants in a conversation, the topic of conversation, when and
where such conversation is occurring,

• Participant Roles and Relationship : more likely to Code mix with friends that with parents.

• Situational Factors : a particular language is more suited to particular group or topic.

• Message-Intrinsic Factors : Usage of Code mixing when quoting, reiteration, idioms , interjec-
tions etc.

4

• Language Attitudes, Dominance, and Security : more likely to use mix elements of dominant
language when using non-dominant language,

• Bilinguals’ Perception of Code Mixing and Code switching : Used in interpersonal , informal
settings and interactions.

In [13], authors analyse the Hi-En Code mix tweets from different domains to identify the pragmatic
function of Code mixing and propose a annotation methodology for the same. Tweets were collected
from different domains (Sports, Movies, Politics etc.) and classify them into different languages :
English, Romanised Hindi, Code Switching and others. Each tweet is annotated with their pragmatic
functional category as mentioned below :

1. Narrative - Evaluative : Tendency to switch when moving from expressing facts to opinions.
Example : petrol prices up by rs 3.18/litre, diesel by rs 3.09/litre. sab ki aesi tesi kr di.

2. Reinforcement : Reinforcing a opinion by a related one.
Example : best wishes to indian team tiranga aapke saath hai

3. Sarcasm: Switch language to express a sarcastic opinion.
Example : all is good...but paisa kahase aayega prabhu

4. Quotations: Quoting a sentence from a language and expressing opinion about it in another
language. Example : ’bhaag modi bhaag’ will be a national slogan very soon!

5. Imperative: Switching between an opinion and imperative statement.
Example : please stop this aapstorm mein ek aam kisaan hu aur meri fasal kharab ho jayegi

6. Cause - Effect: Switch between reason or cause for a statement.
Example : no need to worry bade bade matches main choti choti galtiyan hoti rehti hai indvssa

7. Reported Speech : To quote a sentence from another conversation.
Example : drkumarvishwas had said during victory celebration after anna fast that: janlokpal
pass hone do wo jashn hoga duniya dekhegi.

8. Abuse / Negative Sentiment : Switching to express a negative sentiment.
Example : Seeing the movie I thought ki kisi bandar ke haath me camera de do to wo bhi movie
banaa le

9. Others : variety of other reasons like Wishing, greetings etc.
Example : good morning ...aaj ka din kitna achhaa hai...aisa lag raha sapna dekh rahe hai

There might be more switching categories if we look at other social media, texts other than social
media and speech data.

[7] analyse Code mix sentences from Facebeook generated by En-Hi bilingual users and

There isn’t hard boundary between lexical borrowing and Code mixing. The words first manifest
as borrowed Code mixing and then slowly gets adapted into the lexicon of the language by repeated
usage;

5

2 Typological Frameworks for Code mixing

1. Does Code mixing have a ”third-grammar” of it’s own? Since grammar is
relevant at a sentence level, this line of enquiry will address only the

intra-sentential Code mixing.

2. Is there a grammatical theory/generative grammar for Code mixing which can
generate all legitimate Code mix sentences ?

3. Are the grammatical theories language specific or are localised to a particular
language pair?

4. Do the questions listed above have any implication on computational
approaches to Code mixing?

We try to address these questions in this chapter.

2.1 Difference Between Word Borrowing and Code mixing

[14] mention that “It is impossible in principle and in practice to draw an absolute boundary between
Code switching and borrowing. They are indeed two separate phenomena, but they are linked by
a continuum: as in so many other areas of historical linguistics, the dividing line between them is
fuzzy, not sharp”. The same has been reinforced by [7], who say that Code switched word or other
morpheme becomes a borrowing as its usage becomes more frequent, until it is a assimilated as part
of the recipient language, learned as such by new learners.

In [15], authors suggest that linguists define broadly three forms of borrowing, (i) cultural, (ii)
core, and (iii) therapeutic borrowings. In cultural borrowing, a foreign word gets borrowed into native
language to fill a lexical gap. This is because there is no equivalent native language word present to
represent the same foreign word concept. For instance, the English word ‘computer’ has been borrowed
in many Indian languages since it does not have a corresponding term in those languages3 . In core
borrowing, on the other hand, a foreign word replaces its native language translation in the native
language vocabulary. This occurs due to overwhelming use of the foreign word over native language
translation as a matter of prestige, ease of use etc. For example, the English word ‘school’.

2.2 Constraint Based Grammatical Theories for Code mixing

Early research in the field of Code mixing identified that, like any other linguistic phenomena, even
Code mixing is constrained and rule-governed, and the analysis that followed this observation at-
tempted to formulate language specific constraints that answer some of the aforementioned questions

6

[16]. Various constraint based theories have been proposed to explain various patterns of Code mixing
instances.

Linguistic analysis into Code mixing and its typology has a long tradition, and over the years there
have been various constraint based theories proposed to explain Code mixing patterns. [2] provides a
framework to categorize the various constraints proposed into distinct buckets and highlight interplay
between these abstracted categories of Code mix theories. Following is a list of the most prominent
ones:

• Insertion: lexical units from one language are inserted into a structure of another language.
Insertion of an alien lexical or phrasal category into a given structure. Approaches building
on the notion of ”insertion” attempt to formulate constraints in terms of structural properties
of some base or matrix structure. Difference in approaches could be of size/type of inserted
element : noun versus noun phrase.

One such example could be Matrix language framework (MLF) proposed by [17]. MLF dif-
ferentiates between matrix language (ML) and the embedded language (EL). Matrix language
provide the syntactic framework for the utterance, dictating the position of content and func-
tional words, and content words from Matrix or Embedded Language can be placed in the
syntactic framework.

Figure 1: Code mixing based on Insertion process : Structurally alteration would be akin to the figure
above. Here A and B are language labels for non-terminal nodes (markers of constituents belonging
to one language), and a,b are labels for terminal nodes, indicating that the words chosen are from
particular language. In this figure single constituent B (with words b from the same language) is
inserted into a structure defined by language A, with words a from that language. [2]

• Alteration: Alteration between structures from languages. Grammatical constraints proposed
based on these process, view constraints on mixing in terms of compatibility or equivalence of
langauges involved at the switch point. An example of constraint based on this principle is
Poplack’s Equivalence Constraint and Free Morpheme Constraint which proposes that

– Equivalence Constraint: Code mixing occurs largely at sites of equivalent constituent order.

7

Codes will tend to be switched at points where the surface structures of the languages map
onto each other. Code switches are allowed within constituents so long as the word-order
requirements of both languages are met at sentential level.

– Free Morpheme constraint : A switch may not occur between a bound morpheme and a
lexical item unless the latter has been phonologically integrated into the language of the
bound morpheme.

Figure 2: Code mixing based on Alteration process : Here a constituent from language A (with
words from the same language) is followed by a constituent from language B (with words from that
language). The language of the constituent dominating A and B is unspecified.[2]

• Congruent Lexicalization: Congruent Lexicalisation is assimilation of material from different
lexical inventories into a shared grammatical structure. Congruent Lexicalisation hypothesises
that there is a largely shared structure, lexicalised by elements from either language. The notion
of congruent lexicalization underlies the study of style shifting and dialect/standard variation,
rather than bilingual language use proper, and addresses the languages contact and assimilation
aspect of multilingualism.

Figure 3: Code mixing based on Congruent Lexicalisation process : Here the grammatical structure
is shared by languages A and B, and words from b oth languages a and b are inserted more or less
randomly. [2]

8

The difference between these three processes as formulated by [2] is gradual and not a absolute.
This implies particularly that in many immigrant communities, insertion o f new items and expressions
into the home language can evolve into congruent lexicalization and then possibly into alternation
(with set phrases and expressions from the ethnic language interspersed in the new language).

Figure 4: Schematic representation of the three main styles of Code mixing and transitions between
them.[2]

However, for all the proposed constraints across aformentioned categories, there have been mul-
tiple counter-examples and objections made. [16] demonstrated that an approach which engages in
the analysis of mix-language data, without reference to specifically crafted constraints or other mech-
anisms, can be successful, and may reveal interesting and subtle properties of the languages under
analysis. These theories provide a structured framework for analysis and building automatic com-
putational pipelines for Code mix sentences. Some of these syntactic theories of Code mixing have
under-pined computational tools : [18] demonstrated a toolkit for automatically generate Code mixed
data given parallel data in two languages, using Equivalence Constraint theory and Matrix language
theory. While linguistics have focused on formulating the topological framework for Code mixing, NLP
research has largely, with a few exceptions, relied on the notion of matrix language model that was
advanced by [19, 17]. There have been cases where incorporating grammatical theories into computa-
tional work improved the performance of the models [8], hence combining theoretical understanding of

9

Code mixing into computational tools could create better tools for processing Code mixed language.

