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Abstract. Users create accounts on multiple social networks to get con-
nected to their friends across these networks. We refer to these user ac-
counts as user identities. Since users join multiple social networks, there-
fore, there will be cases where a pair of user identities across two different
social networks belong to the same individual. We refer to such pairs as
Cross-Network Linkages (CNLs). In this work, we model the social net-
work as a graph to explore the question, whether we can obtain effective
social network graph representation such that node embeddings of users
belonging to CNLs are closer in embedding space than other nodes, using
only the network information. To this end, we propose a modular and
flexible node embedding framework, referred to as NeXLink, which com-
prises of three steps. First, we obtain local node embeddings by preserv-
ing the local structure of nodes within the same social network. Second,
we learn the global node embeddings by preserving the global structure,
which is present in the form of common friendship exhibited by nodes
involved in CNLs across social networks. Third, we combine the local
and global node embeddings, which preserve local and global structures
to facilitate the detection of CNLs across social networks. We evalu-
ate our proposed framework on an augmented (synthetically generated)
dataset of 63,713 nodes & 817,090 edges and real-world dataset of 3,338
Twitter-Foursquare node pairs. Our approach achieves an average Hit@1
rate of 98% for detecting CNLs across social networks and significantly
outperforms previous state-of-the-art methods.

Keywords: Social Networks · Network Embedding · User Identity Link-
age

1 Introduction

Online Social Networks (OSNs) are popular platforms on the Internet, helping
users to connect with their friends, enabling them to view and share information.
OSNs offer different types of content to its users. For instance, YouTube offers
videos, Instagram offers images, while Facebook and Twitter offers a mix of text,
images, and videos. OSNs also offer different types of friend network to its users.
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LinkedIn provides access to the professional network while others like Facebook,
help in connecting to personal friends. With the presence of these multiple social
networks, it is evident that users join more than one social network to avail these
several benefits offered by OSNs. In this scenario, it is of great interest to find
user identities across multiple social networks belonging to the same individual,
which we refer to as cross-network linkage and refer these identities as linked
identities. User behaviors exhibited through these linked identities across multi-
ple OSNs help in building a collective digital footprint [12]. Users’ popularity and
friendships trends [23] and influence [3] across OSNs can be better understood
using such digit footprints. For an adversary to launch social engineering attacks
[1], this helps in harvesting information about users based on their activities in
multiple OSNs. In digital marketing, it helps to know and identify your customer
[11] for the targeted advertisement.

Given the immense importance of finding linked identities, we propose a so-
lution based on the construction of effective graph representations. The goal is
to learn node embeddings in a social graph such that nodes with similar char-
acteristics are represented by similar node embedding vectors. In the context of
our problem, we ask the question whether we can obtain effective social network
graph representation such that node embeddings of users belonging to CNLs are
closer in embedding space than other nodes. In other words, as depicted in Figure
1, the goal is to propose an embedding framework that transforms nodes into
embedding vectors such that nodes present in linked identities are closer in em-
bedding space than other nodes. To this end, we propose a three-step NeXLink
framework that learns node representations to detect CNLs across social net-
works. In the first step, the local structure of nodes within the same network is
preserved. In social networks, these local structures would comprise of friendship
relation or follow-followee relation maintained by user identities. In particular,
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Fig. 1: Our proposed NeXLink framework learns node embeddings from two so-
cial networks (represented as graphs, on the left side) with few cross-network
linkages. On the right side, we depict embedding space in which nodes corre-
sponding to user identities belonging to same individual are closer than other
nodes.
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we learn node embeddings of nodes within the same network using the normal-
ized edge weights so that nodes that are structurally near to each other, their
corresponding embeddings are also close in embedding space. In the second step,
the global structure of nodes connected across multiple networks is preserved. In
social networks, these global structures would comprise of cross-platform link-
ages which represent user identities across social networks belonging to the same
individual. These linked identities are expected to exhibit a number of common
friends across social networks. In particular, we learn the node embeddings of
nodes that are part of Cross-Network Linkages (CNLs) by biasing the random
walk in proportion to the common friendship. As a result, node embeddings of
nodes that are part of CNLs with more common friends are closer in embedding
space. In the third step, we directly leverage the node embeddings to evaluate
their efficacy in the detection of cross-network linkages across social networks.
The code and data of our work are available at the GitHub repository.3 We eval-
uate our proposed approach of the NeXLink framework on two datasets. The
first dataset is an augmented dataset synthetically generated using the Face-
book social network [18] comprising of 63,713 nodes (users) and 817,090 edges.
Our approach works well in all possible augmentations of the Facebook dataset
achieving an average Hit@1 rate of 98%, which means that the probability of
hitting on the correct cross-network linkage across social networks is 98%. Fur-
ther, our approach outperforms the state-of-the-art prior approaches of node
representations namely LINE [17] and DeepWalk [15] on synthetically generated
graphs, which we refer to as augmented dataset. The second dataset comprises
of a real-world dataset of Twitter-Foursquare social networks [25] comprising
of 3,338 nodes (user) pairs. We find that except for Hit@1 rate, our approach
better than the state-of-the-art prior approaches of user identity linkages namely
IONE [10] and REGAL [6] in Hit@5 rates and above. The key contributions of
our work are as below.

