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Abstract

Continual learning has primarily focused on the issue of catastrophic forgetting
and the associated stability-plasticity tradeoffs. However, little attention has been
paid to the efficacy of continually learned representations, as representations are
learned alongside classifiers throughout the learning process. Our primary contri-
bution is empirically demonstrating that existing online continually trained deep
networks produce inferior representations compared to a simple pre-defined ran-
dom transforms. Our approach embeds raw pixels using a fixed random transform,
approximating an RBF-Kernel initialized before any data is seen. We then train
a simple linear classifier on top without storing any exemplars, processing one
sample at a time in an online continual learning setting. This method, called
RanDumb, significantly outperforms state-of-the-art continually learned represen-
tations across all standard online continual learning benchmarks. Our study reveals
the significant limitations of representation learning, particularly in low-exemplar
and online continual learning scenarios. Extending our investigation to popular
exemplar-free scenarios with pretrained models, we find that training only a linear
classifier on top of pretrained representations surpasses most continual fine-tuning
and prompt-tuning strategies. Overall, our investigation challenges the prevailing
assumptions about effective representation learning in online continual learning.
Our code is available here.

1 Introduction

Continual learning aims to develop models capable of learning from non-stationary data streams,
inspired by the lifelong learning abilities exhibited by humans and the prevalence of such real-world
applications (see Verwimp et al. [64] for a survey). It is characterized by sequentially arriving tasks,
coupled with additional computational and memory constraints [33, 38, 54, 62, 49].

Building on the foundations of supervised deep learning, the prevalent approach in continual learning
has been to jointly train representations alongside classifiers. This approach simply follows from the
assumption that learned representations are expected to outperform fixed representation functions
such as kernel classifiers, as demonstrated in supervised deep learning [34, 23, 57]. However, this
assumption is never validated in continual learning, with scenarios having limited updates where
networks might not be trained until convergence, such as online continual learning (OCL).

In this paper, we study the efficacy of representations derived from continual learning algorithms.
Surprisingly, our findings suggest that these representations might not be as beneficial as presumed.
To test this, we introduce a simple baseline method named RanDumb, which combines a random
representation function with a straightforward linear classifier, illustrated in detail in Figure 1
(left). Our empirical evaluations, summarized in Table 1 (left, top), reveal that despite replacing
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Figure 1: RanDumb projects
raw pixels to a high dimen- &
sional space using random S
Fourier projections (), then .
decorrelate the features using N _Embed _ .« \ _ _Decorrelate_ #
Mahalanobis distance [43] and
classify with the nearest class Figure 2: RanDumb projects the datapoints to a high-dimensional
mean.  The online update space to create a clearer separation between classes. Subsequently,
only involves quatlng a sin- it corrects the anisotropy across feature dimensions, scaling them
gle sample covariance matrix to be unit variance each. This allows cosine similarity to accu-
and class-means. rately separates classes. The figure is adapted from [48].

Table 1: (Left) Online Continual Learning. Performance comparison of RanDumb on the PEC setup
[75] and VAE-GC [63]. Setup and numbers borrowed from PEC [75]. RanDumb outperforms the best
OCL method. (Right) Offline Continual Learning. Performance comparison with ImageNet21K
ViT-B16 model using 2 initial classes and 1 new class per task. RanPAC-imp is an improved version
of the RanPAC code which mitigates the instability issues in RanPAC. RanDumb nearly matches
performance of joint for both online and offline, demonstrating the inefficacy of current benchmarks.

Method MNIST CIFAR10 CIFAR100 m-IMN Method CIFAR IN-A IN-R CUB OB VTAB Cars
Comparison with Best Method Comparison with Best Method
Best (PEC) 9.3 58.9 26.5 14.9 Best (RanPAC-imp) 89.4 338 69.4 89.6 753 919 573
RanDumb (Ours) ~ 98.3 55.6 28.6 17.7  RanDumb (Ours) 86.8 422 649 885 753 924 67.1
Improvement +6.0 -3.3 +2.1 +2.8  Improvement 26 +84 -45 -1.1 +0.0 +0.5 498
Random vs. Learned Representations Random vs. Finetuned Representations
VAE-GC 84.0 427 19.7 12.1 SLCA 86.8 - 542 821 - - 18.2
RanDumb (Ours)  98.3 55.6 28.6 17.7  RanDumb (Ours) 86.8 422 649 885 753 924 67.1
Improvement +14.3 +12.9 +8.9 +5.6  Improvement +0.0 - +10.7 +6.4 - - +489
Scope of Improvement Scope of Improvement
Joint (One Pass) 98.3 74.2 33.0 253 Joint 938 708 86.6 91.1 838 955 86.9
RanDumb (Ours) ~ 98.3 55.6 28.6 177 RanDumb (Ours) 86.8 422 649 885 753 924 67.1
Gap Covered. (%) 100% 75% 87% 70%  Gap Covered. (%)  93% 60% 75% 97% 92% 97% 71%

the representation learning with a pre-defined random representation, RanDumb surpasses current
state-of-the-art methods in latest online continual learning benchmarks [75].