3 Challenges In Processing Code Mix Text

3.1 Data Availability and Collection

Sociolinguists have linked presence of Code mixing, or lack thereof, to the situational setting in
which communication is taking place, where in Code mixing is “restricted to the role of informal
communication in private settings, while the more prestigious cosmopolitan language is considered
the voice of intellect and of public formal communication” [20]. Code mixing occurs more in informal
settings. Thus Code mixing is more likely to seen in speech corpora and in social media data. However,
both present their challenges: privacy of the speaker. Speech recording needs prior permissions, and
sharing social media has its own privacy concerns. Another challenge is collecting such data. There
are following options one can consider :

• Collect data around a topic and then filter out the Code mix instances
As an example, we can consider collecting data from online social networks, using hashtags or
query terms that are are trending in a state or city, and then try to filter out instances which
are Code mix using a Language identification or such heuristics. However, the primary problem
with such approach is that they end up casting a wide net : collecting a lot of data out of which
only a few turn out to be Code mix.

• Collect data using query terms which are more likely to have Code mix sentences
As an example, we can collect data using query terms such as: ” happy ki app” or ”i wish ki”,
which are more likely to collect instances of Code mix data. Compared to the method described
earlier, this is more likely to have a higher percentage of Code mixed sentences. However, the
query terms can make the collected corpora susceptible to selection bias. Methodology of finding
and selecting such high-Code mix-yield becomes highly crucial step.

• Identifying users on online social networks who frequencty Code mix and collect
their posts
In [21], instead of use specific query words, authors identified Twitter user profiles who were
frequently Code mixing and used their timelines to build a Code mixed corpus. But finding the
initial set of usernames who are frequently Code mixing is difficult.

.

3.2 Source of Code Mix Data

Getting Code mix data is a challenge : because it is more likely to occur in speech events, informal
settings. Early research of Code mixing was carried out on the spoken communication between

10

multilingual speakers. But with the advent of Internet and with increasing usage of Internet, the
availability of Code mixing in written form gets more accessible. As the usage of Internet has expanded
there has been a evolution of language contact, where people interact with others in their own native
language or a mixture of languages if they are multilingual. Further, Internet also provides the
informal setting where users are more likely to interact using native language or mixture of languages.
There have been various studies which have looked at Code mixing on various social media platforms.
Some have looked at it from a computational perspective for automatic processing of such text and
some from the linguistic perspective to identify the nature of Code mixing in written form.

3.2.1 Code Mixing in Social Media

[22] and [23] analyse the online Usenet news forums used by emigre sikh communities which are
multilingual, Internet Relay Chats (IRC), where bilingual users are active. Their analysis shows that
the more Code mixing is found in synchronous IRC (where two people are simultaneously online) than
in asynchronous Usenet forums, thereby postulating that the tendency for synchronous modes to favor
Code mixing. They also observe that although English remains the major language for interaction,
there are substantial number of instances of interactions using native language and a mix of English and
native language. [24] present analysis of script-mixing between En-Hi languages in Twitter, identifying
various reasons behind mixing scripts of two languages, and showing few examples of Code mixing
in a script-mixing setting. [7] analyse the Hi-En Facebook posts and note that there is significant
amount of Code mixing in the form of En in Hi matrix and vice versa. In a recent study, [25], authors
present a large dataset of Code switched posts collected from multiple multilingual discussion forums
on Reddit, and present a corpus comprising of Code mixing between En and 10 other languages and
try to identify the map the reasons for Code mixing in written format as compared to spoken form.

The following chapters of this report are based on the text as a source of Code mix data, and
within that, data sourced from online social networks occupies a primary role. The same also reflects
in Section 5, where we list down the available data sources of Code mix sentences.

3.3 Language Identification

Language Identification of a text as one of the given languages is considered to be a solved task,
using simple n-gram approaches, character level methods and stop words list, with the assumption
that the text belongs to only one language [26]. But the same for mixed language text requires finer
level analysis, breaking down the task as a token level language identification. LI accuracy is critical
as it is often the first step in longer text processing pipelines, so errors made in LI will propagate
and degrade the performance of later stages, and the nature of pre-processing hugely impacts the
performance of Language Identification tool, especially for short text and noisy text from online social
networks [27]. Language Identification on Code mix text is one of the most well-studied task on Code
mix text, building tools suited for Code mix text. However, the performance measures for such tasks
has remained in mid 90s [26]. Transliteration of words when writing words from native languages,
and the spelling variations in such transliterations are a challenge for a language identification tool.

11

In annotating data for such task, the blurred boundaries between Code mixing and borrowing can
result in noisy annotations. [28] give the example of token ”glass” for English-Hindi language pair.
Word level Code mixing can make this task all the more challenging. An example shown by [7] is
”Computeron”, which has a Hindi plural suffix ”-on” over the English word ”computer” is ambiguous
- do we annotate it as Hindi or English word. Further, in most of such datasets, the language pair
is known apriori. However, when analysing text from social networks, such a language prior can’t
be assumed, although we can use some heuristics to guess one, like the nature of query term used to
collect data, geotags that particular text etc. Thus a robust language identification tool that has a
wide coverage, i.e can disambiguate between multiple languages, spanning different language families
(Dravidian, Indo-European in case of Indian context) is of crucial part of a text processing pipeline,
and has to be one of the necessary steps of pre-processing of Code mix text. Number of languages
between which a LID tool can disambiguate has to be carefully balanced, with the accuracy per
language.

3.4 Transliteration, Lack of Standard Spellings and Need for Appropriate
Pre-processing

Social media text is noisy in general. Even if we look at a social media post or comment written
only in one language, we will come across the peculiarities of text in social media : use of hashtags,
user mentions, emojis, multiple punctuation marks etc. While they bring in their own semantic and
pragmatic value, nonetheless, they are challenging to any automatic text processing pipeline. Further
social media text is more prone to contractions due to brevity constraints, usage of non-standard
spellings and abbreviations (”gn”, ”OMG”, ”YOLO”), and spelling mistakes.

In addition to such quirks of social media text, the complexity in automatic processing of social
media is compounded by Code mixed and mixed script posts. In social media, the dominant language
is English with a growing share of regional languages. If a user were to post something in their native
language they have two options : a) write in native script (Devanagari) or b) transliterate in roman
script. In the case of transliterated text, as there are no standard spellings, users can transliterate
the same word in any number of ways. Both of these ways of writing one’s native language render the
automatic processing of social media text all the more challenging.

One of the remedial steps to overcome this challenge would be to have a robust and strong nor-
malisation block higher up in the text processing pipeline. A normalisation engine that is capable
of dealing with the general quirks of social media text and also the nuances of mixed script text,
transliterated text and noisy spelling variations.

3.5 Language Pairs - The sheet variety

Code mixing as a phenomena is prevalent in all multilingual communities. On Online Social networks,
all the regional languages are likely to be present. According to the 2011 Census , 26% of the population
of India is bilingual, while 7% is trilingual, placing India uniquely in terms of wide variety of Code

12

mixing language pairs.

[8] report that in the context of European languages, Code mix research has been primarily focused
on Turkish-Dutch, Frisian-Dutch, Turkish-German and Ukranian-Russian with some initial attempts
being made in parsing Russian-Komi text, while in the context of Indian Languages, Hindi-English
is the most widely studied language pair for computational processing, with some recent work on
Telugu-English, Tamil-English, Bengali-English and Gujarati-English.

Recently there have been few datasets published for English-Dravidian language pairs like English
- Telugu, English-Tamil, English-Malayalam. However, any language pair other than En-Hi has much
higher degree of resource constraints. Further, certain topics on online social networks can have posts
from a wider diaspora of users, thus posts which needn’t have only one kind of language mixing, but
Code mixing and mixed scripts from multiple languages. This multilingual nature of text on social
networks can have adverse impact on performance of any text processing pipelines.

This variety in the language mixes, and the associated resource availability concerns are an im-
pediment in scaling the current automatic text processing pipelines to Code mix text and text from
Online Social network in general.

4 Measures of Code Mixing

The linguistic studies aim to characterize the nature of Code mixing, are qualitative and focused
on the contact between languages, and the factors influencing such Code mixing. However, as we
scale to larger corpora sizes, to different languages, we need a metric(s) to measure the degree of
Code mixing given a sentence or a corpus. Such metrics are useful in characterizing the multi lingual
documents : Is the corpus altering between two languages in sentences or is there Code mixing in a
single utterance/sentence? ; Is the Code mixing occurring only for lone lexical items and multi word
expressions (MWE) or are the there instances of intra-word Code mixing? Understanding the nature
of Code mixing can help us design the algorithms and tools for automatic processing of Code mixing
text, and text from social media in general [29].