– We propose a modular and flexible NeXLink framework as a two-step opti-
mization process that preserves local structure within the same network and
preserves global structure manifested in the form of cross-network linkages.

– We extensively evaluate our framework on two datasets, one augmented
dataset obtained from Facebook and other real-world dataset comprising
of Twitter-Foursquare node pairs. Our framework works well on the syn-
thetically generated dataset and outperforms prior node representation ap-
proaches (LINE and DeepWalk) and identity linkage approaches (IONE and
REGAL).

2 Related Work

Recently, there are a few prior works that have addressed the problem of user
identity linkage using the network embedding approach whose aim is to learn a

3 Code and dataset of our work can be found at: https://github.com/precog-
iiitd/nexlink-netscix-2020
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low dimensional representation for a given node in a graph. We categorize these
prior methods in the field of network embedding into two main categories, as
explained below.
Problem independent approaches: These works only aim to learn generic low-
dimensional representations without focusing on user linkage problems. The ob-
jective is to learn effective node representations in low dimensions. Tang et al.
[17] propose a framework for network embedding in large graphs to preserve node
structures of nodes which are directly connected (first-order node proximity) and
connected at a distance of two hops (second-order node proximity). Perozzi et al.
[15] leverage the notion of the skip-gram model in language modeling to perform
truncated random walks in order to learn latent representations of nodes in a
graph. Wang et al. [19] preserve the first and second-order node proximity using
a semi-supervised deep learning model. Grover et al. [2] extend the notion of a
random walk by introducing biased walks in node neighborhood to learn feature
representations of the node in a network. Xu et al. [22] propose two embeddings
for each node that capture the structural proximity of nodes as well as the se-
mantic similarity, which they express in terms of common interests. Liang et
al. [8] propose a dynamic user and word embedding model (DUWE) that mon-
itors over some time, the relationship between user and words to model their
embeddings. Liu et al. [9] present a self-translation network embedding (STNE)
framework that is a sequence-to-sequence framework taking into consideration
both content and network features of the node.
Problem dependent approaches: These learn low-dimensional embedding focus-
ing on specific problem, which in our case is to detect cross-network linkages
representing user identities across social networks. Liu et al. [10] propose an
input-output node embedding (IONE) framework to align user identities across
social networks belonging to the same person by learning node representations
that preserve follower-followee relationships. Man et al. [13] introduce a frame-
work referred to as PALE, which predicts anchor links via embeddings. First,
it converts a social network into a low dimensional node representation. They
follow it up by learning a matching function that is supervised by known an-
chor links. Heimann et al. [6] explain the REGAL framework, which stands for
representation learning-based graph alignment based on the cross-network ma-
trix factorization method. Wang et al. [20] propose LHNE mode referred to as
linked heterogeneous network embedding which creates an unified framework to
leverage structure and content posted by users for learning node representations.
Xie et al. [21] use the concept of factoid embedding, which is an unsupervised
approach to perform user identity linkage. Our proposed approach outperforms
some of these existing approaches, as explained later in this paper.

