
Random Representations Outperform Online
Continually Learned Representations

Ameya Prabhu1∗ Shiven Sinha2∗ Ponnurangam Kumaraguru2 Philip H.S. Torr1
Ozan Sener3+ Puneet K. Dokania1+

1University of Oxford 2IIIT Hyderabad 3Apple

Abstract

Continual learning has primarily focused on the issue of catastrophic forgetting
and the associated stability-plasticity tradeoffs. However, little attention has been
paid to the efficacy of continually learned representations, as representations are
learned alongside classifiers throughout the learning process. Our primary contri-
bution is empirically demonstrating that existing online continually trained deep
networks produce inferior representations compared to a simple pre-defined ran-
dom transforms. Our approach embeds raw pixels using a fixed random transform,
approximating an RBF-Kernel initialized before any data is seen. We then train
a simple linear classifier on top without storing any exemplars, processing one
sample at a time in an online continual learning setting. This method, called
RanDumb, significantly outperforms state-of-the-art continually learned represen-
tations across all standard online continual learning benchmarks. Our study reveals
the significant limitations of representation learning, particularly in low-exemplar
and online continual learning scenarios. Extending our investigation to popular
exemplar-free scenarios with pretrained models, we find that training only a linear
classifier on top of pretrained representations surpasses most continual fine-tuning
and prompt-tuning strategies. Overall, our investigation challenges the prevailing
assumptions about effective representation learning in online continual learning.
Our code is available here.

1 Introduction

Continual learning aims to develop models capable of learning from non-stationary data streams,
inspired by the lifelong learning abilities exhibited by humans and the prevalence of such real-world
applications (see Verwimp et al. [64] for a survey). It is characterized by sequentially arriving tasks,
coupled with additional computational and memory constraints [33, 38, 54, 62, 49].

Building on the foundations of supervised deep learning, the prevalent approach in continual learning
has been to jointly train representations alongside classifiers. This approach simply follows from the
assumption that learned representations are expected to outperform fixed representation functions
such as kernel classifiers, as demonstrated in supervised deep learning [34, 23, 57]. However, this
assumption is never validated in continual learning, with scenarios having limited updates where
networks might not be trained until convergence, such as online continual learning (OCL).

In this paper, we study the efficacy of representations derived from continual learning algorithms.
Surprisingly, our findings suggest that these representations might not be as beneficial as presumed.
To test this, we introduce a simple baseline method named RanDumb, which combines a random
representation function with a straightforward linear classifier, illustrated in detail in Figure 1
(left). Our empirical evaluations, summarized in Table 1 (left, top), reveal that despite replacing

∗authors contributed equally, + equal advising

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/drimpossible/RanDumb

D
ec

or
re

la
te

 (D
)

N
C

M
 (C

)

A
pp

ro
xi

m
at

e
R

B
F-

K
er

ne
l

RanDumb

O = CTDTφ(I)

I O

Figure 1: RanDumb projects
raw pixels to a high dimen-
sional space using random
Fourier projections (φ), then
decorrelate the features using
Mahalanobis distance [43] and
classify with the nearest class
mean. The online update
only involves updating a sin-
gle sample covariance matrix
and class-means.

Embed

3D View
2D Projection

(Horizontal midway)Input Output

Decorrelate

Figure 2: RanDumb projects the datapoints to a high-dimensional
space to create a clearer separation between classes. Subsequently,
it corrects the anisotropy across feature dimensions, scaling them
to be unit variance each. This allows cosine similarity to accu-
rately separates classes. The figure is adapted from [48].

Table 1: (Left) Online Continual Learning. Performance comparison of RanDumb on the PEC setup
[75] and VAE-GC [63]. Setup and numbers borrowed from PEC [75]. RanDumb outperforms the best
OCL method. (Right) Offline Continual Learning. Performance comparison with ImageNet21K
ViT-B16 model using 2 initial classes and 1 new class per task. RanPAC-imp is an improved version
of the RanPAC code which mitigates the instability issues in RanPAC. RanDumb nearly matches
performance of joint for both online and offline, demonstrating the inefficacy of current benchmarks.

Method MNIST CIFAR10 CIFAR100 m-IMN
Comparison with Best Method

Best (PEC) 92.3 58.9 26.5 14.9
RanDumb (Ours) 98.3 55.6 28.6 17.7
Improvement +6.0 -3.3 +2.1 +2.8

Random vs. Learned Representations

VAE-GC 84.0 42.7 19.7 12.1
RanDumb (Ours) 98.3 55.6 28.6 17.7
Improvement +14.3 +12.9 +8.9 +5.6

Scope of Improvement

Joint (One Pass) 98.3 74.2 33.0 25.3
RanDumb (Ours) 98.3 55.6 28.6 17.7
Gap Covered. (%) 100% 75% 87% 70%

Method CIFAR IN-A IN-R CUB OB VTAB Cars
Comparison with Best Method

Best (RanPAC-imp) 89.4 33.8 69.4 89.6 75.3 91.9 57.3
RanDumb (Ours) 86.8 42.2 64.9 88.5 75.3 92.4 67.1
Improvement -2.6 +8.4 -4.5 -1.1 +0.0 +0.5 +9.8

Random vs. Finetuned Representations

SLCA 86.8 - 54.2 82.1 - - 18.2
RanDumb (Ours) 86.8 42.2 64.9 88.5 75.3 92.4 67.1
Improvement +0.0 - +10.7 +6.4 - - +48.9

Scope of Improvement

Joint 93.8 70.8 86.6 91.1 83.8 95.5 86.9
RanDumb (Ours) 86.8 42.2 64.9 88.5 75.3 92.4 67.1
Gap Covered. (%) 93% 60% 75% 97% 92% 97% 77%

the representation learning with a pre-defined random representation, RanDumb surpasses current
state-of-the-art methods in latest online continual learning benchmarks [75].

We further expand our evaluations to scenarios incorporating methods that use pre-trained feature
extractors [67]. By substituting our random projections with these feature extractors and retaining the
linear classifier, RanDumb again outperforms leading methods as shown in Table 1 (right, top).

1.1 Technical Summary: Construction of RanDumb and Empirical Findings

Design. RanDumb first projects input pixels into a high-dimensional space using a fixed kernel
based on random Fourier basis, which is a low-rank data-independent approximation of the RBF
Kernel [52]. Then, we use a simple linear classifier which first normalizes distances across different
feature dimensions (anisotropy) with Mahalanobis distance [43] and then uses nearest class means
for classification [44]. In scenarios with pretrained feature extractors, we use the fixed pretrained
model as embedder and learn a linear classifier as described above, similar to Hayes and Kanan [27].

Key Properties. RanDumb needs no storage of exemplars and requires only one pass over the data in
a one-sample-per-timestep fashion. Furthermore, it only requires online estimation of the sample
covariance matrix and nearest class mean.

2

Key Finding 1: Poor Representation Learning. We compare RanDumb with leading methods: VAE-
GC [63] in Table 1 (left, middle) and SLCA [78] in Table 1 (right, middle). The primary distinction
between them is their representation: RanDumb uses a fixed function (random/pretrained network),
whereas VAE-GC and SLCA further continually trained deep networks. RanDumb consistently
surpasses VAE-GC and SLCA by wide margins of 5-15%. This shows that state-of-the-art online
continual learning algorithms fail to learn effective representations across standard exemplar-free
continual learning benchmarks.