We further expand our evaluations to scenarios incorporating methods that use pre-trained feature
extractors [67]. By substituting our random projections with these feature extractors and retaining the
linear classifier, RanDumb again outperforms leading methods as shown in Table 1 (right, top).

1.1 Technical Summary: Construction of RanDumb and Empirical Findings

Design. RanDumb first projects input pixels into a high-dimensional space using a fixed kernel
based on random Fourier basis, which is a low-rank data-independent approximation of the RBF
Kernel [52]. Then, we use a simple linear classifier which first normalizes distances across different
feature dimensions (anisotropy) with Mahalanobis distance [43] and then uses nearest class means
for classification [44]. In scenarios with pretrained feature extractors, we use the fixed pretrained
model as embedder and learn a linear classifier as described above, similar to Hayes and Kanan [27].

Key Properties. RanDumb needs no storage of exemplars and requires only one pass over the data in
a one-sample-per-timestep fashion. Furthermore, it only requires online estimation of the sample
covariance matrix and nearest class mean.



Key Finding 1: Poor Representation Learning. We compare RanDumb with leading methods: VAE-
GC [63] in Table 1 (left, middle) and SLCA [78] in Table 1 (right, middle). The primary distinction
between them is their representation: RanDumb uses a fixed function (random/pretrained network),
whereas VAE-GC and SLCA further continually trained deep networks. RanDumb consistently
surpasses VAE-GC and SLCA by wide margins of 5-15%. This shows that state-of-the-art online
continual learning algorithms fail to learn effective representations across standard exemplar-free
continual learning benchmarks.

Finding 2: Over-Constrained Benchmarks. Given the demonstrated limitations of existing continual
representation learning methods, an important question arises: Can better methods learn more
effective representations? To explore this, we evaluated the performance of RanDumb against joint
training, models trained without continual learning constraints, in both online and offline settings, as
shown in Table 1 (left, bottom) and Table 1 (right, bottom). Our straightforward baseline, RanDumb,
bridges 70-90% of the performance gap relative to the respective joint classifiers in both scenarios.
This significant recovery of performance by such a simple method suggests that if our goal is to
advance the study of representation learning, current benchmarks may be overly restrictive and not
conducive to truly effective representation learning.

We highlight that the goal in our work is not to introduce a state-of-the-art continual learning method,
but challenge prevailing assumptions and open a discussion on the efficacy of representation learning
in continual learning algorithms, especially in online and low-exemplar scenarios.

2 RanDumb: Mechanism & Intuitions

RanDumb has two main elements: random projection and the dumb learner. We illustrate the
mechanism of RanDumb using three toy examples in Figure 1 (right). To classify a test sample Xcgt,
we start with a simple classifier, the nearest class mean (NCM). It predicts the class among C' classes
by highest value of the similarity function f among class means f;:

Ypred = argimax f(xtesu Mi)a where f(xtesh Mi) = XteslT,Ui (1
i€{l,..., |C}

and p; are the class-means in the pixel space: p; = ﬁ Y e ¢, X- RanDumb adds two additional
components to this classifier: 1) Kernelization and 2) Decorrelation.

Kernelization: Classes are typically not linearly separable in the pixel space, unlike in the feature
space of deep models. Hence, we apply the kernel trick to embed the pixels in a better representation
space, computing all distances between the data and class-means in this embedding space. This
phenomena is illustrated on three toy examples to build intuitions in Figure 1 (right, Embed). We
use an RBF-Kernel, which for two points x and y is defined as: Krgr(x,y) = exp (—v[|x — y||?)
where +y is a scaling parameter. However, calculating the RBF kernel is not possible due to the online
continual learning constraints preventing computation of pairwise-distance between all points. Hence,
we use a data-independent approximation, random Fourier projection ¢(x), as given in [52]:

Krer(x,y) =~ ¢(x)" ¢(y)

where the random Fourier features ¢(x) are defined by first sampling D vectors {wy, . ..,wp } from
a Gaussian distribution with mean zero and covariance matrix 21, where I is the identity matrix.
Then ¢(x) is a 2D-dimensional feature, defined as:

P(x) = — [cos(wlTx),sin(wlTx), ., cos(whx), sin(ng)]

VD

We keep these w bases fixed throughout online learning. Thus, we obtain our modified similarity
function from Equation 1 as:

f(xtest7 ,ui) = ¢(xtest)Tﬂi )

where ji; are the class-means in the kernel space:

~ 1
i = @ Z P(x)

xeC;y



Decorrelation: Projected raw pixels have feature dimensions with different variances (anisotropic).
Hence, instead of naively computing ¢(xtest)T i1;, we further decorrelate the feature dimensions
using a Mahalonobis distance with the shrinked covariance matrix S using OAS shrinkage [15],
inverse obtained by least squares minimization (S + AI). We illustrate this phenomena as well on
three toy examples in Figure 1 (right, Decorrelate) to build intuitions. Our similarity function finally
is:

f(xtcsta Mﬁ) = (¢(Xtcst) - ﬂi)TSil(d)(Xtcst) - ﬁz) (3)

Online Computation. Our random projection is fixed before seeing any data. During continual
learning, we only perform online update on the running class mean and empirical covariance matrix”.