3 Proposed Approach

In this section, we discuss our proposed NeXLink framework for effective rep-
resentation and detection of cross-network linkages across social networks. We
consider two social networks X and Y as two undirected graphs GX(VX , EX)
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Fig. 2: Illustration of common neighbors of user identities uXi and uYj belonging
to networks GX and GY . Since all neighbors are common, it is highly likely that
uXi and uYj belong to same individual than uXk and uYj .

and GY (VY , EY ), where VX & VY represent the nodes (users) of graphs and EX

& EY represent the edges. An edge between nodes ui and uj indicates friend-
ship relation between users ui and uj . We divide the set of node pairs (uXi , u

Y
j )

across social networks X and Y into two types, namely, cross-network link-
ages, denoted by CNL(VX , VY ) and other pairs are denoted by NCNL(VX , VY ).
Nodes uXi and uYj belonging to social networks X and Y are referred to as

cross-network linkage if uXi and uYj belong to the same individual and the pair

(uXi , u
Y
j ) ∈ CNL(VX , VY ) else (uXi , u

Y
j ) ∈ NCNL(VX , VY ). Further, it may be

observed in Figure 2, that the two users represented as two nodes uXi and uYj
have aX , bX and cX as friends in social network X and same friends aY , bY

and cY in social network Y . We refer to such familiar friends as common friend-
ship and leverage this behavior in learning node representations in our NeXLink
framework. Besides familiar friends, each node also has some friends which are
specific to one social network only. In Figure 2, nodes dX and eX are friends of
uXi in only social network X whereas nodes fY and gY are friends of uYj in only
social network Y . We note that above formulations for undirected graphs are
also applicable in case of directed graphs, in which case the friendship relation
would get replaced by follow-followee relation using directed edges.

3.1 Problem Statement

Given two graphs GX(VX , EX) and GY (VY , EY ) as input, we define cross-
network linkage CNL(GX , GY ) as the set of user identity pairs across these
two networks X and Y , which belong to the same person. Similarly, we denote
all other user pairs which do not belong to the same person by NCNL(GX , GY .
The goal of network embedding function (denoted by femb) is to transform each
user identity uXi ∈ VX and uYj ∈ VY into low d-dimensional vectors zXi and zYj
such that if user identities uXi and uYj belong to the same individual (i.e. they
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represent cross-network linkage), then their corresponding node embeddings zXi
and zYj are closer in embedding space else they are far apart.

zXi = femb(u
X
i ),∀uXi ∈ VX .

zYj = femb(u
Y
j ),∀uYj ∈ VY .

such that

sim(zXi , z
Y
j ) >> sim(zXk , z

Y
j ) and

∃ (uXi , u
Y
j ) ∈ CNL(VX , VY ) ∧ (uXk , u

Y
j ) ∈ NCNL(VX , VY ).

(1)

a1

b1

e1

c1
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Fig. 3: NeXLink Framework. Architecture diagram of our proposed framework
that learns node embeddings from two social networks (represented as graphs)
to represent the cross-network linkages across social networks. Local node em-
beddings are concatenated with global node embeddings to generate final node
embeddings.

3.2 NeXLink Framework

The goal of our proposed NeXLink node embedding framework is to obtain
representations of nodes in two networks X and Y such that node pairs par-
ticipating in cross-network linkages have similar node embeddings than other
node pairs. To achieve this goal, we follow a two-step approach, as depicted in
Figure 3. In the first step, structural similarities of nodes within or local in their
respective networks are preserved independently of the other network. In the
second step, similarities of nodes across (or global) the two networks are pre-
served using a common friendship relationship. Given the two-step process, the
embedding function femb can be broken down into two embedding functions, as
shown below.

zXi = fglobal(u
X
i )⊕ flocal(uXi ),∀uXi ∈ VX .

zYj = fglobal(u
Y
j )⊕ flocal(uYj ),∀uYj ∈ VY .

(2)
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There can be different ways of combining the global and local node embed-
dings, however, it turned out that concatenation is the best operation ⊕ to
combine local and global node embeddings, which we finally used in our pro-
posed NeXLink framework. Further, we note that our proposed approach makes
use of only the network structure in the two social networks. However, it can be
easily extended to include other sources of information from content and profile
information of users, which we leave for future work.

Step 1 - Preserving Local Structure Within Social Networks We
perform the first step on the intuition that directly connected user nodes within
their respective social networks are likely to exhibit similar characteristics, based
on the well established social behavioral principle of homophily [14]. Given two
nodes uXi and uXk in same social network X, the goal is to define an encoding
function flocal that takes these nodes as input and learns their d-dimensional
embedding vectors zXi ∈ Rd and zXk ∈ Rd. To learn zXi and zXk for all nodes in
VX , we rely upon the probabilistic approach. The empirical probability of the
relationship between two nodes uXi and uXk within the same social network X can
be defined as the normalized weight of edge (wX

i,k) between the nodes. Since we
consider only the structural information of the network, therefore, for this work,
we consider weights to have binary values 1 or 0, depending upon whether there
is an edge or not, respectively. In general, the weight of the edge between nodes
is intuitively proportional to the similarity between two nodes. Similarity, we
can measure other criteria like content similarity. However, we consider only the
network structure similarity in this work. We employ a well-established network
embedding algorithm, LINE [17], to preserve the local structure.