Finding 2: Over-Constrained Benchmarks. Given the demonstrated limitations of existing continual
representation learning methods, an important question arises: Can better methods learn more
effective representations? To explore this, we evaluated the performance of RanDumb against joint
training, models trained without continual learning constraints, in both online and offline settings, as
shown in Table 1 (left, bottom) and Table 1 (right, bottom). Our straightforward baseline, RanDumb,
bridges 70-90% of the performance gap relative to the respective joint classifiers in both scenarios.
This significant recovery of performance by such a simple method suggests that if our goal is to
advance the study of representation learning, current benchmarks may be overly restrictive and not
conducive to truly effective representation learning.

We highlight that the goal in our work is not to introduce a state-of-the-art continual learning method,
but challenge prevailing assumptions and open a discussion on the efficacy of representation learning
in continual learning algorithms, especially in online and low-exemplar scenarios.

2 RanDumb: Mechanism & Intuitions

RanDumb has two main elements: random projection and the dumb learner. We illustrate the
mechanism of RanDumb using three toy examples in Figure 1 (right). To classify a test sample xtest,
we start with a simple classifier, the nearest class mean (NCM). It predicts the class among C classes
by highest value of the similarity function f among class means µi:

ypred = argmax
i∈{1,...,|C|}

f(xtest, µi), where f(xtest, µi) := xtest
⊤µi (1)

and µi are the class-means in the pixel space: µi =
1

|Ci|
∑

x∈Ci
x. RanDumb adds two additional

components to this classifier: 1) Kernelization and 2) Decorrelation.

Kernelization: Classes are typically not linearly separable in the pixel space, unlike in the feature
space of deep models. Hence, we apply the kernel trick to embed the pixels in a better representation
space, computing all distances between the data and class-means in this embedding space. This
phenomena is illustrated on three toy examples to build intuitions in Figure 1 (right, Embed). We
use an RBF-Kernel, which for two points x and y is defined as: KRBF(x,y) = exp

(
−γ∥x− y∥2

)
where γ is a scaling parameter. However, calculating the RBF kernel is not possible due to the online
continual learning constraints preventing computation of pairwise-distance between all points. Hence,
we use a data-independent approximation, random Fourier projection ϕ(x), as given in [52]:

KRBF(x,y) ≈ ϕ(x)Tϕ(y)

where the random Fourier features ϕ(x) are defined by first sampling D vectors {ω1, . . . , ωD} from
a Gaussian distribution with mean zero and covariance matrix 2γI, where I is the identity matrix.
Then ϕ(x) is a 2D-dimensional feature, defined as:

ϕ(x) =
1√
D

[
cos(ωT

1 x), sin(ω
T
1 x), .., cos(ω

T
Dx), sin(ωT

Dx)
]

We keep these ω bases fixed throughout online learning. Thus, we obtain our modified similarity
function from Equation 1 as:

f(xtest, µi) := ϕ(xtest)
⊤
µ̄i (2)

where µ̄i are the class-means in the kernel space:

µ̄i =
1

|Ci|
∑
x∈Ci

ϕ(x)

3

Decorrelation: Projected raw pixels have feature dimensions with different variances (anisotropic).
Hence, instead of naively computing ϕ(xtest)

⊤
µ̄i, we further decorrelate the feature dimensions

using a Mahalonobis distance with the shrinked covariance matrix S using OAS shrinkage [15],
inverse obtained by least squares minimization (S+ λI). We illustrate this phenomena as well on
three toy examples in Figure 1 (right, Decorrelate) to build intuitions. Our similarity function finally
is:

f(xtest, µi) := (ϕ(xtest)− µ̄i)
TS−1(ϕ(xtest)− µ̄i) (3)

Online Computation. Our random projection is fixed before seeing any data. During continual
learning, we only perform online update on the running class mean and empirical covariance matrix2.

3 Experiments

We compare RanDumb with algorithms across online continual learning benchmarks with an emphasis
on exemplar-free and low-exemplar storage regime.

Setup Num #Classes #Samples #Stored Contrastive
Passes Per Task Per Step Exemplars Augment

Method: RanDumb 1 1 1 0 No

A (Zając et al. [75]) 1 1 10 0 No
B1 (Guo et al. [25]) 1 2 10 100-2000 No
B2 (Guo et al. [25]) 1 2 10 100-1000 Yes
C (Smith et al. [60]) Many 10 All 0 No
D (Wu et al. [70]) 1 2-10 10 1000 No
E (Ye and Bors [74]) 1 2-5 10 1000-5000 No
F (Wang et al. [67], modified) Many 1 All 0 No

Benchmarks. The benchmarks which
we used in our experiments are sum-
mized in Table on the right. We aim
for a comprehensive coverage and show
results on four standard online con-
tinual learning benchmarks (A, B, D,
E) which reflect the latest trends (’22-
’24) across exemplar-free, contrastive-
training3, meta-continual learning, and
network-expansion based approaches re-
spectively. We also evaluate on a rehearsal-free offline continual learning benchmark C. These
benchmarks are ordered by increasingly relaxed constraints, moving further away from the training
scenario of RanDumb.Benchmark A closely matches RanDumb with one class per timestep and no
stored exemplars. Benchmark B, D, E progressively relax the constraints on exemplars and classes
per timestep. Benchmark C and E remove the online constraint by allowing unrestricted training and
sample access within a task without exemplar-storage of past tasks. Benchmark F allows using large
pretrained models, modified by us with one class per task, i.e. testing learning over longer timespans.

We further test on exemplar-free scenarios in offline continual learning using Benchmark F [67]
with the challenging one-class per task constraint borrowed from [75]. This benchmark allows
using pretrained models along with unrestricted training time and access to all class samples at each
timestep. However, RanDumb is restricted to learning from a single pass seeing only one sample at a
time. RanDumb only learns a linear classifier over a given pretrained model in Benchmark F.

We use LAMDA-PILOT [61] codebase for all methods, except RanPAC and SLDA for which use
their codebases. We use the original hyperparameters. We only change initial classes to 2 and number
of classes per task to 1 and test using both ImageNet21K and ImageNet1K ViT-B/16 models.

Implementation Details (RanDumb). We evaluate RanDumb using five datasets: MNIST, CIFAR10,
CIFAR100, TinyImageNet200, and miniImageNet100. For the latter two, we downscale all images to
32x32. We augment each datapoint with flipped version, hence two images are seen by the classifier
at each timestep (except for MNIST and Benchmark F). We normalize all images and flatten them into
vectors, obtaining 784-dim input vectors for MNIST and 3072-dim input vectors for all the other. For
Benchmark F, we compare RanDumb on seven datasets used in LAMDA-PILOT, replacing ObjectNet
with Stanford Cars as ObjectNet license prohibits training models. We use the 768-dimensional
features from the same pretrained ViT-B models used in this benchmark. We measure accuracy on the
test set of all past seen classes after completing the full one-pass. We take the average accuracy after
the last task on all past tasks [75, 25, 67]. In Benchmark A and F, since we have one class per task, the
average accuracy across past tasks is the same regardless of the task ordering. In Benchmarks A-E,
all datasets have the same number of samples, hence similarly the average accuracy across past tasks
is the same regardless of the task ordering. We used the Scikit-Learn implementation of Random

2Online update for the inverse of the covariance matrix is possible using the Sherman–Morrison formula.
3Benchmark B is split into two sections: (B1) methods that do not rely on contrastive learning and heavy

augmentation, and (B2) approaches that incorporate contrastive learning and extra augmentations.