[29] list different measures of Code mixing, categorised into different kinds, along with their mo-
tivation.

1. Ratio

• M-Index
Developed from Gini Coeffecient, M-index is a word-count-based measure that quantifies
the inequality of the distribution of language tags in a corpus of at least two languages. The
M-index is calculated as follows, where k > 1 is the total number of languages represented
in the corpus, pj is the total number of words in the language j over the total number of
words in the corpus, and j ranges over the languages present in the corpus:

13

M − index =
1−

∑
p2j

(k − 1).
∑

p2j

The index is bounded between 0 (monolingual corpus) and 1 (each language in the corpus
is represented by an equal number of tokens).

• Language Entropy Language entropy of a corpus. The language entropy returns how many
bits of information are needed to describe the distribution of language tags.

LE = −
k∑

j=1

pj log2(pj)

• Probability of Switching (I-index)
Integration-Index, a metric that describes the probability of switching within a text. Let
us define any token in the corpus that is preceded by a token with a different language
tag as a switch point. Then the I-index is a proportion of how many switch points exist
relative to the number of language-dependent tokens in the corpus. In other words, it is
the approximate probability that any given token in the corpus is a switch point. Given
a corpus composed of tokens tagged by language li where j ranges from 1 to n, the size of
the corpus, and i = j − 1, the I-index is calculated by the expression

I − Index =
1

n− 1

∑
1≤i=j−1≤n−1

S(li, lj

where S(li, lj) = 1 if li ̸== lj and 0 otherwise, and the factor of 1/(n − 1) reflects the
fact that there are n − 1 possible switch sites in a corpus of size n. This index has utility
for differentiating between corpora that are similarly multilingual but contain different
patterns of switching behavior. For example, a parallel corpus would return an I-index
very close to zero, whereas a corpus containing classic C-S would return values relatively
farther away from zero.

2. Time-Course Measures : These measures go beyond the simple word counts and include the
information about the temporal distribution of Code mixing across corpus.

• Burstiness : measures the manner and extent to which observed C-S behavior differs from
a Poisson process (i.e., a process in which switching occurs at random). Briefly stated, it
quantifies whether switching occurs in bursts or has a more periodic character.
Let στ denote the standard deviation of the language spans and mτ the mean of the
language spans. Burstiness is calculated

Burstiness =
στ/mτ − 1

στ/mτ + 1
=

στ −mτ

στ +mτ

and is bounded within the interval [−1, 1]. Corpora with antibursty, periodic dispersions
of switch points take on burstiness values closer to -1. By contrast, corpora with less
predictable patterns of switching take on values closer to 1.

14

• Span Entropy : returns how many bits of information are needed to describe the distribution
of the language spans. Let M denote the total number of states within the language span
distribution, and l denote a specific span within that distribution where pl represents the
sample probability of a span of length l. The span entropy is then defined as

LE = −
M∑
l=1

pl log2(pl)

3. Memory : Although the burstiness and span entropy metrics take into account the time spacing
between switch points, they cannot make claims about the time ordering of the language spans.
It is possible for two corpora to have identical language span distributions – and thus the same
Burstiness-index – that nonetheless appear very different due to how the switch points are
ordered. Memory metric proposed by [30] quantifies the extent to which the length of language
spans tend to be influenced by the length of spans preceding them.

Let nr be the number of language spans in the distribution and τi denote a specific language
span in that distribution ordered by i. Let σ1 and m1 be the standard deviation and mean of
all language spans but the last, where σ2 and m2 are the standard deviation and mean of all
language spans but the first.

Memory is calculated as

Memory =
1

nr − 1

∑
i=1

nr − 1
(τi −mi)(τ(i+ 1)−m2)

σ1σ2

and is bounded within the interval [-1,1]. Memory values close to -1 describe the tendency for
consecutive language spans to be negatively autocorrelated, differing substantially in length; that
is, long spans of discourse are followed by short spans of discourse, and short spans are followed
by long spans. Conversely, memory values closer to 1 describe the tendency for consecutive
language spans to be positively autocorrelated, meaning similar in length.

The distribution-based measures, burstiness and span entropy, and the time series measure, mem-
ory, complement one another to describe the intermittency of switching behavior. In concert with the
other metrics, which give a sense of the extent of language mixing, these measures relay a compre-
hensive signature of C-S for any language-tagged corpora.

[31] introduce a new metric called Code mixing Index (CMI), to evaluate and compare level of
Code mixing at utterance level.

CMI =

100 ∗ [1− max(wi)
n−u], if n > u

0, if n = u

where wi is the words tagged with each language tag
∑N

1 (wi) is the sum over all N languages
present in the utterance of their respective number of words, maxwi is the highest number of words
present from any language (regardless of if more than one language has the same highest word count),

15

n is the total number of tokens, and u is the number of tokens given language independent tags (in
our case that means tokens tagged as “universal”, as abbreviations, and as named entities).

[32] note that CMI doesn’t reflect the fraction of corpus’s utterances contain Code switching and
that CMI doesn’t take into account the number of Code alteration points, and propose a modified
version of CMI for utterance level. Moving upto corpus level, the authors also propose a corpus
level Code mix measure which takes into account Code alteration between two utterances, and take
inspiration from readability indices to propose a measure for corpus level Code mix measure.

For utterance level :

Cu(x) = wmfm(x) + wpfp(x)

= wm
N(x)−maxLi∈L{tLi

}(x)
N(x)

.100 + wp
P (x)

N(x)
.100

(1)

where x is the utterance, Li ∈ L is the set of all languages. P (x) is the number of Code alternation
points, and wm and wp are weights (wm +wp = 1). Again, Cu = 0 for mono-lingual utterances (since
in that case max {tLi}= NandP = 0).

For Corpus level :

Cc =

∑U
x=1 Cu(x) + wpδ(x)

U
+ ws

S

U
.100

=
100

U

[
U∑

x=1

(wmfm(x) + wp [fp(x) + δ(x)]) + wsS

] (2)

where wm and wp are weights (wm + wp = 1), where S is the number of utterances that contain
Codeswitching (0 ≤ S ≤ U), ws is the relative weight attached to the switching frequency, and δ(x)

is 1 if language with maximum tokens for utterance x is not same as language with maximum tokens
for utterance x− 1, otherwise 0.

However, it is worth noting that all the aforementioned metrics are computed only on the token wise
language IDs. Weather or not they capture the syntactically complexity of the Code mix utterance
needs to be established. A sentence where a single word is switched is not syntactically complicated
as compared to word level morphological variation which can be attributed to a another language, or
a sentence where a longer span is switched. Publicly available Code mix datasets (as mentioned in
5) haven’t commented on the syntactical complexity of the samples in the datasets, to the best of our
knowledge. This poses a crucial question for computational models for Code mix sentences - are there
Code mix samples of particular syntactical category that are harder to process? This line of inquiry
also opens up scope for insightful error analysis for the computational approaches to Code mixing.

In addition to the metrics mentioned in [1, 28, 32, 33] have attempted to identify shortcomings of
these measures from following perspectives :

16

• Metric formulation : current formulation where only the language IDs are taken into account,
can give higher metric for meaningless and/or unnatural Code mix sentences.

• Resource limitation and noisy human LID annotation : existing Code mix datasets have noisy,
and monolingual sentences, and poor quality LID tool impact the usability of existing Code mix
metrics.

To further analyse the usability of these metrics, authors also manually annotate Code mix sentences
on two dimensions :

• Degree of Code mixing : score on the scale of 0 to 10 where 0 indicates monolingual sentences
without any Code mixing, while a score of 10 indicates high degree of Code mixing.

• Readability : score on the scale of 0 to 10 where 0 indicates completely unreadable sentence
based due to large number of spellings mistakes, lack of sentence structure and meaning, while
a score of 10 indicates highly readable sentence with clear semantics and easy-to-read.

A similar human annotation approach is adopted by [34] to estimate the quality of generated Code mix
sentences, by tasking the human annotators to give a score, between 1 and 5, along three dimensions:
Syntactic, Semantic and Naturalness.

5 Data, Resources and Tasks

Code mix data, generally, is available across two sources: spoken data, social media data. Text from
online social networks, even if it’s not Code mixed, processing it has its own challenges : non-Canonical
in their orthography, lexicon, syntax, thereby necessitating tools or computational pipelines that are
able to automatically process such text.

5.1 Datasets and Tasks

In Table 1 we list down various datasets and tasks that have been proposed and released across Code
mix setting of Indian languages. Additionally, [35] provide a comprehensive survey of research in
computational processing of C-S text and speech and [5] present a list of datasets available for C-S
research.