Step 2 - Preserving Global Structure Across Social Networks We
propose the second step based on the intuition that user nodes with common
friends (CF ) across the social networks are likely to belong to the same person.
The degree to which two nodes (users) uXi and uYj on two social networks X
and Y , respectively, having common friendship, is expressed as below.

CF (uXi , u
Y
j ) =

N(uXi ) ∩N(uYj )

N(uXi ) ∪N(uYj )
(3)

where N(uXi ) and N(uYj ) represent the set of friends of ith user in network X

and jth user in network Y , respectively. Higher is the value of common friend-
ship (CF ), more likely the users uXi and uYj would belong to the same person.

Therefore, the goal of second encoding function fglobal is to take uXi and uYj
as inputs and generate d-dimensional node embeddings vectors zXG,i ∈ Rd and

zYG,j ∈ Rd, respectively by using supervisory information of common friendship

between uXi and uYj in networks X and Y , respectively, along with structural

information. If uXi and uYj have more common friends, their embedding vectors

zXG,i and zYG,j are expected to be closer in embedding space. We employ a well-
established network embedding DeepWalk [15] algorithm to preserve the local
structure.
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4 Data

We evaluate our approach on two network datasets, one augmented, and another
a real-world dataset.

4.1 Augmented Dataset

We use the Facebook friendship network dataset4, provided by Viswanath et al.
[18], comprising 63,713 users and 817,090 edges. We create an undirected graph
from the dataset and filter out the nodes that have a degree less than 5, reducing
the graph to 40,711 nodes and 766,579 edges. We use this graph to create two
subgraphs using a sampling algorithm proposed by Man et al. [13]. Given a
graph G(V,E), the algorithm takes two parameters, αs, αc and produces two
subgraphs GX(VX , EX), GY (VY , EY ). The parameter αs represents how likely
are the two subgraphs to retain the edges from the original graph, or the sparsity
level. Similarly, the parameter αc indicates the expected fraction of edges shared
among the two subgraphs, or the overlap level. Table 1 shows the number of
edges and nodes in the generated subgraphs for different values of αs and αc.
Once we have the subgraphs, we need to generate node pairs which represent
CNLs and NCNLSs across the two subgraphs, which we call as X-node pairs. To
do so, we consider all the common nodes in both the graphs, VCNL = VX ∩ VY ,
and call them as our CNL nodes, while we term others as NCNL nodes. Now,
we take a CNL node and initiate a random walk of a variable length t in GX ,
and later in GY . The random walks generate 2 × t nodes from GX and GY

collectively, and these nodes are then paired with the CNL node to form node
pairs.

4.2 Real-World Dataset

Kong et al. [7] introduced a network dataset collected from Twitter and Foursquare
social networks. The data collection process is described in [7, 24] and used in
multiple social link prediction problems [10, 25, 26]. Since the dataset comprises
two graphs on its own, we do not need to employ any sampling algorithm to
generate subgraphs, and we present the statistical details about the dataset in
Table 1. The cross-network linkages represent the users that have profiles on
both the social networks. It is evident that such users are less in number in this
real-world dataset, compared to the number of CNLs in our augmented dataset.

5 Experiments

We design our experiments to answer the following research questions:

RQ1 How do the values αs and αc affect the retrieval of a cross-network node
match?

4 http://socialnetworks.mpi-sws.org/data-wosn2009.html
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Graph #Nodes #Edges #CNLs

Augmented Dataset

GX(αs = 0.5, αc = 0.5) 40,558 383,463
39,061

GY (αs = 0.5, αc = 0.5) 40,563 382,380

GX(αs = 0.5, αc = 0.9) 40,562 383,360
40,458

GY (αs = 0.5, αc = 0.9) 40,547 383,528

GX(αs = 0.9, αc = 0.5) 40,602 422,295
40,418

GY (αs = 0.9, αc = 0.5) 40,708 689,481

GX(αs = 0.9, αc = 0.9) 40,709 689,856
40,705

GY (αs = 0.9, αc = 0.9) 40,709 690,103

Real-World Dataset

Twitter 5,120 130,575
1,288

Foursquare 5,313 54,233

Table 1: Statistics for the two datasets used for the evaluation.