4

Table 2: Benchmark A (Ref: Table 1 from PEC [75]). We compare RanDumb in a 1-class per task
setting referred as ‘Dataset (num_tasks/1)’. We observe that RanDumb outperforms all approaches
across all datasets by 2-6% margins, with an exception of latest work PEC [75] on CIFAR10.

Method Memory MNIST CIFAR-10 CIFAR-100 miniImageNet
(10/1) (10/1) (100/1) (100/1)

Fine-tuning all 10.1± 0.0 10.0± 0.0 1.0± 0.0 1.0± 0.0
Joint, 1 epoch all 98.3± 0.0 74.2± 0.1 33.0± 0.2 25.3± 0.2

Rehearsal
Based
Methods

ER [13] 500 84.4± 0.3 40.6± 1.1 12.5± 0.3 5.7± 0.2
A-GEM [12] 500 59.8± 0.8 10.2± 0.1 1.0± 0.0 1.1± 0.1
iCaRL [54] 500 83.1± 0.3 37.8± 0.4 5.7± 0.1 7.5± 0.1
BiC [71] 500 86.0± 0.4 35.9± 0.4 6.4± 0.3 1.5± 0.1
ER-ACE [10] 500 87.8±0.2 39.9±0.5 8.2±0.2 5.7±0.2
DER [9] 500 91.7± 0.1 40.0± 1.5 1.0± 0.1 1.0± 0.0
DER++ [9] 500 91.9± 0.2 35.6± 2.4 6.2± 0.4 1.4± 0.1
X-DER [8] 500 83.0± 0.1 43.2± 0.5 15.6± 0.1 8.2± 0.4
GDumb [49] 500 91.0±0.2 50.7±0.7 8.2±0.2 -

Rehearsal
Free
Methods

EWC [33] 0 10.1± 0.0 10.6± 0.4 1.0± 0.0 1.0± 0.0
SI [76]) 0 12.7± 1.0 10.1± 0.1 1.1±0.0 1.0±0.1
LwF [37] 0 11.8 ± 0.6 10.1± 0.1 0.9±0.0 1.0± 0.0
LT [77] 0 10.9± 0.9 10.0± 0.2 1.1± 0.1 1.0± 0.0
Gen-NCM [31] 0 82.0± 0.0 27.7± 0.0 10.0± 0.0 7.5± 0.0
Gen-SLDA [27] 0 88.0± 0.0 41.4± 0.0 18.8± 0.0 12.9± 0.0
VAE-GC [63] 0 84.0± 0.5 42.7± 1.3 19.7± 0.1 12.1± 0.1
PEC [75] 0 92.3± 0.1 58.9± 0.1 26.5± 0.1 14.9± 0.1
RanDumb (Ours) 0 98.3 (+5.9) 55.6 (-3.3) 28.6 (+2.1) 17.7 (+2.8)

Table 3: Benchmark B.1 (Ref: Table adopted from OnPro [68], OCM[25]) We compare RanDumb in
many-classes per task setting referred as ‘Dataset (num_tasks/num_classes_per_task)’. We categorize
memory buffer sizes with ‘M’. RanDumb outperforms the competing approaches without heavy-
augmentations by 3-20% margins despite being exemplar free. Only in one case, it is second best.

Method MNIST CIFAR10 CIFAR100 CIFAR100 TinyImageNet
(5/2) (5/2) (10/10) (50/2) (100/2)

M = 0.1k M = 0.1k M = 0.2k M = 0.5k M = 1k M = 1k M = 1k M = 2k

AGEM [12] 56.9±5.2 17.7±0.3 22.7±1.8 5.8±0.2 5.9±0.1 1.8±0.2 0.8±0.1 0.9±0.1
GSS [4] 70.4±1.5 18.4±0.2 26.9±1.2 8.1±0.2 11.1±0.2 4.3±0.2 1.1±0.1 3.3±0.5
ER [13] 78.7±0.4 19.4±0.6 29.7±1.0 8.7±0.3 15.7±0.3 8.3±0.3 1.2±0.1 5.6±0.5
ASER [58] 61.6±2.1 20.0±1.0 27.8±1.0 11.0±0.3 16.4±0.3 9.6±1.3 2.2±0.1 5.3±0.3
MIR [3] 79.0±0.5 20.7±0.7 37.3±0.3 9.7±0.3 15.7±0.2 12.7±0.3 1.4±0.1 6.1±0.5
ER-AML [10] 76.5±0.1 - 40.5±0.7 - 16.1±0.4 - - 5.4±0.2
iCaRL [54] - 31.0±1.2 33.9±0.9 12.8±0.4 16.5±0.4 - 5.0±0.3 6.6±0.4
DER++ [9] 74.4±1.1 31.5±2.9 44.2±1.1 16.0±0.6 21.4±0.9 9.3±0.3 3.7±0.4 5.1±0.8
GDumb [49] 81.2±0.5 23.3±1.3 35.9±1.1 8.2±0.2 18.1±0.3 18.1±0.3 4.6±0.3 12.6±0.1
CoPE [19] - 33.5±3.2 37.3±2.2 11.6±0.4 14.6±1.3 - 2.1±0.3 2.3±0.4
DVC [25] - 35.2±1.7 41.6±2.7 15.4±0.3 20.3±1.0 - 4.9±0.6 7.5±0.5
Co²L [11] 83.1±0.1 - 42.1±1.2 - 17.1±0.4 - - 10.1±0.2
R-RT [6] 89.1±0.3 - 45.2±0.4 - 15.4±0.3 - - 6.6±0.3
CCIL [46] 86.4±0.1 - 50.5±0.2 - 18.5±0.3 - - 5.6±0.9
IL2A [81] 90.2±0.1 - 54.7±0.5 - 18.2±1.2 - - 5.5±0.7
BiC [71] 90.4±0.1 - 48.2±0.7 - 21.2±0.3 - - 10.2±0.9
SSIL [1] 88.2±0.1 - 49.5±0.2 - 26.0±0.1 - - 9.6±0.7

Rehearsal-Free

PASS [81] - 33.7±2.2 33.7±2.2 7.5±0.7 7.5±0.7 - 0.5±0.1 0.5±0.1
RanDumb (Ours) 98.3 (+7.8) 55.6 (+20.4) 55.6 (+5.9) 28.6 (+12.6) 28.6 (+2.6) 28.6 (+10.5) 11.6 (+6.6) 11.6 (-1.0)

Fourier Features [52] with 25K embedding size, γ = 1.0. We use progressively increasing ridge
regression parameter (λ) with dataset complexity, λ = 10−6 for MNIST, λ = 10−5 for CIFAR10/100
and λ = 10−4 for TinyImageNet200/miniImageNet100.