3 Experiments

We compare RanDumb with algorithms across online continual learning benchmarks with an emphasis
on exemplar-free and low-exemplar storage regime.

Benchmarks. The benchmarks which

di . Setup Num #Classes #Samples #Stored Contrastive

W? use. n our expenmpnts are Su.m' Passes Per Task Per Step Exemplars Augment
mized in Table on the right. We aim ;0 ] ] ] 0 No
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training3, meta-continual learning, and
network-expansion based approaches re-
spectively. We also evaluate on a rehearsal-free offline continual learning benchmark C. These
benchmarks are ordered by increasingly relaxed constraints, moving further away from the training
scenario of RanDumb.Benchmark A closely matches RanDumb with one class per timestep and no
stored exemplars. Benchmark B, D, E progressively relax the constraints on exemplars and classes
per timestep. Benchmark C and E remove the online constraint by allowing unrestricted training and
sample access within a task without exemplar-storage of past tasks. Benchmark F allows using large
pretrained models, modified by us with one class per task, i.e. testing learning over longer timespans.

We further test on exemplar-free scenarios in offline continual learning using Benchmark F [67]
with the challenging one-class per task constraint borrowed from [75]. This benchmark allows
using pretrained models along with unrestricted training time and access to all class samples at each
timestep. However, RanDumb is restricted to learning from a single pass seeing only one sample at a
time. RanDumb only learns a linear classifier over a given pretrained model in Benchmark F.

We use LAMDA-PILOT [61] codebase for all methods, except RanPAC and SLDA for which use
their codebases. We use the original hyperparameters. We only change initial classes to 2 and number
of classes per task to 1 and test using both ImageNet21K and ImageNet1K ViT-B/16 models.

Implementation Details (RanDumb). We evaluate RanDumb using five datasets: MNIST, CIFAR10,
CIFAR100, TinyImageNet200, and minilmageNet100. For the latter two, we downscale all images to
32x32. We augment each datapoint with flipped version, hence two images are seen by the classifier
at each timestep (except for MNIST and Benchmark F). We normalize all images and flatten them into
vectors, obtaining 784-dim input vectors for MNIST and 3072-dim input vectors for all the other. For
Benchmark F, we compare RanDumb on seven datasets used in LAMDA-PILOT, replacing ObjectNet
with Stanford Cars as ObjectNet license prohibits training models. We use the 768-dimensional
features from the same pretrained ViT-B models used in this benchmark. We measure accuracy on the
test set of all past seen classes after completing the full one-pass. We take the average accuracy after
the last task on all past tasks [75, 25, 67]. In Benchmark A and F, since we have one class per task, the
average accuracy across past tasks is the same regardless of the task ordering. In Benchmarks A-E,
all datasets have the same number of samples, hence similarly the average accuracy across past tasks
is the same regardless of the task ordering. We used the Scikit-Learn implementation of Random

2Online update for the inverse of the covariance matrix is possible using the Sherman—Morrison formula.
3Benchmark B is split into two sections: (B1) methods that do not rely on contrastive learning and heavy
augmentation, and (B2) approaches that incorporate contrastive learning and extra augmentations.



Table 2: Benchmark A (Ref: Table I from PEC [75]). We compare RanDumb in a 1-class per task
setting referred as ‘Dataset (num_tasks/1)’. We observe that RanDumb outperforms all approaches
across all datasets by 2-6% margins, with an exception of latest work PEC [75] on CIFAR10.

Method Memory MNIST CIFAR-10 CIFAR-100 minilmageNet
(10/1) (10/1) (100/1) (100/1)
Fine-tuning all 10.1£ 0.0 10.0£0.0 1.0+0.0 1.0£ 0.0
Joint, 1 epoch all 98.3+ 0.0 742+ 0.1 33.0£02 253402
ER [13] 500 84.4+03 40.6£1.1 125403 57+£02
A-GEM [12] 500 59.8+0.8 10.2£0.1 1.0£0.0 1.1£ 0.1
iCaRL [54] 500 83.1+0.3 37.8£04 5.7+0.1 7.5+ 0.1
Rehearsal BiC [71] 500 86.0+ 0.4 359+04 6.4+03 1.5+ 0.1
Based ER-ACE [10] 500  87.8+£0.2 39.94+0.5 8.2+0.2 5.7+0.2
Methods  DER [9] 500 91.7+£0.1 40.0£15 1.0£0.1 1.0+ 0.0
DER++ [9] 500 91.9+0.2 356+24 62+04 1.4+ 0.1
X-DER [8] 500 83.0+0.1 43.2£0.5 15.6+0.1 8.2+ 04
GDumb [49] 500  91.0+£0.2 50.7+0.7 8.240.2 -
EWC [33] 0 10.1£0.0 10.6£ 0.4 1.0+£0.0 1.0+ 0.0
S1[76]) 0 1274 1.0 10.1£0.1 1.1£0.0 1.040.1
LwF [37] 0 11.8 £ 0.6 10.1£0.1 0.9£0.0 1.0+ 0.0
Rehearsal LT [77] 0 109+ 0.9 10.0+£0.2 1.1+0.1 1.0+ 0.0
Free Gen-NCM [31] 0 82.0£ 0.0 27.7£0.0 10.0+ 0.0 7.5£ 0.0
Methods ~ Gen-SLDA [27] 0 88.0£ 0.0 414+ 0.0 18.8+£0.0 12.94+ 0.0
VAE-GC [63] 0 84.0£ 0.5 427+ 1.3 19.7£0.1 12.1+ 0.1
PEC [75] 0 9234+ 0.1 58.9+ 0.1 26.5+ 0.1 14.94+ 0.1
RanDumb (Ours) 0 98.3 (+5.9) 55.6 (-3.3) 28.6 (+2.1) 17.7 (+2.8)