17

Name Language Mix Source of dataset Purpose of
Dataset

LINCE Benchmark [36]

hi-en, es-en,
ne-en, MSA-
Egyptian
Arabic

Tweets,
Facebook,
Conversational

LID
POS
NER
MT

GLUECoS Benchmark [37] en-es, en-hi

Tweets,
Facebook,
Translated
monolingual
datasets

LID
POS
POS
NER
Sentiment Analysis
NLI
QA

Sentiment Analysis [38] en-hi Tweets Sentiment Analysis
Semeval-2020 Sentiment Analysis [39] Tweets Sentiment Analysis
Machine Translation [40] en-hi Social Media MT
Aggression Detection Shared Task [41] en-hi Facebook, Twitter Aggression Detec-

tion
Hate Speech Detection [42] en-hi Tweets Hate speech detec-

tion
Stance Detection [43] en-hi Tweets Stance Detection
Stance Detection [44] en-hi Tweets
Stance Detection [45] en-ka Facebook
Sarcasm Detection [46] en-hi Tweets Sarcasm Detection
Humor Detection [47] en-hi Tweets Humor Detection

Code Mixed Goal
Oriented Conversation
Systems [48]

en-hi
Translated
Monolingual
Dataset

Conversational
Datasets

en-gu
en-ta
en-be

Sentiment Analysis [49] en-te Tweets Sentiment Analysis

ICON 2015-2016 Contest [50]
en-hi

Tweets, Facebook POS, LIDen-be
en-te

Sentiment Analysis [51]
hi-en

Tweets Sentiment Analysis
bn-en

FIRE 2013-16 Tasks [52] en,hi,ba,gu,ml,ta,te Tweets, Facebook,
Gutenberg Project

Transliterated
Search, Code Mix
Cross Script QA, IR
on Code mix hi-en
tweets

Information Retrieval [53] en-hi Tweets IR

FIRE 2020 Dravidian Code Mixed [54]
en-ta

YouTube Comments Sentiment Analysis

18

en-ml

Offenseval Dravidian [55]
en-ta

YouTube Comments
Offensive
Language
Detection

en-ma
en-ka

Table 1: List of Code mix datasets, benchmarks, focused around English - Indian Language pair.
Majority of these datasets are for en-hi language pair. Datasets have been released for various tasks,
ranging from syntactic - LID, NER , Semantic - Sentiment, Hate/Offensive Sentence Detection, Dis-
course - Conversational. The proposed benchmarks are combination of syntactic and semantic tasks,
providing a strong baseline to compare the efficacy of different representations, pipelines proposed by
researchers.

5.2 Benchmarks

The computational methods and representations used for any downstream task should be able to
generalize well across different datasets, language pairs and across different tasks. To test out efficacy
of different methods and representations, having a common, standard benchmarks helpful. Recently
two evaluation benchmarks,[37] [36], spanning different tasks and a few language pairs, thus enabling
structured comparisons between different approaches. Figure 5 shows the various tasks, their language
pairs, and the statistics of the corpus.

[37] released a benchmark named “GLUECoS”, inspired by the GLUE benchmark, for language
understanding evaluation for Code mixed languages. LID, PoS tagging, NER, Sentiment analysis,
Question Answering, NLI tasks for English-Hindi language pair, and LID, PoS tagging , NER and
Sentiment analysis for English - Spanish language pair.

Figure 5: Various Tasks and corpus statistics in GLUECoS Benchmark. (R) and (D) indicates Hindi
written in Roman and Devanagari script, respectively

In addition to proposing the benchmark the authors also tested cross lingual word embedding

19

(MUSE [56] , BICVM embeddings trained on parallel data, BiSkip embeddings which uses parallel
corpora and word alignments to learn cross-lingual embeddings, skip gram embeddings trained on
synthetic Code mix data,), and mBERT (multilingual BERT pre-trained on monolingual corpora
of 104 languages, and a modified mBERT fine tuned on Code mix data for Masked language model
task.). Based on their experiments authors note that cross-lingual and mBERT models perform better
for English - Spanish as compared to English - Hindi and attribute this to the English and Spanish
are similar languages, and the lack of cannonical spellings for romanized Hindi, as we have already
noted in the earlier section (Section 3.4). Authors also note that the modified nBERT model perform
better for most tasks, and the accuracy vary for different tasks and are far from being good, except
for LID. The performance measures as reported for sentiment analysis and NLI are in the range of
65-70%, demonstrating that there is a long way for result on Code mix datasets to be comparable
with results of similar tasks on monolingual datasets.

[36], propose Linguistic Code switching Evaluation (LinCE) benchmark. LinCE benchmark has 4
language pairs as compared to the two language pairs proposed in GLUECoS benchmark, and covers
4 tasks, namely LID, NER, PoS tagging and Sentiment Analysis, while for some language pairs all
the tasks are not present in the benchmark. Figure 6 shows overview of language pairs and tasks in
LinCE benchmark, and 7 shows the dataset details for all the tasks.

Figure 6: Overview of language pairs and tasks in LinCE benchmark

Figure 7: Corpus details for tasks in LINCE benchmark. Four language pairs - SPA-ENG, NEP-
ENG, HIN-ENG, MSA-EA are part of the benchmark, with varying number of tasks - LID, PoS,
NER, Sentiment Analysis.

20

Authors also provide baselines over these datasets using LSTM, ELMo and mBERT. Authors note
that the pre-trained language models outperform simple BiLSTM models, with ELMo’s performance
being comparable with mBERT. Authors also note that NER and SA seem harder compared to LID
and POS, with the NER and Sentiment Analysis have their performance measures low (NER Micro
F1is in the range of 45-65 across language pairs) compared to those of LID and PoS(75-98% accuracy
over language pairs). Similar observations was made in the context of GLUECoS benchmark.

However, it is worth noting that benchmarks only test certain capabilities of a representation or
computational approach. When we compare the aforementioned benchmark with those of monolingual
benchmarks (like GLUE, SuperGLUE), the number of tasks in the benchmark are fewer, thereby
necessitating the expansion of such benchmarks - in terms of depth i.e number of tasks, and in
terms of breadth - number of language pairs. Although the recently released benchmarks , which are
amalgamation of tasks and datasets published by different researchers, the quality of data has to be
critically examined.

While the benchmarks provide a structured way of comparing performance of computational ap-
proaches to Code mixing, only chasing incremental gain on such benchmarks needs to be avoided.
[57] provides a critical view of benchmarking, and research in Code mixing needs to avoid similar
pitfalls, and have a comprehensive view of data quality, be cognizant of shortcomings of any compu-
tational approach, diversity of language pairs being mixed and their societal impact, instead of pure
number-chasing on a benchmark.

5.3 Computational Approaches

As listed in table 1, various tasks have been explored in Code mixing of Indian languages, across
language pairs with en-hi being the most dominant mix among the available datasets. However,
despite significant efforts, language technologies are not yet capable of processing C-S as seamlessly as
monolingual data. We identify three main limitations of the current state of computational processing
of C-S: data, evaluation and user-facing applications [8].

Application and performance of Deep Neural networks on Code mix tasks is constrained by the
amount of data available for a particular language pair. Since C-S languages tend to be low re-
sourced, building Deep Learning- based models is challenging due to the lack of large C-S datasets.
Low-resource setting is idle for leveraging transfer learning and data available from massive monolin-
gual corpora. Transformer based models like BERT [58] and plethora of models that have followed
from Transformer-based architecture have been heavily applied in monolingual setting, and have out-
performed traditional models on several benchmark tasks. Similar architectures [58, 59] have been
proposed in multilingual setting as well, and have been tested for their zero-shot, few-shot learning.
Naturally, these models have been tested on the Code mix tasks as well, and have outperformed task
specific models [37, 60], but their performance is way worse than their performance on similar tasks in
monolingual setting [8]. Since these models haven’t been trained specifically on the scarce Code mix
corpora, it is likely that performance of large multilingual LMs will improve on Code mix tasks. At
the same time, this calls for deeper inquiry into what makes large multilingual LMs perform well on

21

Code mix tasks. A critical analysis on the data quality , combined with deeper look into inner working
of the models, like [61], are crucial for improving performance on various Code mix tasks. Further
usage of synthetic Code mix data has been explored in recent works on Code mix tasks - Sentence
classification, Machine Translation - [37, 34, 62]. However, [37] noted that adaptive pre-training of
models using real Code mix data performs better than model pretrained on synthetic Code mix data.