3.1 Results

Benchmark A. We assess continual learning models in the challenging setup of one class per timestep,
closely mirroring our training assumptions, and present our results in Table 2. Comparing across rows,
and see that RanDumb improves over prior state-of-the-art across all datasets with 2-6% margins.

5

Table 4: (Left) Benchmark B.2 (Ref: Table from OnPro [68]) We compare RanDumb with contrastive
representation learning based approaches which additionally use sophisticated augmentations. We
observe that RanDumb often outperforms these sophisticated methods despite all of these factors on
small-exemplar settings. (Right) Benchmark C (Ref: Table 2 from [60]). We compare RanDumb
with latest rehearsal-free methods. RanDumb outperforms them by 4% margin.

Method MNIST (5/2) CIFAR10 (5/2) CIFAR100 (10/10) TinyImageNet (100/2)
M = 0.1k M = 0.1k M = 0.5k M = 1k

SCR [40] 86.2±0.5 40.2±1.3 19.3±0.6 8.9±0.3
OCM [25] 90.7±0.1 47.5±1.7 19.7±0.5 10.8±0.4
OnPro [68] - 57.8±1.1 22.7±0.7 11.9±0.3

Rehearsal-Free

RanDumb 98.3 (+7.5) 55.6 (-2.2) 28.6 (+5.9) 11.6 (-0.3)

Method CIFAR100
(10/10)

Rehearsal-Free

PredKD [37] 24.6
PredKD + FeatKD 12.4
PredKD + EWC 23.3
PredKD + L2 21.5
RanDumb (Ours) 28.6 (+4.0)

Table 5: (Left) Benchmark D (Ref: Table 2 from VR-MCL [70]) We compare RanDumb with meta-
continual learning approaches operating in a high memory setting, allowing buffer sizes up to 1K
exemplars. RanDumb outperforms all methods except VR-MCL on TinyImageNet. RanDumb also
surpasses all prior work by a substantial 9.1% on CIFAR100. Allowing generous replay buffers shifts
scenarios to a high exemplar regime where GDumb performs the best on CIFAR10. Yet RanDumb
competes favorably even under these conditions. (Right) Benchmark E (Ref: Table 1 from SEDEM
[74]) We compare RanDumb with network expansion based approaches. Despite allowing access
to much larger memory buffers, RanDumb matches the performance of best method SEDEM on
MNIST, while exceeding it by 0.3% on CIFAR10 and 3.8% on CIFAR100.

Method CIFAR10 CIFAR100 TinyImageNet
(5/2) (10/10) (20/10)

M = 1k M = 1k M = 1k

Finetune 17.0 ± 0.6 5.3 ± 0.3 3.9 ± 0.2
LWF [37] 18.8 ± 0.1 5.6 ± 0.4 4.0 ± 0.3
A-GEM [12] 18.4 ± 0.2 6.0 ± 0.2 4.0 ± 0.2
IS [76] 17.4 ± 0.2 5.2 ± 0.2 3.3 ± 0.3
MER [55] 36.9 ± 2.4 – –
La-MAML [26] 33.4 ± 1.2 11.8 ± 0.6 6.74 ± 0.4
GDumb [49] 61.2 ± 1.0 18.1 ± 0.3 4.6 ± 0.3
ER [13] 43.8 ± 4.8 16.1 ± 0.9 11.1 ± 0.4
DER [9] 29.9 ± 2.9 6.1 ± 0.1 4.1 ± 0.1
DER++ [9] 52.3 ± 1.9 11.8 ± 0.7 8.3 ± 0.3
CLSER [5] 52.8 ± 1.7 17.9 ± 0.7 11.1 ± 0.2
OCM [25] 53.4 ± 1.0 14.4 ± 0.8 4.5 ± 0.5
ER-OBC [18] 54.8 ± 2.2 17.2 ± 0.9 11.5 ± 0.2
VR-MCL [70] 56.5 ± 1.8 19.5 ± 0.7 13.3 ± 0.4

Rehearsal-Free

RanDumb (Ours) 55.6 (-5.6) 28.6 (+9.1) 11.6 (-1.7)

Method MNIST CIFAR10 CIFAR100
(5/2) (5/2) (20/5)

M = 2k M = 1k M = 5k

Finetune 19.8 ± 0.1 18.5 ± 0.3 3.5 ± 0.1
MIR [3] 93.2 ± 0.4 42.8 ± 2.2 20.0 ± 0.6
GEM [12] 93.2 ± 0.4 24.1 ± 2.5 11.1 ± 2.4
iCARL [54] 83.9 ± 0.2 37.3 ± 2.7 10.8 ± 0.4
G-MED [32] 82.2 ± 2.9 47.5 ± 3.2 19.6 ± 1.5
GSS [4] 92.5 ± 0.9 38.5 ± 1.4 13.1 ± 0.9
CoPE [19] 93.9 ± 0.2 48.9 ± 1.3 21.6 ± 0.7
CURL [53] 92.6 ± 0.7 - -
CNDPM [36] 95.4 ± 0.2 48.8 ± 0.3 22.5 ± 1.3
Dynamic-OCM [73] 94.0 ± 0.2 49.2 ± 1.5 21.8 ± 0.7
SEDEM [74] 98.3 ± 0.2 55.3 ± 1.3 24.8 ± 1.2

Rehearsal-Free

RanDumb (Ours) 98.3 (0.0) 55.6 (+0.3) 28.6 (+3.8)

The only exception is PEC on CIFAR10, where RanDumb underperforms by 3.3%. Nonetheless, it
outperforms the second-best model, GDumb with a 500 memory size, by 4.9%.

Benchmark B1. We present our results comparing with non-contrastive methods in Table 3. We
notice that scenario allows two classes per task and relaxes the memory constraints for online
continual learning methods, allowing for higher accuracies compared to Benchmark A. Despite
that, RanDumb outperforms latest OCL algorithms on MNIST, CIFAR10 and CIFAR100—often by
margins exceeding 10%. The lone exception is GDumb achieving a higher performance with 2K
memory samples on TinyImageNet, indicating that this already is in the high-memory regime.

Benchmark B2. We additionally compare our performance with the latest OCL approaches using
contrastive losses with sophisticated data augmentations. As shown in in Table 4 (Left), these advance-
ments provide large performance improvements over methods from Benchmark B.1. To compensate,
we compare on lower exemplar budgets. The best approach, OnPro [68], outperforms RanDumb on
CIFAR10 by 2.2% and TinyImageNet by 0.3%, but falls significantly short on CIFAR100 by 5.9%.
Overall, RanDumb achieves strong results compared to representation learning using state-of-the-art
contrastive learning approaches customized to continual learning, despite storing no exemplars.

6

Benchmark C. We compare against offline rehearsal-free continual learning approaches in Table 4
(Right) on CIFAR100. Despite online training, RanDumb outperforms PredKD by over 4% margins.

Benchmark D. We compare performance of RanDumb against meta-continual learning methods,
which require large exemplars with buffer sizes of 1K in Table 5 (left). RanDumb achieves strong
performance under these conditions, exceeding all prior work by a large margin of 9.1% on CIFAR100
and outperforms all but VR-MCL approach on the TinyImageNet dataset. GDumb performs the best
on CIFAR10, indicating this is already in a large-exemplar regime uniquely unsuited for RanDumb.