Table 3: Benchmark B.1 (Ref: Table adopted from OnPro [68], OCM[25]) We compare RanDumb in
many-classes per task setting referred as ‘Dataset (num_tasks/num_classes_per_task)’. We categorize
memory buffer sizes with ‘M’. RanDumb outperforms the competing approaches without heavy-
augmentations by 3-20% margins despite being exemplar free. Only in one case, it is second best.

Method MNIST CIFAR10 CIFAR100 CIFAR100 TinyImageNet
(512) (512) (10/10) (50/2) (100/2)
M=01k M=01k M =02k M =05k M=1%k M=1k M=1k M =2k
AGEM [12] 56.9+52 17.7£0.3 22.7+1.8 5.8+0.2 5.940.1 1.8+0.2 0.8+0.1  0.9+0.1
GSS [4] 70.4£1.5 18.4+£0.2 26.9%1.2 8.1+£0.2 11.1£0.2 4.3+0.2 1.1£0.1  3.3x0.5
ER [13] 78.7£0.4  19.4+0.6  29.7+1.0 8.7£0.3 15.7+£0.3 8.3+0.3 1.2+0.1 5.620.5
ASER [58] 61.6+£2.1 20.0£1.0 27.8+1.0 11.0+£0.3 16.4+0.3 9.6x1.3 2.240.1 5.3+0.3
MIR [3] 79.0£0.5 20.7£0.7  37.3£0.3 9.7+0.3 15.7£0.2  12.7+£0.3 1.4+0.1 6.1+0.5
ER-AML [10] 76.5+0.1 - 40.5+0.7 - 16.1£0.4 - - 5.4+0.2
iCaRL [54] - 31.0£1.2  33.9+09 12.8+04 16.5+0.4 - 5.0+£0.3  6.6£0.4
DER++ [9] 74.4+1.1  31.5£2.9 442+1.1 16.0£0.6 21.4+09 9.3+0.3 3.7404  5.1+£0.8
GDumb [49] 81.2+0.5 23.3%x1.3 35.9+1.1 8.2+0.2 18.1£0.3  18.1+0.3 4.6+0.3 12.6x0.1
CoPE [19] - 33.5+£3.2  37.3£22 11.6x04 14.6x1.3 - 2.1+0.3  2.3+x04
DVC [25] - 35.2+1.7  41.6£2.7 154+£0.3 20.3%1.0 - 4.9+0.6  7.5+£0.5
Co2L [11] 83.1+0.1 - 42.1+1.2 - 17.1£0.4 - - 10.1£0.2
R-RT [6] 89.1+0.3 - 45.2+0.4 - 15.4+0.3 - - 6.6+0.3
CCIL [46] 86.4+0.1 - 50.5+0.2 - 18.5+0.3 - - 5.6+0.9
IL2A [81] 90.2+0.1 - 54.7+0.5 - 18.2+1.2 - - 5.5+0.7
BiC [71] 90.4+0.1 - 48.2+0.7 - 21.2+0.3 - - 10.2+0.9
SSIL [1] 88.240.1 - 49.5+0.2 - 26.0+0.1 - - 9.6+0.7
Rehearsal-Free
PASS [81] - 337222 33.7£2.2 7.5+0.7 7.5+0.7 - 0.5+£0.1  0.5+0.1

RanDumb (Ours) 98.3 (+7.8) 55.6 (+20.4) 55.6 (+5.9) 28.6 (+12.6) 28.6 (+2.6) 28.6 (+10.5) 11.6 (+6.6) 11.6 (-1.0)

Fourier Features [52] with 25K embedding size, v = 1.0. We use progressively increasing ridge
regression parameter (\) with dataset complexity, A = 10~ for MNIST, A = 10~ for CIFAR10/100
and A = 10~ for TinyImageNet200/minilmageNet100.

3.1 Results

Benchmark A. We assess continual learning models in the challenging setup of one class per timestep,
closely mirroring our training assumptions, and present our results in Table 2. Comparing across rows,
and see that RanDumb improves over prior state-of-the-art across all datasets with 2-6% margins.



Table 4: (Left) Benchmark B.2 (Ref: Table from OnPro [68]) We compare RanDumb with contrastive
representation learning based approaches which additionally use sophisticated augmentations. We
observe that RanDumb often outperforms these sophisticated methods despite all of these factors on
small-exemplar settings. (Right) Benchmark C (Ref: Table 2 from [60]). We compare RanDumb
with latest rehearsal-free methods. RanDumb outperforms them by 4% margin.