6 Gaps Identified

6.1 Efficient Code mix Data Collection, Pre-processing and Annotation
Methods

When we aim to develop computational tools that are generalized and capable of processing Code mix
data we need rich representations which need large corpora to train but Code mix data is very low
resource. Code mixed is less likely to occur in traditional sources of large corpora - like news articles,
wikipedia. And thus researchers have relied on speech corpora, text messages corpora, corpora from
online social networks. As we have stated in Section 3 there are privacy concerns around collection of
such data. As social network companies come under increasing pressure to curb the data leaks and
privacy infringements, sourcing data from social networks is getting increasingly difficult. Thus we
need more efficient data collection methods - for example : finding high yield Code mix terms from
corpora by filtering the Code mix query terms, and have to look at alternate sources of data - for
example : comments on newspaper articles, on popular video sharing platforms.

Additionally, as we build tools capable of processing social media text - such tools shouldn’t be
domain specific or dataset specific. To this end, we need methods that are capable of handling the
transiency and the variety of textual data on social media. In such a setting, annotating data will have
an impact on the time needed to develop a tool ergo the utility of the tool, and the need to repeated
manual annotation of data is a huge obstacle. To overcome this we need methods that do not overly rely
on quick annotation methods. [63] demonstrate that understanding tweets is dependent on hashtags
as they enCode the affective and semantic content, and having a reliable hashtag segmentation tool
can be used to create noisy training data. Further exploration of such methods and leveraging them
to build tools that have quick turn around time for a specific task will have a huge impact on the
usability of a toolkit for understanding Code mix data and also social media text in general.

6.2 Transfer Learning from Large Multilingual Models, Monolingual Cor-
pora for Richer Representations for Code Mixing Tasks

As Code mix is low resource, the monolingual corpora which are available should be effectively lever-
aged to understand the Code mix data. [64] demonstrate the utility of monolingual resoucres in
dependency parsing of Code mix sentences. In [37, 36], GLUECoS and LinCE benchmarks, the au-
thors provide the baseline results using mBERT which is a large LM trained on monolingual corpora of

22

104 languages. The rationale of using the multilingual approach is that the a model like BERT, which
has 110M parameters in its base version, when trained on multiple languages is good at zero-shot
cross-lingual model transfer, in which task-specific annotations in one language are used to fine-tune
the model for evaluation in another language. Similar usage of multilingual models in Code mix setting
is demonstrated by the submissions in the Semeval 2019 shared task on Sentiment analysis on Code
mix tweets [39], an by [65] for a semi supervised approach for generating Code mix sentences. Further,
transfer learning can be a utilised when generalizing the Code mix models to other low resource Code
mix language pairs like English - Telugu, English-kannada etc for which resources are very few.

Although in recent past, usage of models like XLM and mBERT has increased for Code mix
settings, the usage of such tools has to be critically examined. [66, 67] has shown the sensitivity of
BERT to noisy text (spelling variations, typos, contractions etc) and the associated degradation in
performance. Further, [60] analyse the performance of mBERT on Code mix tasks and note that
the sub par performance of mBERT for transliterated text. However, recently Google released its
BERT model, named MuRIL, trained on monolingual corpora of Indian Languages along with their
transliterated counterparts. It is worth comparing the performance of aforementioned large LMs on
Code mix benchmarks and reporting the results. In our initial experiments with XLM, we have noted
sub par performance of XLM on Code mix Masked language model task, and find that the language
embeddings aren’t enforced on the final prediction as much as we want. This clearly shows the need
to adopt multilingual large LMs to Code mix tasks.

Bias of large LMs : [68, 69, 70] point out that the large LMs which are trained on large corpora
from web, suffer from toxic and biased behaviour. These models have been shown to exhibit rasicts,
sexist and toxic behaviour. The problem is further reinforced when the trianing corpora for such
models is extracted from User Generated Content from web. Majority of data resources for Code
mix research have been sourced form Online social networks which is likely to have hate speech, toxic
language. In [37] use a modified mBERT fine tuned on Code mix corpora and demonstrate improved
performance measures across different tasks. As researchers, we need to be mindful of the harmful
effects of deploymnet of such models. Thus, characterising the harmfulness of such models, in the
Code mix setting, has to be advised whenever a model is trained on the corpora extracted from online
social network.

6.3 Lack of Standard Pipelines for Processing Code Mix Text for Appli-
caitons

While there has been various tasks and associated datasets for Code mix, they have been treated
on an individual basis and the computational approaches were also suited for that task. But as the
Code mix research community looks to solve the tasks higher up in the NLU ladder, we have seen
sub par performance on such tasks. As an example, Although the research has shown that the crucial
steps of LID and normalisation have a positive impact on the performance, such measures have been
ignored while applying the recent multilingual large LM models. Currently, integrating all the different
methods (LID, transliteration, normalisation, representations) for a single task have to be configured

23

and accessed from different resources and libraries, which is time consuming and in turn effect the
quick prototyping. Integrating all the tasks together in a common pipeline/framework, and a library
- a common place to access different resources (datasets, corpora), and collection of computational
methods known to work well for Code mix data - that facilitates a integrated approach is really needed
to further work in Code mix community

The end goal of a comprehensive toolkit / framework capable of automatically processing noisy
Code mix text from online social networks. Such a toolkit will have multiple use cases, particularly
in text classification tasks on data from social media. For instance, problem like open domain stance
detection on online social networks. Sentiment analysis gives very limited view of the opinion held
for/against a particular target. While Stance Detection, solves this problem, a Stance Detection toolkit
that is capable of accurately detecting on zero-shot targets is an unsolved problem, particularly for
noisy posts from online social networks. Such a tool’s utility lies in the fact that topics of interests on
social networks are very transient, and the need to having to repeatedly annotate target specific data
is a huge obstacle. To quote a few more examples for Privacy and Security domain are detection of
hateful and offensive content, and detection of phishing posts. To have a reusable framework that is
tested on a subset of such problems would demonstrate the efficacy and usability.

7 Current Work Under Progress

Over the course of last 4 semesters, I have worked over various problems for processing text from social
networks, trying to identify the methods that could be useful to stitch together a pipeline capable of
processing noisy text. The on-going of my work are listed below:

7.1 Code Mix Data Collection

As mentioned in Section 3, one of the primary challenges in computational processing of Code mixing
is availability of large, high-quality Code mix corpora. Researchers have used various heurestics to
collect Code mix data for specific tasks (Sentimens analysis). There are two primary problems with
heuristic based approaches used hitherto:

1. Usability of the methods listed above depend on the strength of the heuristic.

2. Further, given the fact that only a small proportion of the collected utterances are likely to be
Code mix, the precision is low in these methods.

To address this gap, we are prototyping a pipeline for collecting Code mix corpora. Following are the
essential components of this pipeline.

1. Sentence level Classifier: Filtering out Code mix sentences from a large corpus - this is a
common problem for researchers creating a Code mix resource. Here, we formulate the problem

24

as a two step classification problem - First, classify weather a sentence is Code mix or not, if it
is, then what is the language mix. The language mixes are en-IL pairs (en-hi, en-bn etc)

2. High Code Mix yield Query term for Social Media APIs : The primary research question
in this work is : Are their certain query terms, which are mix of tokens from a language pair
(ex: ”I\en wish\en ki\hi..”), which will have higher proportion of Code mix utterances? If yes,
how can we mine them from a large collection of Code mix sentences, while avoiding the bias
these selective query terms bring in?

3. Hashtag Segmentation : Hashtags have become ubiquitous in across online social networks.
Hashtags have a lot of semantic value. However, unsegmented nature of hashtags pose a challenge
to leverage semantics enCoded in the hashtag. Ex. ”MainBhiChowkidar”, ”ChowkidarChorHai”.
While the previous work on hashtag segmentation [71, 63] have proposed datasets and archi-
tectures which have performed well. However, their performance is sub-par for hashtags which
have named entities, and specifically named entities contextual to Indian subcontinent. We are
testing this hypothesis by annotating set of hashtags where the existing SOTA architectures fail,
and formulating pipeline to overcome this challenge.

7.2 Quantitative and Qualitative Analysis of Code Mix Utterances

The Code mix measures listed in Section 4 consider only the token wise language tags of the utterances
and propose measures which provide different perspective of Code mix pattern observed. However,
these measures are lacking in capturing the syntactical complexity involved in the utterance. In this
body of work, we are focusing on en-hi language pair, and collecting the publicly available datasets
to have a large collection of Code mix utterances, apply a PoS tagger to the collected utterances, and
analyze patterns in the corpus.

7.3 Publications

• Shared Task on Code Mix Machine Translation: We competed in shared task on Code
Mix translation hosted at CALCS 2021, and our system scored 2nd on the en-hi language pair
leaderboard [72].

25

https://ritual.uh.edu/lince/leaderboard

Figure 8: Screenshot from LINCE Benchmark Leaderborard for Code Mix Machine Translation task.
We competed for en-hi language pair, and our system scored 2nd best for en-hi pair.