Benchmark E. We compare RanDumb against network expansion-based online continual learning
methods in Table 5 (right). These approaches grow model capacity to mitigate forgetting while
dealing with shifts in the data distribution, and are allowed larger memory buffers. RanDumb matches
the performance of the state-of-the-art method SEDEM [74] on MNIST, while exceeding it by 0.3%
on CIFAR10 and 3.8% on CIFAR100.

Table 6: Benchmark F We compare RanDumb
with prompt-tuning approaches using ViT-B/16
ImageNet-21K/1K pretrained models using 2 init
classes and 1 class per task setting. Most prompt-
tuning based methods collapse and RanDumb
achieves either state-of-the-art or second-best per-
formance. RanPAC-imp is an improved version of
the RanPAC mitigating the instability issues.
Method CIFAR IN-A IN-R CUB VTAB

ViT-B/16 (IN-1K Pretrained)

Finetune 1.0 1.2 1.1 1.0 2.1
L2P [67] 2.4 0.3 0.8 1.4 1.3
DualPrompt [66] 2.3 0.3 0.8 0.9 4.2
CODA-Prompt [59] 2.6 0.3 0.8 1.9 6.3
Adam-Adapt [80]) 76.7 49.3 62.0 85.2 83.6
Adam-SSF [80] 76.0 47.3 64.2 85.6 84.2
Adam-VPT [80] 79.3 35.8 61.2 83.8 86.9
Adam-FT [80] 72.6 49.3 61.0 85.2 83.8
Memo [79] 69.8 - - 81.4 -
iCARL [54] 72.4 - 35.2 72.4 -
Foster [65] 52.2 - 76.8 86.6 -
NCM [31] 78.3 44.3 62.5 84.8 88.2
SLCA [78] 86.3 - 52.8 84.7 -
RanPAC [41] 88.2 39.0 72.8 77.7 93.0
RanPAC-imp [41] 87.8 43.5 72.6 89.6 93.0
RanDumb (Ours) 84.5 49.5 66.9 88.0 93.6

ViT-B/16 (IN-21K Pretrained)

Finetune 2.8 0.5 1.2 1.2 0.5
Adam-Adapt [80] 82.4 48.8 55.4 86.7 84.4
Adam-SSF [80] 82.7 46.0 59.7 86.2 84.9
Adam-VPT [80] 70.8 34.8 53.9 84.0 81.1
Adam-FT [80] 65.7 48.5 56.1 86.5 84.4
Foster [65] 87.3 - 5.1 86.9 -
iCARL [54] 71.6 - 35.1 71.6 -
NCM [31] 83.5 41.4 54.8 86.5 88.5
SLCA [78] 86.8 - 54.2 82.1 -
RanPAC [41] 89.6 26.8 67.3 87.2 88.2
RanPAC-imp [41] 89.4 33.8 69.4 89.6 91.9
RanDumb (Ours) 86.8 42.2 64.9 88.5 92.4

Benchmark F. We compare performance of ap-
proaches which do not further train the deep
network like RanDumb against popular contin-
ual finetuning and prompt-tuning approaches
in Table 6. We discover that prompt-tuning
approaches completely collapse under large
timesteps and approaches which do not fine-
tune their pretrained model achieve strong per-
formance, even under challenging one class per
timestep constraint. Note that RanPAC [41]
adds a RP+ReLU and finetunes in a first-session
adaptation fashion over RanDumb, yet fails to
achieve higher accuracies.

Overall, despite RanDumb being exemplar-free,
it outperforms nearly all online continual learn-
ing methods across various tasks when exemplar
storage is limited. We specifically benchmark
on lower exemplar sizes to complement settings
in which GDumb does not perform well.

3.2 Analysis of RanDumb

Ablating Components of RanDumb. We ab-
late the contribution of only using Random
Fourier features for embedding and decorrela-
tion to the overall performance of RanDumb
in Table 7 (left, top). Ablating the decorrela-
tion and relying solely on random Fourier fea-
tures, colloquially dubbed Kernel-NCM, has
performance drops ranging from 6-25% across
the datasets. Replacing random Fourier fea-
tures with raw features, ie. the SLDA baseline,
leads to pronounced drop in performance rang-
ing from 3-14% across the datasets. Moreover,
ablating both components results in the base
nearest class mean classifier, and exhibits the
poorest performance with an average reduction
of 17%. Therefore, both decorrelation and ran-
dom embedding are crucial for RanDumb.

Impact of Embedding Dimensions. We vary the dimensions of the random Fourier features ranging
from compressing 3K input dimensions to 1K to projecting it to 25K dimensions and evaluate its
impact on performance in Figure 3. Surprisingly, the random projection to a 3x compressed 1K
dimensional space allows for significant performance improvement over not using embedding, given
in Table 7 (left, top). Furthermore, increasing the dimension from 1K to 25K results in improvements
of 3.6%, 10.4%, 7.0%, and 2.5% on MNIST, CIFAR10, CIFAR100, and TinyImageNet respectively.

7

Figure 3: Accuracy of RanDumb with respect to embedding dimensionality across datasets.

Table 7: (Left) Analysis of RanDumb: We study contributions of decorrelation, random embedding,
and data augmentation. We further vary the embedding sizes and regularisation parameter. Finally,
we compare with alternate embeddings. (Right) Architectures (Ref: Table 1 from Mirzadeh et al.
[45]) RanDumb surpasses continual representation learning across a wide range of architectures,
achieving close to 94% of the joint performance.

Method MNIST CIFAR10 CIFAR100 T-ImNet m-ImNet
(10/1) (10/1) (10/1) (200/1) (100/1)

Ablating Components of RanDumb

RanDumb 98.3 55.6 28.6 11.1 17.7
-Decorrelate 83.8 (-14.5) 30.0 (-25.6) 12.0 (-16.6) 4.7 (-6.4) 8.9 (-8.8)
-Embed 88.0 (-10.3) 41.6 (-14.0) 19.0 (-9.6) 8.0 (-3.1) 12.9 (-4.8)
-Both 82.1 (-16.2) 28.5 (-27.1) 10.4 (-18.2) 4.1 (-7.0) 7.28 (-10.4)

Effect of Adding Flip Augmentation

With - 55.6 28.6 11.1 17.7
Without 98.3 52.5 (-3.1) 26.9 (-1.7) 10.7 (-0.4) 16.6 (-1.1)

Variation with Ridge Parameter λ

λ = 10−6 98.3 53.9 27.8 10.3 15.8
λ = 10−5 - 55.6 28.6 11.1 15.9
λ = 10−4 96.6 52.6 26.1 11.6 17.7

Variation Across Embedding Projections

No-Embed 88.0 41.6 19.0 8.0 12.9
RP+ReLU (RanPAC) 95.2 48.8 23.1 9.7 15.7
RanDumb (Ours) 98.3 (+3.1) 55.6 (+6.8) 28.6 (+5.5) 11.1 (+1.4) 17.7 (+2.0)

Model CIFAR100
Joint 79.58

CNN x1 62.2 ±1.35
CNN x2 66.3 ±1.12
CNN x4 68.1 ±0.5
CNN x8 69.9 ±0.62
CNN x16 76.8 ±0.76
ResNet-18 45.0 ±0.63
ResNet-34 44.8 ±2.34
ResNet-50 56.2 ±0.88
ResNet-101 56.8 ±1.62
WRN-10-2 50.5 ±2.65
WRN-10-10 56.8 ±2.03
WRN-16-2 44.6 ±2.81
WRN-16-10 51.3 ±1.47
WRN-28-2 46.6 ±2.27
WRN-28-10 49.3 ±2.02
ViT-512/1024 51.7 ±1.4
ViT-1024/1546 60.4 ±1.56

RanDumb (Ours) 74.8 (-2.0)

Increasing the embedding sizes beyond 15K, however, only results in modest improvements of 0.1%,
1.4%, 1.1% and 0.2% on the same datasets, indicating 15K dimensions would be a good point for a
performance-computational cost tradeoff.