Method CIFAR100
Method MNIST (5/2) CIFAR10 (5/2) CIFAR100 (10/10) TinyImageNet (100/2) (10/10)
M=01k M=0.1k M = 0.5k M =1k

SCR[40]  86.2+0.5 40.2+1.3 19.3+0.6 8.9+0.3 Rehearsal-Free
OCM [25]  90.7%0.1 47.5%1.7 19.7£0.5 10.8+0.4 PredKD [37] 24.6
OnPro [68] . 57.8+1.1 22.7+0.7 11.9+0.3 PredKD + FeatkD 124

Rehearsal-Free PredKD + EWC 23.3
RanDumb  98.3 (+7.5)  55.6 (-2.2) 28.6 (+5.9) 11.6 (-0.3) PredKD + L2 215

RanDumb (Ours) 28.6 (+4.0)

Table 5: (Left) Benchmark D (Ref: Table 2 from VR-MCL [70]) We compare RanDumb with meta-
continual learning approaches operating in a high memory setting, allowing buffer sizes up to 1K
exemplars. RanDumb outperforms all methods except VR-MCL on TinyImageNet. RanDumb also
surpasses all prior work by a substantial 9.1% on CIFAR100. Allowing generous replay buffers shifts
scenarios to a high exemplar regime where GDumb performs the best on CIFAR10. Yet RanDumb
competes favorably even under these conditions. (Right) Benchmark E (Ref: Table 1 from SEDEM
[74]) We compare RanDumb with network expansion based approaches. Despite allowing access
to much larger memory buffers, RanDumb matches the performance of best method SEDEM on
MNIST, while exceeding it by 0.3% on CIFAR10 and 3.8% on CIFAR100.

Method CIFAR10 CIFAR100 TinyImageNet

) (10/10) (20/10) Method MNIST CIFAR10 CIFAR100

M=1k M=1k M =1k 12) 512) 20/5)

Finetune 170406 53+03 39402 M=2 M=1k M =5k
I[nggg ] }Si i 8-; 2'8 i 8-‘2‘ 1-8 i 8-; Finetune 19.8+£0.1 185+03 3.5+0.1
S o) s s tos MIR [3] 932+ 0.4 428 +2.2 200+ 0.6
MER 1551 SR S E0. GEM [12] 932+ 0.4 24.1+25 11.1+24
La-MAML [26] 334+ 12 118406 674+ 0.4 lc%/[lgl‘)[%% S;g i g'g i;g i %; }8'2 i ?"5‘
GDumb [49] 612+ 1.0 18.1+03 4.6+03 ‘ [32] Ead Al s 2.0 1
ER [13] 38148 161500 1iioa GSS [4] 925+ 0.9 385+ 1.4 13.1+£09
DER [9] 599120 61101  41+to] CoPE [19] 939+ 02489+ 1.3 21.6+0.7
DER++ [9] 523419 118407 83403 CURL [53] N6+£07 - -
CLSER [5] 528+17 179407 11.1+02 CNDPM [36] 954+02488+03 225+13
OCM [25] 5344+ 1.0 144 + 0.8 45405 Dynamlc—OCM [73] 94.0+0.2492+1.5 21.84+0.7
ER.OBC[18] 348+22 172£09 101502 SEDEM [74] 983+ 02553+ 1.3 248+ 12
VR-MCL [70]  56.5+ 1.8 195+ 0.7 13.3 + 0.4 Rehearsal-Free

Rehearsal-Free RanDumb (Ours)  98.3 (0.0) 55.6 (+0.3) 28.6 (+3.8)

RanDumb (Ours) 55.6 (-5.6) 28.6 (+9.1) 11.6 (-1.7)

The only exception is PEC on CIFAR10, where RanDumb underperforms by 3.3%. Nonetheless, it
outperforms the second-best model, GDumb with a 500 memory size, by 4.9%.

Benchmark B1. We present our results comparing with non-contrastive methods in Table 3. We
notice that scenario allows two classes per task and relaxes the memory constraints for online
continual learning methods, allowing for higher accuracies compared to Benchmark A. Despite
that, RanDumb outperforms latest OCL algorithms on MNIST, CIFAR10 and CIFAR100—often by
margins exceeding 10%. The lone exception is GDumb achieving a higher performance with 2K
memory samples on TinyImageNet, indicating that this already is in the high-memory regime.

Benchmark B2. We additionally compare our performance with the latest OCL approaches using
contrastive losses with sophisticated data augmentations. As shown in in Table 4 (Left), these advance-
ments provide large performance improvements over methods from Benchmark B.1. To compensate,
we compare on lower exemplar budgets. The best approach, OnPro [68], outperforms RanDumb on
CIFAR10 by 2.2% and TinyImageNet by 0.3%, but falls significantly short on CIFAR100 by 5.9%.
Overall, RanDumb achieves strong results compared to representation learning using state-of-the-art
contrastive learning approaches customized to continual learning, despite storing no exemplars.



Benchmark C. We compare against offline rehearsal-free continual learning approaches in Table 4
(Right) on CIFAR100. Despite online training, RanDumb outperforms PredKD by over 4% margins.