• Shared Task on Hate Speech and Offensive Content Identification in English and
Indo-Aryan Languages HASOC 21: We competed in shared task on Code Mix Hate Speech
and Offensive Content Identification HASOC 2021, and our system scored 3rd on the en-hi
language pair leaderboard. The paper is under review currently.

Figure 9: Screenshot from Leaderborard for en-hi Code Mix Hate Speech classification. Our system
ranked 3rd in the task.

Current work is likely to be in Draft Stage by November 2021.

8 Future Work

As the current work matures, there will be additional aspects integrated into them, and in addition
to that, following are some of the planned future work.

8.1 Bias Evaluation of Different Models

[73, 74] provide methods for quantifying bias for different contextual word embeddings. Since these
works are focused around English, the methods have to be improvised and adapted for multilingual
and Code mixed setting involving Indian languages.

26

https://hasocfire.github.io/hasoc/2021/results.html

Data Collection, Pre-
Processing

Transfer Learning, Repre-
sentation for CM

End-to-end
pipeline

Other

Sentence Level CM Classi-
fier

Analysis of large multlingual
LMs for Code mixing

Machine Transla-
tion, Generation

Bias of Models
trained on Code
mix Data

Syntactic Analysis of
Code Mix data

Modifying XLM-R for richer CM
Representations

Benchmarks of CM

Table 2: In this table, we list all the current work, and future work and map it to the gaps identified
in Section 6. The cells marked in Green are currently in progress, cells marked in purple indicate that
the initial work didn’t yield favourable results and needs reformulation, cells marked in yellow indicate
that they are part of future work and needs to be explored. It should be noted that, works categorized
under different heads will contribute in the End-to-end pipeline. Rationale for specifically mentioning
’End-to-end Pipeline’ as a separate category is to mention the CM tasks we plan to explore.

8.2 Machine Translation and Generation

Training a SOTA MT model for faithful translation between Code mix and constituent monolingual
languages, is at a very nascent stage. Primarily because of unavailability of parallel corpora at the scale
needed to train large models like Transformers. Unsupervised MT, Transfer learning using multilingual
models were the preferred methods in recent publications on the problem. In addition to our recent
shared task experience (Section 7.3) we wish to explore the bi-directional Machine translation between
Code mix - monolingual parallel corpora. Given the low resource nature of Code mix, for creating
large corpora of Code mix sentences across rarer language pairs, MT using unsupervised methods like
the one proposed in [34]. Further, development of neural architectures that are capable of generating
Code mix, and controllable for different metrics and quality of Code mix.

8.3 Comparison of Different Multilingual Representations

With the GLUECoS, LinCE benchmak, we can now evaluate and compare the performance of differ-
ent multilingual models for different Code mix tasks. In recent work on the shared tasks, and these
benchmarks, large multilingual LMs like mBERT, MuRIL, XLM have been experimented with, al-
though the results indicate that the problems remain unsolved. In addition to the evaluation of these
models, we can tweak the models for their pre-training objectives, and/or modify their loss functions
to enhance performance of such multilingual models in a Code mix setting.

27

9 Limitations

• Although code mixing is also prevalent in speech data, in this study we have focused only text
as a source of code mix data, and the observations/comments made regarding computational
approaches to code mixing are made in the context of automatic text processing pipelines.

• There are many lenses through which one can analyse the phenomena of code mixing : socio- and
psycho-linguistic, grammatical theories etc. In this study we focus on automatic text processing
capabilities of text processing pipelines, and how to enhance them.

• We have noted in previous sections that code mixing is low resource. While we’ve listed data
and resources for Indian Languages code mix pairs, the disparities, in terms of resource richness,
within Indian Language pairs is quite stark. Researchers, so far, have focused on en-hi pair, more
than any other and that poses a limitation on proposing and testing computational approaches
that can be generalized to other code mix language pairs.

28

10 Selected Papers

Sno Selected Paper Author(s) Rationale for selection
1 Bilingual speech : a typology of Code

mixing. (Chapters 1,2) [2]
Pieter Muysken Formulates categorisation of constraint

based grammatical theories for Code
mixing

2 Social and Psychological Factors in
Language Mixing [3]

W. Ritchie, T. Bhatia Provides the social and psychologi-
cal factors underpinning multilinguals
propensity to Code mix.

3 Challenges of computational processing
of Code switching [26]

Çetinoğlu et al. This paper lists down various chal-
lenge’s for computational pipelines ca-
pable of processing Code mix data

4 A Survey of Code switching: Linguistic
and Social Perspectives for Language
Technologies [8]

Doğruöz et al This is a survey of Code mixing from a
linguistic and social perspectives which
can dictate computational approaches
to Code mixing, also listing challenges
for computational approaches to Code
mixing .

5 A Survey of Code switched Speech and
Language Processing [35]

Sitaram et al This paper provides a thorough survey
of tasks proposed in Code mix setting,
across language pairs, and presents
brief summary of computational meth-
ods used for those tasks.

6 Metrics for modeling Code switching
across corpora [29]

Guzmán et al List and categorizes metrics used to as-
sess complexity of Code mixing, and
provides motivation behind formulation
of those metrics

7 Comparing the level of Code switching
in corpora. [32]

Gambäck et al Proposes ”Code Mixing Index (CMI)”,
a metric to assess Code mix complexity,
and its variation for sentence level and
corpus level metric

8 Challenges and limitations with the
metrics measuring the complexity of
Code mixed text. [33]

Srivastava et al This paper identifies limitations of
Code mixing measures, and provides a
methodology for human annotation of
Code mix complexity

9 LinCE: A Centralized Benchmark for
Linguistic Code switching Evaluation.
[36]

Aguilar et al This paper provides a benchmark for
Code mixing - spanning 4 language
pairs and 5 tasks, to assess efficacy of
computational pipeline and its general-
izability

29

Sno Selected Paper Author(s) Rationale for selection
10 GLUECoS: An evaluation benchmark

for Code switched NLP [37]
Khanuja et al Similar to LinCE benchmark, this paper pro-

poses GLUECoS benchmark comprising of
two language pairs and 7 tasks. Together
these two benchmarks provide a framework for
testing Code mixing pipelines and representa-
tions

11 BERTologiCoMix: How does Code
mixing interact with multilingual
BERT? [61]

Santy et al Tries to explain why and what works
well while using mBERT on Code mixing
tasks/corpora.

12 From Machine Translation to Code
Switching: Generating High-Quality
Code Switched Text [34]

Tarunesh et al Provides a unsupervised framework for gener-
ating synthetic Code mix sentences in Hindi
frame.

30

References

[1] John J. Gumperz. Conversational code switching, page 59–99. Studies in Interactional Sociolin-
guistics. Cambridge University Press, 1982.

[2] Pieter Muysken. Bilingual speech : a typology of code-mixing. Cambridge University Press,
Cambridge, UK New York, 2000.

[3] W. Ritchie and T. Bhatia. Social and psychological factors in language mixing. 2012.

[4] M. Gullberg, P. Indefrey, and P. Muysken. Research techniques for the study of code-switching.
2009.

[5] N. Jose, B. R. Chakravarthi, S. Suryawanshi, E. Sherly, and J. P. McCrae. A survey of cur-
rent datasets for code-switching research. In 2020 6th International Conference on Advanced
Computing and Communication Systems (ICACCS), pages 136–141, 2020.

[6] Utsab Barman. Automatic Processing of Code-mixed Social Media Content. Dublin City Univer-
sity, 2019.

[7] Kalika Bali, Jatin Sharma, Monojit Choudhury, and Yogarshi Vyas. “I am borrowing ya mixing
?” an analysis of English-Hindi code mixing in Facebook. In Proceedings of the First Workshop
on Computational Approaches to Code Switching, pages 116–126, Doha, Qatar, October 2014.
Association for Computational Linguistics.

[8] A. Seza Doğruöz, Sunayana Sitaram, Barbara E. Bullock, and Almeida Jacqueline Toribio. A
survey of code-switching: Linguistic and social perspectives for language technologies. In Pro-
ceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pages 1654–1666, Online, August 2021. Association for Computational Linguistics.

[9] Wang Ling, Guang Xiang, Chris Dyer, Alan Black, and Isabel Trancoso. Microblogs as parallel
corpora. In Proceedings of the 51st Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 176–186, Sofia, Bulgaria, August 2013. Association for
Computational Linguistics.

[10] Wang Ling, Luís Marujo, Chris Dyer, Alan W. Black, and Isabel Trancoso. Crowdsourcing high-
quality parallel data extraction from Twitter. In Proceedings of the Ninth Workshop on Statistical
Machine Translation, pages 426–436, Baltimore, Maryland, USA, June 2014. Association for
Computational Linguistics.