Impact of Flip Augmentation. We evaluate the impact of adding the flip augmentation on the perfor-
mance of RanDumb in Table 7 (left, middle). Note that MNIST was not augmented. Augmentation
provided large gains of 3.1% on CIFAR10, 1.7% on CIFAR100, and 0.4% on TinyImageNet. We did
not augment the data further with RandomCrop transform as done with standard augmentations.

Impact of Varying Ridge Parameter. All prior experiments use a ridge parameter (λ) that increases
with dataset complexity: λ = 10−6 for MNIST, 10−5 for CIFAR10 and CIFAR100, and 10−4 for
TinyImageNet and miniImageNet. Table 7 (left, middle) shows the effect of varying λ on RanDumb’s
performance. With a smaller λ = 10−6, CIFAR10, CIFAR100, TinyImageNet and miniImageNet all
exhibit minor drops of 0.1%-1.7%, 0.8%, 0.8%. Increasing shrinkage to a λ = 10−4 reduces CIFAR10
and CIFAR100 performance more substantially by 3% and 2.5% versus their optimal λ = 10−5.
On the other hand, this larger λ leads to improvements of 0.5% and 1.8% on TinyImageNet and
miniImageNet. This aligns with the trend that datasets with greater complexity benefit from more
regularisation, with the optimal λ balancing under- and over-regularisation effects.

Comparison with Extreme Learning Machines. We compared our random Fourier features with
random projections based extreme learning machines, as recently adapted to continual learning by
RP+ReLU [41] in Table 7 (left, bottom) with their best embedding size. Our method performs
significantly better on each dataset, averaging a gain of 3.4%.

8

Comparisons across Architectures. In table 7 (right), we compare whether using random Fourier
features as embeddings outperforms models across various architectures for continual representation
learning. We use experience replay (ER) baseline in the task-incremental CIFAR100 setup (for details,
see Mirzadeh et al. [45] as it differs significantly from earlier setups). Our comparison spanned
various architectures. The findings revealed that RanDumb surpassed the performance of nearly
all considered architectures, and achieved close to 94% of the joint multi-task performance. This
suggests that RanDumb outperforms continual representation learning across architectures.

Conclusion. Overall, both random embedding and decorrelation are critical components in the
performance of RanDumb. Using random Fourier features is substantially better than RanPAC. Lastly,
one can substantially reduce the embedding dimension without a large drop in performance for large
gains in computational cost, additional augmentation may further significantly help performance and
optimal shrinkage parameter increases with dataset complexity. RanDumb outperforms continual
representation learning across a wide range of architectures.

4 Related Works and Equivalent Formulations

Random Representations. There have been extensive theoretical and empirical investigations into
random representations in machine learning, compressed sensing, and other fields, often utilizing
extreme learning machines [56, 14, 21] (see [30, 29] for a survey). Other investigations include
efficient kernel methods using Fourier features and Nyström approximations [52, 69], and extensions
to efficiently parameterize linear classifiers [2]. They are also embedded into deep networks [17, 35,
72, 16]. We tailored the already successful random fourier representations [52] to the problem at
hand and applied to the online continual learning problem for the first time.

Continual Representation Learning. There are various works focusing on continual representation
learning itself [53, 20, 39, 28], but they address the problem of alleviating the stability-plasticity
dilemma in high-exemplar and offline continual learning scenarios where models are trained until
convergence. In comparison, we focus on online and low-examplar regime.

Representation Learning Free Methods in CL. Several works have developed the idea of using
fixed pretrained networks after adapting on the first task across various settings [50, 41, 24]. Our
work contributes to this growing evidence, however, we do not perform first-task adaptation [47], and
propose OAS-shrinked SLDA as structurally simplest but highly accurate continual linear classifier
without any extra bells-and-whistles. Moreover, we are the first work to introduce a representation
learning free method with random features for continually learning from scratch.

Equivalent formulations to RanDumb. If the classes are equiprobable, which is the case for most
datasets here, nearest class mean classifier with the Mahalanobis distance metric is equivalent to linear
discriminant analysis (LDA) classifier [42]. Hence, one could say RanDumb is exactly equivalent to
a Streaming LDA classifier with an approximate RBF Kernel. Alternatively, one could think of the
decorrelation operation as explicitly decorrelating the features with ZCA whitening [7].

5 Discussion and Concluding Remarks

Our investigation reveals a surprising result — simply using random embedding (RanDumb) consis-
tently outperforms learned representations from methods specifically designed for online continual
training. Furthermore, using random/pretrained features also recovers 70-90% of the gap to joint
learning, leaving limited room for improvement in representation learning techniques on standard
benchmarks. Overall, our investigation questions our understanding of how to effectively design and
train models that require efficient continual representation learning, and necessitates a re-investigation
of the widely explored problem formulation itself. We believe adoption of computationally bounded
scenarios without memory constraints and corresponding benchmarks [51, 50, 22] could be a promis-
ing way forward.

Limitations & Future Directions. We currently do not provide theory or justification for why
training dynamics of continual learning algorithms fails to effectively learn good representations;
doing so would provide deeper insights into continual learning algorithms. Moreover, our proposed
method, RanDumb with random Fourier features is limited in scope towards low-exemplar scenarios
and online-continual learning. Extending studies on representation learning to high-exemplar and
offline continual learning scenarios might be exciting directions to investigate.

9

References
[1] Hongjoon Ahn, Jihwan Kwak, Subin Lim, Hyeonsu Bang, Hyojun Kim, and Taesup Moon. Ss-il: Separated

softmax for incremental learning. In ICCV, 2021.

[2] Nir Ailon and Bernard Chazelle. The fast johnson–lindenstrauss transform and approximate nearest
neighbors. SIAM Journal on computing, 2009.

[3] Rahaf Aljundi, Lucas Caccia, Eugene Belilovsky, Massimo Caccia, Laurent Charlin, and Tinne Tuytelaars.
Online continual learning with maximally interfered retrieval. In NeurIPS, 2019.

[4] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection for online
continual learning. In NeurIPS, 2019.

[5] Elahe Arani, Fahad Sarfraz, and Bahram Zonooz. Learning fast, learning slow: A general continual
learning method based on complementary learning system. In ICLR, 2022.

[6] Jihwan Bang, Heesu Kim, YoungJoon Yoo, Jung-Woo Ha, and Jonghyun Choi. Rainbow memory:
Continual learning with a memory of diverse samples. In CVPR, 2021.