RQ2 How does the choice of second node embedding function fglobal affect the
cross-network node retrieval?

RQ3 How does our proposed NeXLink framework compare with other baselines
on a real-world dataset?

We implement all our experiments using NetworkX [4] for graph functions and
use OpenNE5 to run network embedding implementations. To generate the
NCNL node pairs, we keep the depth of random walk, t = 20 throughout the
experiments. When generating the embeddings for cross-network linkages, all
embeddings functions treat node pairs as the edges of the cross-network graph,
with CF values as the weights for cross-network edges. Given that our proposed
NeXLink framework has two steps for the preservation of structure at the local
and global level, we employ prior state-of-the-art node embedding methods at
these steps. We typically employ LINE [17] to preserve local structure and con-
sider only first-order proximity calculated over first-order nodes and run over 50
epochs, with early stopping. We do not use second-order proximity since that
is taken care of in the second step of our NeXLink framework. We employ var-
ious node embedding methods (LINE [17] and DeepWalk[15]) to preserve the
global structure in the second step of our NeXLink framework. However, as we
explain in this section, it turns out that node2vec [2] when employing common
friendship across social networks gives the best results. In node2vec, we set the
parameters as p = 1 and q = 2 which, as mentioned by the authors, are more
suited towards preserving structural equivalence. All embedding functions yield
128D embeddings. We evaluate our approach to measure how effectively can node
embeddings preserve the CNLs in lower dimensional space, and how closely do

5 https://github.com/thunlp/OpenNE
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Fig. 4: Results of the three experiments for our research questions (RQ1-RQ3).
(a) Comparison of Hit-Rate@k values for different sparsity (αs) and overlap
(αc) levels. (b) Comparison of Hit-Rate@k values for different cross-network
node embeddings. (c) Comparison of Hit-Rate@k values for the baselines and
NeXLink (LINE-node2vec) over the real-world dataset.

network embeddings for CNL lie in that space. In order to compute closeness,
we measure the cosine similarity over the node embeddings. When querying for
a node uXi from the CNL pair (uXi , u

Y
j ), we count a hit if the matching node

embedding zYj for node uYj is present in a set of k node embeddings, ordered on
their similarity. To measure accuracy, we calculate a ratio of hits over number
of queries and term it as Hit-Rate@k. Hit-Rate@k is defined as:

Hit(uXi ) =

{
1, if zYj ∈ {zY1 , zY1 , ..., zYk }
0, otherwise

(4)

Hit−Rate@k =

∑NCNL

i=0 Hit(uXi )

NCNL
(5)

We choose k = [1, 5, 10, 20, 50] for all the experiments to evaluate our approach
under different budget values.
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5.1 Effect of Sparsity and Overlap levels

The αs and αc values affect the Common Friendship (CF) values for the CNL
nodes, and since the second embedding function is trained to preserve the CF
property across networks, we see significant differences in the performances with
respect to the difference in αs and αc values. We start by employing LINE [17]
to learn the local as well as cross-network similarity structure over the four
subgraph configurations, as mentioned in Section 4, and present our results in
Figure 4a. We observe that the X-node pairs with αs = 0.5 and αc = 0.9 values
achieve the highest Hit-Rate@k for all values of k, starting from 0.75 at k = 1,
and up to 0.96 at k = 50. The X-node pairs with αs = 0.9 and αc = 0.5 values
achieve the lowest Hit-Rate@k values with 0.57 at k = 1 and 0.89 at k = 50.
We attribute this behavior to the fact that less number of edges and more the
overlap between the two subgraphs help the embeddings to capture structural
similarities with less noise.