[11] Shruti Rijhwani, Royal Sequiera, Monojit Choudhury, Kalika Bali, and Chandra Shekhar Mad-
dila. Estimating code-switching on Twitter with a novel generalized word-level language detection
technique. In Proceedings of the 55th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1971–1982, Vancouver, Canada, July 2017. Association
for Computational Linguistics.

[12] E. Kim. Reasons and motivations for code-mixing and code-switching. 2006.

31

[13] Rafiya Begum, Kalika Bali, Monojit Choudhury, Koustav Rudra, and Niloy Ganguly. Functions of
code-switching in tweets: An annotation framework and some initial experiments. In Proceedings
of the Tenth International Conference on Language Resources and Evaluation (LREC’16), pages
1644–1650, Portorož, Slovenia, May 2016. European Language Resources Association (ELRA).

[14] Sarah Thomason. Contact explanations in linguistics. 2020.

[15] Jasabanta Patro, Bidisha Samanta, Saurabh Singh, Abhipsa Basu, Prithwish Mukherjee, Monojit
Choudhury, and Animesh Mukherjee. All that is English may be Hindi: Enhancing language
identification through automatic ranking of the likeliness of word borrowing in social media. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages
2264–2274, Copenhagen, Denmark, September 2017. Association for Computational Linguistics.

[16] J. Macswan. Code switching and grammatical theory. 2008.

[17] Carol Myers-Scotton and Janice Jake. A universal model of code-switching and bilingual language
processing and production. The Cambridge Handbook of Linguistic Code-switching, pages 336–
357, 01 2009.

[18] Mohd Sanad Zaki Rizvi, Anirudh Srinivasan, Tanuja Ganu, Monojit Choudhury, and Sunayana
Sitaram. GCM: A toolkit for generating synthetic code-mixed text. In Proceedings of the 16th
Conference of the European Chapter of the Association for Computational Linguistics: System
Demonstrations, pages 205–211, Online, April 2021. Association for Computational Linguistics.

[19] Aravind K. Joshi. Processing of sentences with intra-sentential code-switching. In Coling 1982:
Proceedings of the Ninth International Conference on Computational Linguistics, 1982.

[20] Itesh Sachdev, Howard Giles, and Anne Pauwels. Accommodating Multilinguality, chapter 16,
pages 391–416. John Wiley Sons, Ltd.

[21] Suraj Maharjan, Elizabeth Blair, Steven Bethard, and Thamar Solorio. Developing language-
tagged corpora for code-switching tweets. In Proceedings of The 9th Linguistic Annotation Work-
shop, pages 72–84, Denver, Colorado, USA, June 2015. Association for Computational Linguistics.

[22] John C. Paolillo. Language choice on soc.culture.punjab. 1996.

[23] John C. Paolillo. ”conversational” codeswitching on usenet and internet relay chat. 2011.

[24] Abhishek Srivastava, Kalika Bali, and Monojit Choudhury. Understanding script-mixing: A
case study of Hindi-English bilingual Twitter users. In Proceedings of the The 4th Workshop
on Computational Approaches to Code Switching, pages 36–44, Marseille, France, May 2020.
European Language Resources Association.

[25] Ella Rabinovich, Masih Sultani, and Suzanne Stevenson. CodeSwitch-Reddit: Exploration of
written multilingual discourse in online discussion forums. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), pages 4776–4786, Hong Kong, China,
November 2019. Association for Computational Linguistics.

32

[26] Özlem Çetinoğlu, Sarah Schulz, and Ngoc Thang Vu. Challenges of computational processing of
code-switching. In Proceedings of the Second Workshop on Computational Approaches to Code
Switching, pages 1–11, Austin, Texas, November 2016. Association for Computational Linguistics.

[27] Tommi Jauhiainen, Marco Lui, Marcos Zampieri, Timothy Baldwin, and Krister Lindén. Auto-
matic language identification in texts: A survey. J. Artif. Int. Res., 65(1):675–682, May 2019.

[28] Amitava Das and Björn Gambäck. Code-mixing in social media text. the last language identifi-
cation frontier? Trait. Autom. des Langues, 54:41–64, 2013.

[29] Gualberto A Guzmán, Joseph Ricard, Jacqueline Serigos, Barbara E Bullock, and
Almeida Jacqueline Toribio. Metrics for modeling code-switching across corpora. In INTER-
SPEECH, pages 67–71, 2017.

[30] K.-I. Goh and A.-L. Barabási. Burstiness and memory in complex systems. EPL (Europhysics
Letters), 81(4):48002, jan 2008.

[31] Amitava Das and Björn Gambäck. Identifying languages at the word level in code-mixed Indian
social media text. In Proceedings of the 11th International Conference on Natural Language
Processing, pages 378–387, Goa, India, December 2014. NLP Association of India.

[32] Björn Gambäck and Amitava Das. Comparing the level of code-switching in corpora. In Proceed-
ings of the Tenth International Conference on Language Resources and Evaluation (LREC’16),
pages 1850–1855, Portorož, Slovenia, May 2016. European Language Resources Association
(ELRA).

[33] Vivek Srivastava and Mayank Singh. Challenges and limitations with the metrics measuring
the complexity of code-mixed text. In Proceedings of the Fifth Workshop on Computational
Approaches to Linguistic Code-Switching, pages 6–14, Online, June 2021. Association for Com-
putational Linguistics.

[34] Ishan Tarunesh, Syamantak Kumar, and Preethi Jyothi. From machine translation to code-
switching: Generating high-quality code-switched text. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pages 3154–3169, Online, August 2021.
Association for Computational Linguistics.

[35] Sunayana Sitaram, Khyathi Raghavi Chandu, Sai Krishna Rallabandi, and Alan W Black. A
survey of code-switched speech and language processing, 2020.

[36] Gustavo Aguilar, Sudipta Kar, and Thamar Solorio. LinCE: A Centralized Benchmark for Lin-
guistic Code-switching Evaluation. In Proceedings of The 12th Language Resources and Evalua-
tion Conference, pages 1803–1813, Marseille, France, May 2020. European Language Resources
Association.

[37] Simran Khanuja, Sandipan Dandapat, Anirudh Srinivasan, Sunayana Sitaram, and Monojit
Choudhury. GLUECoS: An evaluation benchmark for code-switched NLP. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, pages 3575–3585,
Online, July 2020. Association for Computational Linguistics.

33

[38] Ameya Prabhu, Aditya Joshi, Manish Shrivastava, and Vasudeva Varma. Towards sub-word level
compositions for sentiment analysis of hindi-english code mixed text, 2016.

[39] Parth Patwa, Gustavo Aguilar, Sudipta Kar, Suraj Pandey, Srinivas PYKL, Björn Gambäck,
Tanmoy Chakraborty, Thamar Solorio, and Amitava Das. SemEval-2020 task 9: Overview of
sentiment analysis of code-mixed tweets. In Proceedings of the Fourteenth Workshop on Semantic
Evaluation, pages 774–790, Barcelona (online), December 2020. International Committee for
Computational Linguistics.

[40] Mrinal Dhar, Vaibhav Kumar, and Manish Shrivastava. Enabling code-mixed translation: Par-
allel corpus creation and MT augmentation approach. In Proceedings of the First Workshop on
Linguistic Resources for Natural Language Processing, pages 131–140, Santa Fe, New Mexico,
USA, August 2018. Association for Computational Linguistics.

[41] Ritesh Kumar, Aishwarya N. Reganti, Akshit Bhatia, and Tushar Maheshwari. Aggression-
annotated corpus of Hindi-English code-mixed data. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan, May 2018.
European Language Resources Association (ELRA).

[42] Aditya Bohra, Deepanshu Vijay, Vinay Singh, Syed Sarfaraz Akhtar, and Manish Shrivastava. A
dataset of Hindi-English code-mixed social media text for hate speech detection. In Proceedings
of the Second Workshop on Computational Modeling of People’s Opinions, Personality, and
Emotions in Social Media, pages 36–41, New Orleans, Louisiana, USA, June 2018. Association
for Computational Linguistics.

[43] Sahil Swami, Ankush Khandelwal, Vinay Singh, Syed Sarfaraz Akhtar, and Manish Shrivastava.
An english-hindi code-mixed corpus: Stance annotation and baseline system, 2018.

[44] Sushmitha Reddy Sane, Suraj Tripathi, Koushik Reddy Sane, and Radhika Mamidi. Stance
detection in code-mixed Hindi-English social media data using multi-task learning. In Proceedings
of the Tenth Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media
Analysis, pages 1–5, Minneapolis, USA, June 2019. Association for Computational Linguistics.