[7] Anthony Bell and Terrence J Sejnowski. Edges are the’independent components’ of natural scenes. In
NeurIPS, 1996.

[8] Matteo Boschini, Lorenzo Bonicelli, Pietro Buzzega, Angelo Porrello, and Simone Calderara. Class-
incremental continual learning into the extended der-verse. TPAMI, 2022.

[9] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark experience
for general continual learning: a strong, simple baseline. In NeurIPS, 2020.

[10] Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuytelaars, Joelle Pineau, and Eugene Belilovsky. New
insights on reducing abrupt representation change in online continual learning. In ICLR, 2022.

[11] Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Contrastive continual learning. In ICCV, 2021.

[12] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient lifelong
learning with a-gem. In ICLR, 2019.

[13] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K Dokania,
Philip HS Torr, and Marc’Aurelio Ranzato. Continual learning with tiny episodic memories. In ICML-W,
2019.

[14] CL Philip Chen. A rapid supervised learning neural network for function interpolation and approximation.
IEEE Transactions on Neural Networks, 1996.

[15] Yilun Chen, Ami Wiesel, Yonina C Eldar, and Alfred O Hero. Shrinkage algorithms for mmse covariance
estimation. IEEE transactions on signal processing, 2010.

[16] Yu Cheng, Felix X Yu, Rogerio S Feris, Sanjiv Kumar, Alok Choudhary, and Shi-Fu Chang. An exploration
of parameter redundancy in deep networks with circulant projections. In ICCV, 2015.

[17] Youngmin Cho and Lawrence Saul. Kernel methods for deep learning. NeurIPS, 2009.

[18] Aristotelis Chrysakis and Marie-Francine Moens. Online bias correction for task-free continual learning.
In ICLR, 2023.

[19] Matthias De Lange and Tinne Tuytelaars. Continual prototype evolution: Learning online from non-
stationary data streams. In ICCV, 2021.

[20] Enrico Fini, Victor G Turrisi da Costa, Xavier Alameda-Pineda, Elisa Ricci, Karteek Alahari, and Julien
Mairal. Self-supervised models are continual learners. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2022.

[21] Dmitriy Fradkin and David Madigan. Experiments with random projections for machine learning. In KDD,
2003.

[22] Saurabh Garg, Mehrdad Farajtabar, Hadi Pouransari, Raviteja Vemulapalli, Sachin Mehta, Oncel Tuzel,
Vaishaal Shankar, and Fartash Faghri. Tic-clip: Continual training of clip models. ArXiv, 2023.

[23] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. In CVPR, 2014.

[24] Dipam Goswami, Yuyang Liu, Bartłomiej Twardowski, and Joost van de Weijer. Fecam: Exploiting the
heterogeneity of class distributions in exemplar-free continual learning. NeurIPS, 2023.

[25] Yiduo Guo, Bing Liu, and Dongyan Zhao. Online continual learning through mutual information maxi-
mization. In ICML, 2022.

[26] Gunshi Gupta, Karmesh Yadav, and Liam Paull. Look-ahead meta learning for continual learning. NeurIPS,
2020.

[27] Tyler L Hayes and Christopher Kanan. Lifelong machine learning with deep streaming linear discriminant
analysis. In CVPR-W, 2020.

10

[28] Timm Hess, Eli Verwimp, Gido M van de Ven, and Tinne Tuytelaars. Knowledge accumulation in
continually learned representations and the issue of feature forgetting. arXiv preprint arXiv:2304.00933,
2023.

[29] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine: theory and applica-
tions. Neurocomputing, 2006.

[30] Guang-Bin Huang, Dian Hui Wang, and Yuan Lan. Extreme learning machines: a survey. International
journal of machine learning and cybernetics, 2011.

[31] Paul Janson, Wenxuan Zhang, Rahaf Aljundi, and Mohamed Elhoseiny. A simple baseline that questions
the use of pretrained-models in continual learning. In NeurIPS-W, 2022.

[32] Xisen Jin, Junyi Du, and Xiang Ren. Gradient based memory editing for task-free continual learning. In
NeurIPS, 2021.

[33] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. PNAS, 2017.

[34] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. Communications of the ACM, 2017.

[35] Quoc Le, Tamás Sarlós, Alex Smola, et al. Fastfood-approximating kernel expansions in loglinear time. In
ICML, 2013.

[36] Soochan Lee, Junsoo Ha, Dongsu Zhang, and Gunhee Kim. A neural dirichlet process mixture model for
task-free continual learning. In ICLR, 2020.

[37] Zhizhong Li and Derek Hoiem. Learning without forgetting. TPAMI, 2017.

[38] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In NeurIPS,
2017.

[39] Divyam Madaan, Jaehong Yoon, Yuanchun Li, Yunxin Liu, and Sung Ju Hwang. Representational
continuity for unsupervised continual learning. arXiv preprint arXiv:2110.06976, 2021.

[40] Zheda Mai, Ruiwen Li, Hyunwoo Kim, and Scott Sanner. Supervised contrastive replay: Revisiting the
nearest class mean classifier in online class-incremental continual learning. In CVPR, 2021.

[41] Mark D McDonnell, Dong Gong, Amin Parveneh, Ehsan Abbasnejad, and Anton van den Hengel. Ranpac:
Random projections and pre-trained models for continual learning. In NeurIPS, 2023.

[42] Geoffrey J McLachlan. Discriminant analysis and statistical pattern recognition. John Wiley & Sons,
2005.

[43] Goeffrey J McLachlan. Mahalanobis distance. Resonance, 4(6):20–26, 1999.

[44] Thomas Mensink, Jakob Verbeek, Florent Perronnin, and Gabriela Csurka. Distance-based image classifi-
cation: Generalizing to new classes at near-zero cost. TPAMI, 2013.

[45] Seyed Iman Mirzadeh, Arslan Chaudhry, Dong Yin, Timothy Nguyen, Razvan Pascanu, Dilan Gorur, and
Mehrdad Farajtabar. Architecture matters in continual learning. arXiv preprint arXiv:2202.00275, 2022.

[46] Sudhanshu Mittal, Silvio Galesso, and Thomas Brox. Essentials for class incremental learning. In CVPR,
2021.

[47] Aristeidis Panos, Yuriko Kobe, Daniel Olmeda Reino, Rahaf Aljundi, and Richard E Turner. First session
adaptation: A strong replay-free baseline for class-incremental learning. arXiv preprint arXiv:2303.13199,
2023.

[48] Karl Ezra Pilario, Mahmood Shafiee, Yi Cao, Liyun Lao, and Shuang-Hua Yang. A review of kernel
methods for feature extraction in nonlinear process monitoring. Processes, 2020. doi: 10.3390/pr8010024.

[49] Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. Gdumb: A simple approach that questions our
progress in continual learning. In ECCV, 2020.

[50] Ameya Prabhu, Zhipeng Cai, Puneet Dokania, Philip Torr, Vladlen Koltun, and Ozan Sener. Online
continual learning without the storage constraint. arXiv preprint arXiv:2305.09253, 2023.

[51] Ameya Prabhu, Hasan Abed Al Kader Hammoud, Puneet Dokania, Philip HS Torr, Ser-Nam Lim, Bernard
Ghanem, and Adel Bibi. Computationally budgeted continual learning: What does matter? In CVPR,
2023.