Benchmark D. We compare performance of RanDumb against meta-continual learning methods,
which require large exemplars with buffer sizes of 1K in Table 5 (left). RanDumb achieves strong
performance under these conditions, exceeding all prior work by a large margin of 9.1% on CIFAR100
and outperforms all but VR-MCL approach on the TinyImageNet dataset. GDumb performs the best
on CIFAR10, indicating this is already in a large-exemplar regime uniquely unsuited for RanDumb.

Benchmark E. We compare RanDumb against network expansion-based online continual learning
methods in Table 5 (right). These approaches grow model capacity to mitigate forgetting while
dealing with shifts in the data distribution, and are allowed larger memory buffers. RanDumb matches
the performance of the state-of-the-art method SEDEM [74] on MNIST, while exceeding it by 0.3%
on CIFAR10 and 3.8% on CIFAR100.

Benchmark F. We compare performance of ap- 1able 6: Benchmark F We compare RanDumb
proaches which do not further train the deep With prompt-tuning approaches using ViT-B/16
network like RanDumb against popular contin- ImageNet-21K/1K pretrained models using 2 init
ual finetuning and prompt-tuning approaches clas.ses and 1 class per task setting. Most prompt-
in Table 6. We discover that prompt-tuning Uning based methods collapse and RanDumb
approaches completely collapse under large achieves either state'-of-the-arF or second-be'st per-
timesteps and approaches which do not fine- formance. RanPAC-imp is an improved version of
tune their pretrained model achieve strong per- the RanPAC mitigating the instability issues.
formance, even under challenging one class per Method CIFAR IN-A IN-R CUB VTAB
timestep constraint. Note tha.t RanPAC [4}1] ViT-B/16 (IN-1K Pretrained)

adds a RP+ReLU and finetunes in a first-session
adaptation fashion over RanDumb, yet fails to
achieve higher accuracies.

Finetune 1.0 12 11 1.0 21
L2P [67] 24 03 08 14 13
DualPrompt [66] 23 03 08 09 42
Overall, despite RanDumb being exemplar-free, CODA-Prompt[59] 2.6 03 08 19 63
it outperforms nearly all online continual learn- Adam-Adapt [80]) ~ 76.7 49.3 62.0 852 83.6

ing methods across various tasks when exemplar :gam'is;}[é(g] ;8(3) gz; g‘l‘g 22 g gg;
c o Tid : am- . . . . .

storage is limited. We specifically benchmark Adam-FT [80] 726 493 610 852 83.8

on lower exemplar sizes to complement settings

. . Memo [79] 69.8 - - 814 -
in which GDumb does not perform well. iCARL [54] 724 . 352 724 -
Foster [65] 52.2 - 768 866 -

. NCM [31] 783 443 625 84.8 88.2
3.2 Analysis of RanDumb SLCA [78] 26 3 508 847 -

RanPAC [41] 88.2 39.0 72.8 77.7 93.0

Ablating Components of RanDumb. We ab- g,pacimp (411 87.8 43.5 726 89.6 93.0
late the contribution of only using Random  Ranpumb (Ours)  84.5 49.5 66.9 88.0 93.6
Fourier features for embedding and decorrela- - -

tion to the overall performance of RanDumb ViT-B/16 (IN-21K Pretrained)

in Table 7 (left, top). Ablating the decorrela- Finetune 28 05 12 12 05
tion and relying solely on random Fourier fea- Adam-Adapt [80] ~ 824 48.8 554 86.7 84.4
tures, colloquially dubbed Kernel-NCM, has ~Adam-SSF [80] 82.7 46.0 59.7 86.2 84.9
performance drops ranging from 6-25% across ~ -xdam-VPT [380] 70.8 34.8 539 84.0 8l.1

the datasets. Replacing random Fourier fea- 2dam-FT [80] 65.7 485 56.1 86.5 84.4
. 3 . Foster [65] 87.3 - 51 8.9 -
tures with raw features, ie. the SLDA baseline, .
. iCARL [54] 71.6 - 351 716 -
leads to pronounced drop in performance rang-  \om [31] 835 414 548 865 885
ing from 3-14% across the datasets. Moreover,  g[ CA [78] 868 - 542 8.1 -
ablating both components results in the base  RanPAC [41] 89.6 26.8 67.3 872 882

nearest class mean classifier, and exhibits the = RanPAC-imp [41] 89.4 338 69.4 89.6 919
poorest performance with an average reduction ~ RanDumb (Ours) 86.8 422 649 885 924
of 17%. Therefore, both decorrelation and ran-
dom embedding are crucial for RanDumb.

Impact of Embedding Dimensions. We vary the dimensions of the random Fourier features ranging
from compressing 3K input dimensions to 1K to projecting it to 25K dimensions and evaluate its
impact on performance in Figure 3. Surprisingly, the random projection to a 3x compressed 1K
dimensional space allows for significant performance improvement over not using embedding, given
in Table 7 (left, top). Furthermore, increasing the dimension from 1K to 25K results in improvements
of 3.6%, 10.4%, 7.0%, and 2.5% on MNIST, CIFAR10, CIFAR100, and TinyImageNet respectively.
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Figure 3: Accuracy of RanDumb with respect to embedding dimensionality across datasets.

