

Towards Effective Paraphrasing for Information Disguise

Anmol Agarwal ^{† *}, Shrey Gupta ^{† *}, Vamshi Bonagiri [†], Manas Gaur [§], Joseph Reagle □ & Ponnurangam Kumaraguru [†]

*Authors contributed equally

*At **At **IIIT Hyderabad, India

§ The University of Maryland, Baltimore County

Northeastern University

Background

 Researchers dealing with public user-generated content often need to paraphrase content related to sensitive topics before making it public.

- Posting on Reddit is NOT automatic consent for public distribution
 - Especially applicable for content meant for specific forums
 - Example: Depression, Suicide, Mental Health, Abuse
 - Unwanted attention and publicity

- Shadow Profiling
 - Attention not limited to one community or platform
 - Can spread to others using your username
 - Usernames reflect characteristics and habits

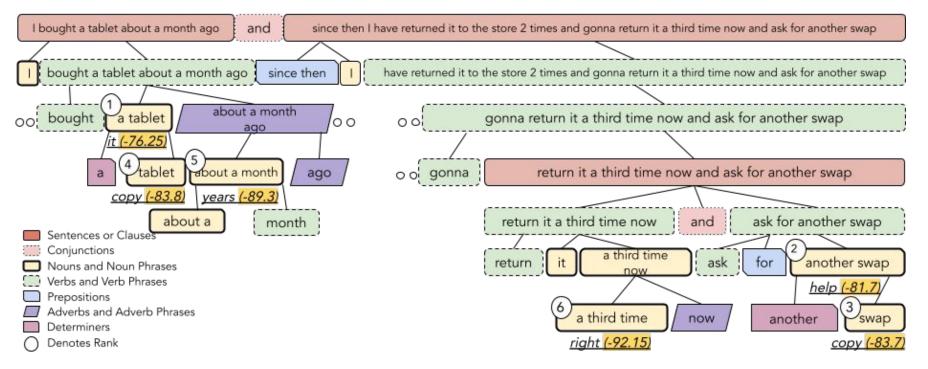
Motivation and our Problem Statement

- Existing AI word spinners (eg. SpinRewriter, WordAI etc.)
 - Ineffective for paraphrasing
 - Sources of paraphrased content are still locatable on search engines^[1].
- Introducing: an unsupervised black-box adversarial framework to paraphrase content such that querying snippets of text from it on search engines does not lead back to the original content on the web.
- Given a sentence 's,' derived from a document "D", we paraphrase the sentence with 2 aims:
 - Non-locatability: Sentence's source "D" is non-locatable
 - Fidelity: Semantic meaning of the sentence "s" is preserved
- Our setup:
 - Retriever used: <u>Dense Passage Retriever (DPR)</u>
 - Retriever document store: 2000 posts from the subreddits r/AmItheAsshole and r/AmItheButtface
 - Queries: Single sentences within the posts which result in their source post being within top-2 documents when queried.

Architecture Adversarial Blackbox Paraphrasing model Create Sentence Constituency Parse Tree Use A as feedback to direct future NP Original Rank tree nodes ranking **VBZ** for attack results PRP Paraphrased Source query Δ = Change in rank of source VBG NP Fetch revised Ranking document ranks results after paraphrasing

STEP 1: Shortlisting parts of the sentence eligible for paraphrasing

STEP 2: Ranking the shortlisted parts of the sentence to prioritize our attack

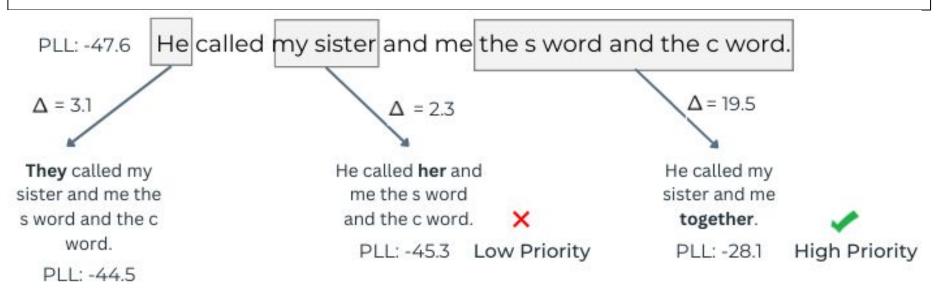

Retriever

STEP 3: Creating possible paraphrases of the part of the sentence to attack

STEP 4: Repeating steps 1-3 to expand our approach for multi-phrase paraphrasing guided by feedback from previous paraphrasing attempts