[52] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. NeurIPS, 2007.

[53] Dushyant Rao, Francesco Visin, Andrei Rusu, Razvan Pascanu, Yee Whye Teh, and Raia Hadsell. Continual
unsupervised representation learning. NeurIPS, 32, 2019.

[54] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incremental
classifier and representation learning. In CVPR, 2017.

11

[55] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald Tesauro.
Learning to learn without forgetting by maximizing transfer and minimizing interference. In ICLR, 2019.

[56] Wouter F Schmidt, Martin A Kraaijveld, Robert PW Duin, et al. Feed forward neural networks with
random weights. In ICPR, 1992.

[57] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and Yann LeCun. Over-
feat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint
arXiv:1312.6229, 2013.

[58] Dongsub Shim, Zheda Mai, Jihwan Jeong, Scott Sanner, Hyunwoo Kim, and Jongseong Jang. Online
class-incremental continual learning with adversarial shapley value. In AAAI, 2021.

[59] James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim, Assaf
Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual decomposed attention-
based prompting for rehearsal-free continual learning. In CVPR, 2023.

[60] James Seale Smith, Junjiao Tian, Shaunak Halbe, Yen-Chang Hsu, and Zsolt Kira. A closer look at
rehearsal-free continual learning. In CVPR-W, 2023.

[61] Hai-Long Sun, Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Pilot: A pre-trained model-based continual
learning toolbox. arXiv preprint arXiv:2309.07117, 2023.

[62] Gido M van de Ven and Andreas S Tolias. Three scenarios for continual learning. In NeurIPS-W, 2018.

[63] Gido M Van De Ven, Zhe Li, and Andreas S Tolias. Class-incremental learning with generative classifiers.
In CVPR-W, 2021.

[64] Eli Verwimp, Shai Ben-David, Matthias Bethge, Andrea Cossu, Alexander Gepperth, Tyler L Hayes, Eyke
Hüllermeier, Christopher Kanan, Dhireesha Kudithipudi, Christoph H Lampert, et al. Continual learning:
Applications and the road forward. arXiv preprint arXiv:2311.11908, 2023.

[65] Fu-Yun Wang, Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Foster: Feature boosting and compression
for class-incremental learning. In ECCV, 2022.

[66] Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren, Guolong
Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for rehearsal-free continual
learning. In European Conference on Computer Vision (ECCV), 2022.

[67] Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2022.

[68] Yujie Wei, Jiaxin Ye, Zhizhong Huang, Junping Zhang, and Hongming Shan. Online prototype learning
for online continual learning. In ICCV, 2023.

[69] Christopher Williams and Matthias Seeger. Using the nyström method to speed up kernel machines.
NeurIPS, 2000.

[70] Yichen Wu, Long-Kai Huang, Renzhen Wang, Deyu Meng, and Ying Wei. Meta continual learning
revisited: Implicitly enhancing online hessian approximation via variance reduction. In ICLR, 2024. URL
https://openreview.net/forum?id=TpD2aG1h0D.

[71] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu. Large
scale incremental learning. In CVPR, 2019.

[72] Zichao Yang, Marcin Moczulski, Misha Denil, Nando De Freitas, Alex Smola, Le Song, and Ziyu Wang.
Deep fried convnets. In ICCV, 2015.

[73] Fei Ye and Adrian G Bors. Continual variational autoencoder learning via online cooperative memorization.
In ECCV, 2022.

[74] Fei Ye and Adrian G Bors. Self-evolved dynamic expansion model for task-free continual learning. In
ICCV, 2023.

[75] Michał Zając, Tinne Tuytelaars, and Gido M van de Ven. Prediction error-based classification for class-
incremental learning. ICLR, 2024.

[76] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence. In
ICML, 2017.

[77] Chen Zeno, Itay Golan, Elad Hoffer, and Daniel Soudry. Task agnostic continual learning using online
variational bayes. arXiv preprint arXiv:1803.10123, 2018.

[78] Gengwei Zhang, Liyuan Wang, Guoliang Kang, Ling Chen, and Yunchao Wei. Slca: Slow learner with
classifier alignment for continual learning on a pre-trained model. In ICCV, 2023.

[79] Da-Wei Zhou, Qi-Wei Wang, Han-Jia Ye, and De-Chuan Zhan. A model or 603 exemplars: Towards
memory-efficient class-incremental learning. arXiv preprint arXiv:2205.13218, 2022.

12

https://openreview.net/forum?id=TpD2aG1h0D

[80] Da-Wei Zhou, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Revisiting class-incremental learning with
pre-trained models: Generalizability and adaptivity are all you need. arXiv preprint arXiv:2303.07338,
2023.

[81] Fei Zhu, Zhen Cheng, Xu-yao Zhang, and Cheng-lin Liu. Class-incremental learning via dual augmentation.
NeurIPS, 2021.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and/or introduction should clearly state the claims made, including
the contributions made in the paper along with important assumptions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitation Section is provided in the supplementary material.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

14

Justification: Rahimi and Recht [52] from our references details the theory for why random
fourier representations perform so well quite beautifully. The random representations do
not change (no continual aspect), hence the theory can be applied as-is in our case with no
changes. We do not claim any novel theoretical contributions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: RanDumb is fairly simple to implement. We dedicated half a page towards
explaining hyperparameters and other information needed to reproduce all of our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide code in the supplementary material to reproduce our results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We use standard datasets and splits, we provide hyperparameters in experimen-
tal details along with ablations in experiment sections to understand the contribution of each
component in our algorithm.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We state here that the only random component being the random fourier
features kernel across, otherwise our method is simple and exactly reproducible. We
conducted experiments with three different initialisations corresponding to seeds of the
random kernel in sklearn to investigate this and different kernel initialisations lead to around
±0.2 variation in the reported results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Detailed in Section 3 in Implementation Details. For easy access, we restate:
All experiments were conducted on a CPU server with a153 48-core Intel Xeon Platinum
8268 CPU and 392GB of RAM, requiring less than 30 minutes per experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read the ethics guidelines and confirm that we do not use human
subjects, use existing datasets, explicitly discuss social impacts.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The primary contribution in RanDumb was not to introduce a novel state-
of-the-art continual learning method, but challenge prevailing assumptions and open a
discussion on the efficacy of representation learning in continual learning algorithms. As

17

https://neurips.cc/public/EthicsGuidelines

such, we do not recommend use of RanDumb for deployment in real-world production
systems, hence no direct societal impact or explicit limitations on use in production systems
is discussed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not have any high-risk model or dataset introduced.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: MNIST, CIFAR-10, CIFAR-100, tinyImageNet and miniImagenet are cited
appropriately. The licenses for these datasets is not explicitly released, hence we do not
include that information.

Guidelines:

• The answer NA means that the paper does not use existing assets.

18

• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Yes, we provide RanDumb with proper documentation under a GPL3 license.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing or research with human subjects was performed.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing or research with human subjects was performed.
Guidelines:

19

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

20

	Introduction
	Technical Summary: Construction of RanDumb and Empirical Findings

	RanDumb: Mechanism & Intuitions
	Experiments
	Results
	Analysis of RanDumb

	Related Works and Equivalent Formulations
	Discussion and Concluding Remarks