Table 7: (Left) Analysis of RanDumb: We study contributions of decorrelation, random embedding,
and data augmentation. We further vary the embedding sizes and regularisation parameter. Finally,
we compare with alternate embeddings. (Right) Architectures (Ref: Table 1 from Mirzadeh et al.
[45]) RanDumb surpasses continual representation learning across a wide range of architectures,
achieving close to 94% of the joint performance.

Method MNIST CIFAR10 CIFAR100 T-ImNet m-ImNet

(10/1) (10/1) (10/1) (200/1) (100/1) Model CIFAR100
Ablating Components of RanDumb Joint 79.58

RanDumb 98.3 55.6 28.6 11.1 177~ CNNxl1 62.2 +£1.35
Decorrelate 83.8 (-14.5) 30.0 (-25.6) 12.0 (-16.6) 4.7 (-6.4) 8.9 (-8.8) gﬁg Xi 66%31116152
“Embed 88.0 (-10.3) 41.6 (-14.0) 19.0 (-9.6) 8.0(-3.1) 129 (-48) oo™ 699 10.02
-Both 82.1(-16.2) 28.5(-27.1) 10.4 (-18.2) 4.1 (-7.0) 7.28 (-10.4) CNN x16 76.8 10.76
Effect of Adding Flip Augmentation ResNet-18 45.0 £0.63
- ResNet-34 44.8 +2.34
W%th - 55.6 28.6 11.1 17.7 ResNet-50 56.2 +0.88
Without 98.3 52.5(-3.1) 269 (-1.7) 10.7(-0.4) 16.6 (-1.1) ResNet-101 56.8 +1.62
Variation with Ridge Parameter A WRN-10-2 50.5 £2.65
WRN-10-10 56.8 £2.03
A=10"6 98.3 53.9 27.8 10.3 15.8 WRN-16-2 44.6 +2.81
A=10"° - 55.6 28.6 11.1 15.9 WRN-16-10 51.3 +1.47
A=10"* 96.6 52.6 26.1 11.6 17.7 WRN-28-2 46.6 £2.27
. - U WRN-28-10 49.3 +2.02
Variation Across Embedding Projections ViT-512/1024 517 +1.4
No-Embed 88.0 41.6 19.0 8.0 12.9 ViT-1024/1546  60.4 £1.56
RP+ReLU (RanPAC) 95.2 48.8 23.1 9.7 15.7 RanDumb (Ours) 74.8 (-2.0)

RanDumb (Ours) 98.3 (+3.1) 55.6 (+6.8) 28.6 (+5.5) 11.1 (+1.4) 17.7 (+2.0)

Increasing the embedding sizes beyond 15K, however, only results in modest improvements of 0.1%,
1.4%, 1.1% and 0.2% on the same datasets, indicating 15K dimensions would be a good point for a
performance-computational cost tradeoff.

Impact of Flip Augmentation. We evaluate the impact of adding the flip augmentation on the perfor-
mance of RanDumb in Table 7 (left, middle). Note that MNIST was not augmented. Augmentation
provided large gains of 3.1% on CIFAR10, 1.7% on CIFAR100, and 0.4% on TinyImageNet. We did
not augment the data further with RandomCrop transform as done with standard augmentations.

Impact of Varying Ridge Parameter. All prior experiments use a ridge parameter () that increases
with dataset complexity: A = 1076 for MNIST, 10~° for CIFAR10 and CIFAR100, and 10~* for
TinyImageNet and minilmageNet. Table 7 (left, middle) shows the effect of varying A on RanDumb’s
performance. With a smaller A = 10~5, CIFAR10, CIFAR100, TinyImageNet and minilmageNet all
exhibit minor drops of 0.1%-1.7%, 0.8%, 0.8%. Increasing shrinkage to a A = 10~* reduces CIFAR10
and CIFAR100 performance more substantially by 3% and 2.5% versus their optimal A = 1075,
On the other hand, this larger A leads to improvements of 0.5% and 1.8% on TinyImageNet and
minilmageNet. This aligns with the trend that datasets with greater complexity benefit from more
regularisation, with the optimal A balancing under- and over-regularisation effects.

Comparison with Extreme Learning Machines. We compared our random Fourier features with
random projections based extreme learning machines, as recently adapted to continual learning by
RP+ReLU [41] in Table 7 (left, bottom) with their best embedding size. Our method performs
significantly better on each dataset, averaging a gain of 3.4%.



Comparisons across Architectures. In table 7 (right), we compare whether using random Fourier
features as embeddings outperforms models across various architectures for continual representation
learning. We use experience replay (ER) baseline in the task-incremental CIFAR100 setup (for details,
see Mirzadeh et al. [45] as it differs significantly from earlier setups). Our comparison spanned
various architectures. The findings revealed that RanDumb surpassed the performance of nearly
all considered architectures, and achieved close to 94% of the joint multi-task performance. This
suggests that RanDumb outperforms continual representation learning across architectures.