5.2 Effect of Cross-Network Node Embedding

We study the role of different network embedding techniques in our proposed
NetXLink framework help to preserve CNLs and their impact on the performance
of the detection of CNLs across social networks. LINE [17] is suitable for a
majority of the number of graphs which preserve local network structure through
first-order proximity, which makes it an ideal choice of node embedding method
for our within-network embeddings. Along with LINE, we use DeepWalk [15]
over X-node pairs to get cross-network embeddings, as it uses the structural
information about inter-connected nodes by performing truncated random walks
to learn latent representations of nodes in a graph, which in our case would
be CNLs across networks. Similarly, we employ node2vec [2] which proposes
a flexible notion of node neighborhood by designing a biased random walk to
learn feature representations of graph nodes. Figure 4b shows the results of
our experiments with different node embeddings. The LINE-DeepWalk performs
relatively low at k = 1, but reaches closer to the Hit-Rate@k of LINE-LINE
at higher values of k. It can be explained as the DeepWalk algorithm uses a
random walk to sample neighbors of a node to gather the structural information,
however, it doesn’t take into the account the weights of the edges, because of
which it can not leverage the CF values for cross-network links. LINE-LINE
performs relatively well as it preserves the first-order proximity proportional to
the CF values and achieves a Hit-Rate@1 of about 0.75. However, using the bias
parameters from node2vec to better represent structural equivalence, we gain a
significant advantage over LINE-LINE and LINE-DeepWalk to get a Hit-Rate@k
of around 0.99 for most of the k values. By biasing the walk towards detecting
cross-linkages and weighting the transition probabilities towards the CF values,
LINE-node2vec gives an optimal representation of cross-linkages that are placed
closer to each other in the embedding space.



12 Kaushal et al.

5.3 Comparison with the Baselines

Finally, we evaluate our best performing combination of LINE-node2vec in the
NeXLink framework with competing baselines. Along with the structural in-
formation, REGAL [6] allows using attribute information for node similarity.
However, when comparing with our approach, we only use the structural in-
formation from the real-world dataset, described in 4.2. We also compare our
approach with IONE [10] that takes two network graphs as input and produces
node embeddings based on the follower and followee relationship among the
nodes. We employ our best performing LINE-node2vec technique and elaborate
on its performance on the real-world dataset. Figure 4c illustrates the perfor-
mance of the baselines, as compared to our approach. Given the evaluation of
IONE uses the same dataset, we were to successfully reproduce their results, as
mentioned in their work [10]. However, it still underperforms when compared to
the other approaches. REGAL achieves the highest Hit-Rate@1 as it uses node
degrees to capture structural similarities, and node degrees partially contribute
to the CF values. However, it still fails to leverage the essential CF values com-
pletely, as one of its limitations is not being able to take the edge weights into
account. Therefore, its performance stagnates at higher k values. In contrast,
LINE-node2vec starts below REGAL at k = 1, but achieves higher Hit-Rate@k
values with the increase in k. LINE-node2vec learns both within-graph and cross-
graph structural features from the real-world dataset and effectively represents
the similarities in low-embedding space.

6 Limitations, Discussions and Future Work

While developing NeXLink, we identify some of the limitations of our approach.
Firstly, we only include structural information indicating standard connections
in the two networks, to learn node representations. We can utilize more rich
features to gain more comprehensive node representations. Secondly, an essential
step in our approach is to create cross-network pairs, which we accomplish using
random walks. We can evaluate more efficient ways to sample the cross-network
pairs. And last, the two significant limitations of node embeddings are (a) the
need to define an objective function, based on which we learn the embeddings,
and (b) node embedding models are transductive, which means that it is not
possible to generate the embeddings for the nodes that we do not see during the
training. To this end, we can consider the use of graph neural networks [16, 5].

In this work, we propose our NeXLink framework for effective representation
of cross-network linkages across social networks. Our framework works by pre-
serving the local structure of nodes within the same social network and global
structure manifested in the form of common friends exhibited by nodes partici-
pating in cross-network linkages. We perform an extensive evaluation of our ap-
proach on two datasets, one of which we augment from Facebook social network,
and the other comprises of Twitter-Foursquare node pairs. Given that NeXLink
framework is flexible, we explored numerous state-of-the-art node embedding al-
gorithms and found that LINE-node2vec performs the best when provided with
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supervisory information of common friendship. It performs with average Hit@1
rate of 98% across all configurations of the augmented dataset. Further our ap-
proach outperforms state-of-the-art node representation algorithms LINE and
DeepWalk for representing cross-network linkages across the social networks.
This can be primarily attributed to the fact that our approach preserves local
and global cross-network links more effectively than these previous approaches
which are specifically targeted to perform well on single networks. Our frame-
work works better than other state-of-the-art node embedding approaches like
IONE and REGAL for identity linkage on a real-world dataset. This is because
our framework performs biased walks in accordance with the common friendship
metric for cross-network links.

As future work, we can include node attributes derived from user profile
configuration and user content in the NeXLink framework and their impact on
performance measured. At the algorithmic level, deep learning-based approaches
for node embedding would also be a right direction to explore.
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