Source

STEP 1: Shortlisting parts of the sentence eligible for attack


Sentence "s": I bought a tablet about a month ago and since then I have returned it to the store 2 times and gonna return it a third time now and ask for another swap.

- Substrings such as "and since", "times and gonna" alone DO NOT have independent meaning.
- We shortlist only those substrings which are present in some node of the Constituency Parse Tree *.

STEP 2: Ranking shortlisted nodes to prioritize our attack

We prioritise which parse tree nodes to attack using <u>Pseudo log-likelihood (PLL)</u> scores.

PLL: Probability of a sentence from BERT, by iteratively masking every word in the sentence and then summing the log probabilities.

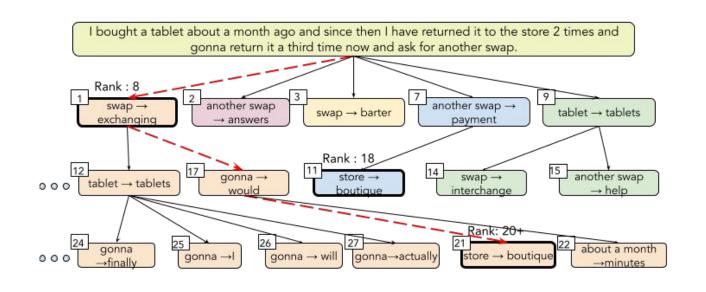
Replacing the phrase "the s word and the c word" with "together" leads to maximum increase in the sentence occurrence probability. This indicates that "the s word and the c word" is the *most peculiar part* of the sentence and hence, a potent location for attack.

STEP 3: Generating potential paraphrases for top-ranked nodes

Attacking by generating replacements using a combination of:

- 1) **BERT masked language model :** maintains grammar; takes surrounding content into account; independent of the phrase being replaced
- 2) **Synonyms in Counter-fitting vector space:** depends on phrase being replaced; does not take surrounding context into account; decreases grammar quality

He called me and my sister the s word and the c word.


Bert suggestions: friend, father, mother, brother

Counter-fitting vector based suggestions: sibling, hermano, nun, sis

BERT suggestions:

- He called me and my sister names.
- He called me and my sister crazy.
- He called me and my sister out.

STEP 4: Expanding to Multi-Phrase paraphrasing using Beam Search

$$f(s_{paraphrased}) = (1 - \alpha) * \underbrace{Sim(s_{org}, s_{paraphrased})}_{\text{semantic similarity}} + \alpha * \underbrace{\frac{(Rank(s_{paraphrased}, D_{source}) - 1)}{20}}_{\text{non-locatablity of source}}$$
 (distance from origin)

Performance

We succeed in **disguising 82% of the queries** (source document outside top-20) when there are 3 beam levels and 5 nodes per parse tree are expanded.

HR@K	Level 1	Level 2	Level 3
K=1	0.18	0.06	0.04
K=5	0.46	0.17	0.10
K=10	0.60	0.24	0.13
K=20	0.71	0.34	0.18

A controlled attack (ie attacking limited number of parse tree nodes) during multi-phrase perturbation is MUCH MORE effective than a brute force attack during single-phrase perturbation.

Potential areas for future work

- Including a grammar quality score in the ranking metric to prevent grammatical errors.
- Reducing the number of requests made to the retriever before a successful paraphrasing attempt

The Authors

Anmol Agarwal

Shrey Gupta

Vamshi Krishna

Manas Gaur

Ponnurangam Kumaraguru (PK)

Joseph Reagle

Thank You!

Questions?

Code Repository:

https://github.com/idecir/idecir-Towar ds-Effective-Paraphrasing-for-Inform ation-Disguise