Conclusion. Overall, both random embedding and decorrelation are critical components in the
performance of RanDumb. Using random Fourier features is substantially better than RanPAC. Lastly,
one can substantially reduce the embedding dimension without a large drop in performance for large
gains in computational cost, additional augmentation may further significantly help performance and
optimal shrinkage parameter increases with dataset complexity. RanDumb outperforms continual
representation learning across a wide range of architectures.

4 Related Works and Equivalent Formulations

Random Representations. There have been extensive theoretical and empirical investigations into
random representations in machine learning, compressed sensing, and other fields, often utilizing
extreme learning machines [56, 14, 21] (see [30, 29] for a survey). Other investigations include
efficient kernel methods using Fourier features and Nystrom approximations [52, 69], and extensions
to efficiently parameterize linear classifiers [2]. They are also embedded into deep networks [17, 35,
72, 16]. We tailored the already successful random fourier representations [52] to the problem at
hand and applied to the online continual learning problem for the first time.

Continual Representation Learning. There are various works focusing on continual representation
learning itself [53, 20, 39, 28], but they address the problem of alleviating the stability-plasticity
dilemma in high-exemplar and offline continual learning scenarios where models are trained until
convergence. In comparison, we focus on online and low-examplar regime.

Representation Learning Free Methods in CL. Several works have developed the idea of using
fixed pretrained networks after adapting on the first task across various settings [50, 41, 24]. Our
work contributes to this growing evidence, however, we do not perform first-task adaptation [47], and
propose OAS-shrinked SLDA as structurally simplest but highly accurate continual linear classifier
without any extra bells-and-whistles. Moreover, we are the first work to introduce a representation
learning free method with random features for continually learning from scratch.

Equivalent formulations to RanDumb. If the classes are equiprobable, which is the case for most
datasets here, nearest class mean classifier with the Mahalanobis distance metric is equivalent to linear
discriminant analysis (LDA) classifier [42]. Hence, one could say RanDumb is exactly equivalent to
a Streaming LDA classifier with an approximate RBF Kernel. Alternatively, one could think of the
decorrelation operation as explicitly decorrelating the features with ZCA whitening [7].

5 Discussion and Concluding Remarks

Our investigation reveals a surprising result — simply using random embedding (RanDumb) consis-
tently outperforms learned representations from methods specifically designed for online continual
training. Furthermore, using random/pretrained features also recovers 70-90% of the gap to joint
learning, leaving limited room for improvement in representation learning techniques on standard
benchmarks. Overall, our investigation questions our understanding of how to effectively design and
train models that require efficient continual representation learning, and necessitates a re-investigation
of the widely explored problem formulation itself. We believe adoption of computationally bounded
scenarios without memory constraints and corresponding benchmarks [51, 50, 22] could be a promis-
ing way forward.

Limitations & Future Directions. We currently do not provide theory or justification for why
training dynamics of continual learning algorithms fails to effectively learn good representations;
doing so would provide deeper insights into continual learning algorithms. Moreover, our proposed
method, RanDumb with random Fourier features is limited in scope towards low-exemplar scenarios
and online-continual learning. Extending studies on representation learning to high-exemplar and
offline continual learning scenarios might be exciting directions to investigate.
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* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitation Section is provided in the supplementary material.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Rahimi and Recht [52] from our references details the theory for why random
fourier representations perform so well quite beautifully. The random representations do
not change (no continual aspect), hence the theory can be applied as-is in our case with no
changes. We do not claim any novel theoretical contributions.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: RanDumb is fairly simple to implement. We dedicated half a page towards
explaining hyperparameters and other information needed to reproduce all of our results.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide code in the supplementary material to reproduce our results.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We use standard datasets and splits, we provide hyperparameters in experimen-
tal details along with ablations in experiment sections to understand the contribution of each
component in our algorithm.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We state here that the only random component being the random fourier
features kernel across, otherwise our method is simple and exactly reproducible. We
conducted experiments with three different initialisations corresponding to seeds of the
random kernel in sklearn to investigate this and different kernel initialisations lead to around
+0.2 variation in the reported results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Detailed in Section 3 in Implementation Details. For easy access, we restate:
All experiments were conducted on a CPU server with al53 48-core Intel Xeon Platinum
8268 CPU and 392GB of RAM, requiring less than 30 minutes per experiment.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the ethics guidelines and confirm that we do not use human
subjects, use existing datasets, explicitly discuss social impacts.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The primary contribution in RanDumb was not to introduce a novel state-
of-the-art continual learning method, but challenge prevailing assumptions and open a
discussion on the efficacy of representation learning in continual learning algorithms. As
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such, we do not recommend use of RanDumb for deployment in real-world production
systems, hence no direct societal impact or explicit limitations on use in production systems
is discussed.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not have any high-risk model or dataset introduced.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: MNIST, CIFAR-10, CIFAR-100, tinyImageNet and minilmagenet are cited
appropriately. The licenses for these datasets is not explicitly released, hence we do not
include that information.

Guidelines:

* The answer NA means that the paper does not use existing assets.
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14.

15.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Yes, we provide RanDumb with proper documentation under a GPL3 license.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing or research with human subjects was performed.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No crowdsourcing or research with human subjects was performed.

Guidelines:
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The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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