[45] V. Srinidhi Skanda, M. Anand Kumar, and K.P. Soman. Detecting stance in kannada social
media code-mixed text using sentence embedding. In 2017 International Conference on Advances
in Computing, Communications and Informatics (ICACCI), pages 964–969, 2017.

[46] Sahil Swami, Ankush Khandelwal, Vinay Singh, Syed Sarfaraz Akhtar, and Manish Shrivastava.
A corpus of english-hindi code-mixed tweets for sarcasm detection, 2018.

[47] Ankush Khandelwal, Sahil Swami, Syed S. Akhtar, and Manish Shrivastava. Humor detection in
english-hindi code-mixed social media content : Corpus and baseline system, 2018.

[48] Suman Banerjee, Nikita Moghe, Siddhartha Arora, and Mitesh M. Khapra. A dataset for building
code-mixed goal oriented conversation systems, 2018.

[49] S Padmaja, Sasidhar Bandu, and S Sameen Fatima. Text processing of telugu–english code mixed
languages. In Advances in Decision Sciences, Image Processing, Security and Computer Vision,
pages 147–155. Springer, 2020.

34

[50] Amitava Das. Tool contest on pos tagging for code-mixed indian social media (facebook, twitter,
and whatsapp) text @ icon 2016.

[51] Braja Gopal Patra, Dipankar Das, and Amitava Das. Sentiment analysis of code-mixed indian
languages: An overview of sail_code-mixed shared task @icon-2017. CoRR, abs/1803.06745,
2018.

[52] Somnath Banerjee, M. Choudhury, K. Chakma, S. Naskar, Amitava Das, Sivaji Bandyopadhyay,
and P. Rosso. Msir@fire: A comprehensive report from 2013 to 2016. SN Comput. Sci., 1:55,
2020.

[53] K. Chakma and Amitava Das. Cmir: A corpus for evaluation of code mixed information retrieval
of hindi-english tweets. Computación y Sistemas, 20:425–434, 2016.

[54] Bharathi Raja Chakravarthi, Ruba Priyadharshini, Vigneshwaran Muralidaran, Shardul
Suryawanshi, Navya Jose, Elizabeth Sherly, and John P. McCrae. Overview of the track on
sentiment analysis for dravidian languages in code-mixed text. In Forum for Information Re-
trieval Evaluation, FIRE 2020, page 21–24, New York, NY, USA, 2020. Association for Computing
Machinery.

[55] Bharathi Raja Chakravarthi, Ruba Priyadharshini, Navya Jose, Anand Kumar M, Thomas
Mandl, Prasanna Kumar Kumaresan, Rahul Ponnusamy, Hariharan R L, John P. McCrae, and
Elizabeth Sherly. Findings of the shared task on offensive language identification in Tamil, Malay-
alam, and Kannada. In Proceedings of the First Workshop on Speech and Language Technologies
for Dravidian Languages, pages 133–145, Kyiv, April 2021. Association for Computational Lin-
guistics.

[56] Guillaume Lample, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio Ranzato. Unsupervised
machine translation using monolingual corpora only. arXiv preprint arXiv:1711.00043, 2017.

[57] Emily M. Bender and Alexander Koller. Climbing towards NLU: On meaning, form, and under-
standing in the age of data. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 5185–5198, Online, July 2020. Association for Computational
Linguistics.

[58] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota,
June 2019. Association for Computational Linguistics.

[59] Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek,
Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Unsuper-
vised cross-lingual representation learning at scale. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages 8440–8451, Online, July 2020. Association
for Computational Linguistics.

35

[60] Telmo Pires, Eva Schlinger, and Dan Garrette. How multilingual is multilingual BERT? In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages
4996–5001, Florence, Italy, July 2019. Association for Computational Linguistics.

[61] Sebastin Santy, Anirudh Srinivasan, and Monojit Choudhury. BERTologiCoMix: How does code-
mixing interact with multilingual BERT? In Proceedings of the Second Workshop on Domain
Adaptation for NLP, pages 111–121, Kyiv, Ukraine, April 2021. Association for Computational
Linguistics.

[62] Abhirut Gupta, Aditya Vavre, and Sunita Sarawagi. Training data augmentation for code-mixed
translation. In Proceedings of the 2021 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, pages 5760–5766, Online,
June 2021. Association for Computational Linguistics.

[63] Arda Çelebi and Arzucan Özgür. Segmenting hashtags using automatically created training
data. In Proceedings of the Tenth International Conference on Language Resources and Evalua-
tion (LREC’16), pages 2981–2985, Portorož, Slovenia, May 2016. European Language Resources
Association (ELRA).

[64] Irshad Bhat, Riyaz A. Bhat, Manish Shrivastava, and Dipti Sharma. Joining hands: Exploiting
monolingual treebanks for parsing of code-mixing data. In Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers,
pages 324–330, Valencia, Spain, April 2017. Association for Computational Linguistics.

[65] Deepak Gupta, Asif Ekbal, and Pushpak Bhattacharyya. A semi-supervised approach to gen-
erate the code-mixed text using pre-trained encoder and transfer learning. In Findings of the
Association for Computational Linguistics: EMNLP 2020, pages 2267–2280, Online, November
2020. Association for Computational Linguistics.

[66] Ankit Kumar, Piyush Makhija, and Anuj Gupta. Noisy text data: Achilles’ heel of BERT. In
Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020), pages 16–21,
Online, November 2020. Association for Computational Linguistics.

[67] Danish Pruthi, Bhuwan Dhingra, and Zachary C. Lipton. Combating adversarial misspellings
with robust word recognition. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 5582–5591, Florence, Italy, July 2019. Association for Compu-
tational Linguistics.

[68] Emily Sheng, Kai-Wei Chang, Premkumar Natarajan, and Nanyun Peng. The woman worked as a
babysitter: On biases in language generation. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 3407–3412, Hong Kong, China, November 2019.
Association for Computational Linguistics.

[69] Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. Universal adversarial
triggers for attacking and analyzing NLP. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural

36

Language Processing (EMNLP-IJCNLP), pages 2153–2162, Hong Kong, China, November 2019.
Association for Computational Linguistics.

[70] Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A. Smith. Real-
ToxicityPrompts: Evaluating neural toxic degeneration in language models. In Findings of the
Association for Computational Linguistics: EMNLP 2020, pages 3356–3369, Online, November
2020. Association for Computational Linguistics.

[71] Mounica Maddela, W. Xu, and Daniel Preotiuc-Pietro. Multi-task pairwise neural ranking for
hashtag segmentation. In ACL, 2019.

[72] Devansh Gautam, Prashant Kodali, Kshitij Gupta, Anmol Goel, Manish Shrivastava, and Pon-
nurangam Kumaraguru. CoMeT: Towards code-mixed translation using parallel monolingual
sentences. In Proceedings of the Fifth Workshop on Computational Approaches to Linguistic
Code-Switching, pages 47–55, Online, June 2021. Association for Computational Linguistics.

[73] Keita Kurita, Nidhi Vyas, Ayush Pareek, Alan W Black, and Yulia Tsvetkov. Measuring bias
in contextualized word representations. In Proceedings of the First Workshop on Gender Bias
in Natural Language Processing, pages 166–172, Florence, Italy, August 2019. Association for
Computational Linguistics.

[74] Moin Nadeem, Anna Bethke, and Siva Reddy. Stereoset: Measuring stereotypical bias in pre-
trained language models. ArXiv, abs/2004.09456, 2020.

37

	Introduction
	Utility of Code mixing

	Typological Frameworks for Code mixing
	Difference Between Word Borrowing and Code mixing
	Constraint Based Grammatical Theories for Code mixing

	Challenges In Processing Code Mix Text
	Data Availability and Collection
	Source of Code Mix Data
	Code Mixing in Social Media

	Language Identification
	Transliteration, Lack of Standard Spellings and Need for Appropriate Pre-processing
	Language Pairs - The sheet variety

	Measures of Code Mixing
	Data, Resources and Tasks
	Datasets and Tasks
	Benchmarks
	Computational Approaches

	Gaps Identified
	Efficient Code mix Data Collection, Pre-processing and Annotation Methods
	Transfer Learning from Large Multilingual Models, Monolingual Corpora for Richer Representations for Code Mixing Tasks
	Lack of Standard Pipelines for Processing Code Mix Text for Applicaitons

	Current Work Under Progress
	Code Mix Data Collection
	Quantitative and Qualitative Analysis of Code Mix Utterances
	Publications

	Future Work
	Bias Evaluation of Different Models
	Machine Translation and Generation
	Comparison of Different Multilingual Representations

	Limitations
	Selected Papers
	References

